The East Main Street Bridge in Corbin, Kentucky , spanning Lynn Camp Creek between Knox County, Kentucky and Whitley County, Kentucky , was built in 1890. Also known as the Engineers Street Bridge , it was listed on the National Register of Historic Places in 1986.
116-662: It is a Pratt truss through truss bridge built by the Louisville Bridge Co. It brings Engineers St. (formerly E. Main St.) across Lynn Camp Creek in Corbin. It was an old bridge of the Louisville and Nashville Railroad which was offered to the city in 1902. They donated the railroad bridge which was moved into place in 1905 as a road bridge, which was later converted to a pedestrian bridge. This article about
232-470: A Parker truss or Pratt truss than a true arch . In the Brown truss all vertical elements are under tension, with exception of the end posts. This type of truss is particularly suited for timber structures that use iron rods as tension members. See Lenticular truss below. This combines an arch with a truss to form a structure both strong and rigid. Most trusses have the lower chord under tension and
348-677: A covered bridge to protect the structure. In 1820, a simple form of truss, Town's lattice truss , was patented, and had the advantage of requiring neither high labor skills nor much metal. Few iron truss bridges were built in the United States before 1850. Truss bridges became a common type of bridge built from the 1870s through the 1930s. Examples of these bridges still remain across the US, but their numbers are dropping rapidly as they are demolished and replaced with new structures. As metal slowly started to replace timber, wrought iron bridges in
464-595: A property in Knox County, Kentucky on the National Register of Historic Places is a stub . You can help Misplaced Pages by expanding it . This article about a property in Whitley County, Kentucky on the National Register of Historic Places is a stub . You can help Misplaced Pages by expanding it . Pratt truss A truss bridge is a bridge whose load-bearing superstructure is composed of
580-402: A square wave pattern instead of the normal sine wave , making rapid zero crossings possible and minimizing the effects of the problem. Resistance welding involves the generation of heat by passing current through the resistance caused by the contact between two or more metal surfaces. Small pools of molten metal are formed at the weld area as high current (1,000–100,000 A ) is passed through
696-416: A truss allows the analysis of its structure using a few assumptions and the application of Newton's laws of motion according to the branch of physics known as statics . For purposes of analysis, trusses are assumed to be pin jointed where the straight components meet, meaning that taken alone, every joint on the structure is functionally considered to be a flexible joint as opposed to a rigid joint with
812-483: A truss , a structure of connected elements, usually forming triangular units. The connected elements, typically straight, may be stressed from tension , compression , or sometimes both in response to dynamic loads. There are several types of truss bridges, including some with simple designs that were among the first bridges designed in the 19th and early 20th centuries. A truss bridge is economical to construct primarily because it uses materials efficiently. The nature of
928-550: A Parker truss vary from near vertical in the center of the span to diagonal near each end, similar to a Warren truss. George H. Pegram , while the chief engineer of Edge Moor Iron Company in Wilmington, Delaware , patented this truss design in 1885. The Pegram truss consists of a Parker type design with the vertical posts leaning towards the center at an angle between 60 and 75°. The variable post angle and constant chord length allowed steel in existing bridges to be recycled into
1044-502: A Russian, Konstantin Khrenov eventually implemented the first underwater electric arc welding. Gas tungsten arc welding , after decades of development, was finally perfected in 1941, and gas metal arc welding followed in 1948, allowing for fast welding of non- ferrous materials but requiring expensive shielding gases. Shielded metal arc welding was developed during the 1950s, using a flux-coated consumable electrode, and it quickly became
1160-594: A continuous truss functions as a single rigid structure over multiple supports. This means that the live load on one span is partially supported by the other spans, and consequently it is possible to use less material in the truss. Continuous truss bridges were not very common before the mid-20th century because they are statically indeterminate , which makes them difficult to design without the use of computers . A multi-span truss bridge may also be constructed using cantilever spans, which are supported at only one end rather than both ends like other types of trusses. Unlike
1276-523: A continuous truss, a cantilever truss does not need to be connected rigidly, or indeed at all, at the center. Many cantilever bridges, like the Quebec Bridge shown below, have two cantilever spans supporting a simple truss in the center. The bridge would remain standing if the simple truss section were removed. Bridges are the most widely known examples of truss use. There are many types, some of them dating back hundreds of years. Below are some of
SECTION 10
#17328019481151392-435: A conventional truss into place or by building it in place using a "traveling support". In another method of construction, one outboard half of each balanced truss is built upon temporary falsework. When the outboard halves are completed and anchored the inboard halves may then be constructed and the center section completed as described above. The Fink truss was designed by Albert Fink of Germany in 1854. This type of bridge
1508-414: A highly concentrated, limited amount of heat, resulting in a small HAZ. Arc welding falls between these two extremes, with the individual processes varying somewhat in heat input. To calculate the heat input for arc welding procedures, the following formula can be used: where Q = heat input ( kJ /mm), V = voltage ( V ), I = current (A), and S = welding speed (mm/min). The efficiency is dependent on
1624-409: A highly focused laser beam, while electron beam welding is done in a vacuum and uses an electron beam. Both have a very high energy density, making deep weld penetration possible and minimizing the size of the weld area. Both processes are extremely fast, and are easily automated, making them highly productive. The primary disadvantages are their very high equipment costs (though these are decreasing) and
1740-605: A lack of durability, and gave way to the Pratt truss design, which was stronger. Again, the bridge companies marketed their designs, with the Wrought Iron Bridge Company in the lead. As the 1880s and 1890s progressed, steel began to replace wrought iron as the preferred material. Other truss designs were used during this time, including the camel-back. By the 1910s, many states developed standard plan truss bridges, including steel Warren pony truss bridges. In
1856-477: A lower chord (functioning as a suspension cable) that curves down and then up to meet at the same end points. Where the arches extend above and below the roadbed, it is called a lenticular pony truss bridge . The Pauli truss bridge is a specific variant of the lenticular truss, but the terms are not interchangeable. One type of lenticular truss consists of arcuate upper compression chords and lower eyebar chain tension links. Brunel 's Royal Albert Bridge over
1972-513: A modest amount of training and can achieve mastery with experience. Weld times are rather slow, since the consumable electrodes must be frequently replaced and because slag, the residue from the flux, must be chipped away after welding. Furthermore, the process is generally limited to welding ferrous materials, though special electrodes have made possible the welding of cast iron , stainless steel, aluminum, and other metals. Gas metal arc welding (GMAW), also known as metal inert gas or MIG welding,
2088-726: A new span using the Pegram truss design. This design also facilitated reassembly and permitted a bridge to be adjusted to fit different span lengths. There are twelve known remaining Pegram span bridges in the United States with seven in Idaho , two in Kansas , and one each in California , Washington , and Utah . The Pennsylvania (Petit) truss is a variation on the Pratt truss . The Pratt truss includes braced diagonal members in all panels;
2204-445: A strike; before the collapse, similar incidents had been common and had necessitated frequent repairs. Truss bridges consisting of more than one span may be either a continuous truss or a series of simple trusses. In the simple truss design, each span is supported only at the ends and is fully independent of any adjacent spans. Each span must fully support the weight of any vehicles traveling over it (the live load ). In contrast,
2320-447: A suitable torch was developed. At first, oxyfuel welding was one of the more popular welding methods due to its portability and relatively low cost. As the 20th century progressed, however, it fell out of favor for industrial applications. It was largely replaced with arc welding, as advances in metal coverings (known as flux ) were made. Flux covering the electrode primarily shields the base material from impurities, but also stabilizes
2436-434: A susceptibility to thermal cracking. Developments in this area include laser-hybrid welding , which uses principles from both laser beam welding and arc welding for even better weld properties, laser cladding , and x-ray welding . Like forge welding (the earliest welding process discovered), some modern welding methods do not involve the melting of the materials being joined. One of the most popular, ultrasonic welding ,
SECTION 20
#17328019481152552-524: A tungsten electrode but uses plasma gas to make the arc. The arc is more concentrated than the GTAW arc, making transverse control more critical and thus generally restricting the technique to a mechanized process. Because of its stable current, the method can be used on a wider range of material thicknesses than can the GTAW process and it is much faster. It can be applied to all of the same materials as GTAW except magnesium, and automated welding of stainless steel
2668-545: A variant of the lenticular truss, "with the top chord carefully shaped so that it has a constant force along the entire length of the truss." It is named after Friedrich Augustus von Pauli [ de ] , whose 1857 railway bridge (the Großhesseloher Brücke [ de ] ) spanned the Isar near Munich . ( See also Grosshesselohe Isartal station .) The term Pauli truss is not interchangeable with
2784-466: Is a fabrication process that joins materials, usually metals or thermoplastics , primarily by using high temperature to melt the parts together and allow them to cool, causing fusion . Common alternative methods include solvent welding (of thermoplastics) using chemicals to melt materials being bonded without heat, and solid-state welding processes which bond without melting, such as pressure, cold welding , and diffusion bonding . Metal welding
2900-700: Is a Pratt truss design with a polygonal upper chord. A "camelback" is a subset of the Parker type, where the upper chord consists of exactly five segments. An example of a Parker truss is the Traffic Bridge in Saskatoon , Canada. An example of a camelback truss is the Woolsey Bridge near Woolsey, Arkansas . Designed and patented in 1872 by Reuben Partridge , after local bridge designs proved ineffective against road traffic and heavy rains. It became
3016-419: Is a hazardous undertaking and precautions are required to avoid burns , electric shock , vision damage, inhalation of poisonous gases and fumes, and exposure to intense ultraviolet radiation . Until the end of the 19th century, the only welding process was forge welding , which blacksmiths had used for millennia to join iron and steel by heating and hammering. Arc welding and oxy-fuel welding were among
3132-427: Is a highly productive, single-pass welding process for thicker materials between 1 inch (25 mm) and 12 inches (300 mm) in a vertical or close to vertical position. To supply the electrical power necessary for arc welding processes, a variety of different power supplies can be used. The most common welding power supplies are constant current power supplies and constant voltage power supplies. In arc welding,
3248-519: Is a hybrid between a Warren truss and a double-intersection Pratt truss. Invented in 1863 by Simeon S. Post, it is occasionally referred to as a Post patent truss although he never received a patent for it. The Ponakin Bridge and the Bell Ford Bridge are two examples of this truss. A Pratt truss includes vertical members and diagonals that slope down towards the center, the opposite of
3364-472: Is a ring surrounding the weld in which the temperature of the welding process, combined with the stresses of uneven heating and cooling, alters the heat-treatment properties of the alloy. The effects of welding on the material surrounding the weld can be detrimental—depending on the materials used and the heat input of the welding process used, the HAZ can be of varying size and strength. The thermal diffusivity of
3480-430: Is a semi-automatic or automatic process that uses a continuous wire feed as an electrode and an inert or semi-inert gas mixture to protect the weld from contamination. Since the electrode is continuous, welding speeds are greater for GMAW than for SMAW. A related process, flux-cored arc welding (FCAW), uses similar equipment but uses wire consisting of a steel electrode surrounding a powder fill material. This cored wire
3596-433: Is allowed to cool, and then another weld is performed on top of it. This allows for the welding of thick sections arranged in a single-V preparation joint, for example. After welding, a number of distinct regions can be identified in the weld area. The weld itself is called the fusion zone—more specifically, it is where the filler metal was laid during the welding process. The properties of the fusion zone depend primarily on
East Main Street Bridge (Corbin, Kentucky) - Misplaced Pages Continue
3712-442: Is characterized by a stable arc and high-quality welds, but it requires significant operator skill and can only be accomplished at relatively low speeds. GTAW can be used on nearly all weldable metals, though it is most often applied to stainless steel and light metals. It is often used when quality welds are extremely important, such as in bicycle , aircraft and naval applications. A related process, plasma arc welding, also uses
3828-407: Is commonly used for making electrical connections out of aluminum or copper, and it is also a very common polymer welding process. Another common process, explosion welding , involves the joining of materials by pushing them together under extremely high pressure. The energy from the impact plasticizes the materials, forming a weld, even though only a limited amount of heat is generated. The process
3944-627: Is commonly used for welding dissimilar materials, including bonding aluminum to carbon steel in ship hulls and stainless steel or titanium to carbon steel in petrochemical pressure vessels. Other solid-state welding processes include friction welding (including friction stir welding and friction stir spot welding ), magnetic pulse welding , co-extrusion welding, cold welding , diffusion bonding , exothermic welding , high frequency welding , hot pressure welding, induction welding , and roll bonding . Welds can be geometrically prepared in many different ways. The five basic types of weld joints are
4060-413: Is distinct from lower temperature bonding techniques such as brazing and soldering , which do not melt the base metal (parent metal) and instead require flowing a filler metal to solidify their bonds. In addition to melting the base metal in welding, a filler material is typically added to the joint to form a pool of molten material (the weld pool ) that cools to form a joint that can be stronger than
4176-484: Is made of filler material (typical steel) and is covered with a flux that protects the weld area from oxidation and contamination by producing carbon dioxide (CO 2 ) gas during the welding process. The electrode core itself acts as filler material, making a separate filler unnecessary. The process is versatile and can be performed with relatively inexpensive equipment, making it well suited to shop jobs and field work. An operator can become reasonably proficient with
4292-433: Is more expensive than the standard solid wire and can generate fumes and/or slag, but it permits even higher welding speed and greater metal penetration. Gas tungsten arc welding (GTAW), or tungsten inert gas (TIG) welding, is a manual welding process that uses a non-consumable tungsten electrode, an inert or semi-inert gas mixture, and a separate filler material. Especially useful for welding thin materials, this method
4408-832: Is named after the K formed in each panel by the vertical member and two oblique members. Examples include the Südbrücke rail bridge over the River Rhine, Mainz, Germany, the bridge on I-895 (Baltimore Harbor Tunnel Thruway) in Baltimore, Maryland, the Long–Allen Bridge in Morgan City, Louisiana (Morgan City Bridge) with three 600-foot-long spans, and the Wax Lake Outlet bridge in Calumet, Louisiana One of
4524-420: Is obtained by a metallic or chemical bond that is formed between the constituent atoms. Chemical bonds can be grouped into two types consisting of ionic and covalent . To form an ionic bond, either a valence or bonding electron separates from one atom and becomes attached to another atom to form oppositely charged ions . The bonding in the static position is when the ions occupy an equilibrium position where
4640-430: Is one important application of the process. A variation of the process is plasma cutting , an efficient steel cutting process. Submerged arc welding (SAW) is a high-productivity welding method in which the arc is struck beneath a covering layer of flux. This increases arc quality since contaminants in the atmosphere are blocked by the flux. The slag that forms on the weld generally comes off by itself, and combined with
4756-695: Is practical for use with spans up to 250 feet (76 m) and was a common configuration for railroad bridges as truss bridges moved from wood to metal. They are statically determinate bridges, which lend themselves well to long spans. They were common in the United States between 1844 and the early 20th century. Examples of Pratt truss bridges are the Governor's Bridge in Maryland ; the Hayden RR Bridge in Springfield, Oregon , built in 1882;
East Main Street Bridge (Corbin, Kentucky) - Misplaced Pages Continue
4872-720: Is related to the Old Swedish word valla , meaning 'to boil', which could refer to joining metals, as in valla järn (literally "to boil iron"). Sweden was a large exporter of iron during the Middle Ages , so the word may have entered English from the Swedish iron trade, or may have been imported with the thousands of Viking settlements that arrived in England before and during the Viking Age , as more than half of
4988-400: Is sometimes protected by some type of inert or semi- inert gas , known as a shielding gas, and filler material is sometimes used as well. One of the most common types of arc welding is shielded metal arc welding (SMAW); it is also known as manual metal arc welding (MMAW) or stick welding. Electric current is used to strike an arc between the base material and consumable electrode rod, which
5104-438: Is still widely used for welding pipes and tubes, as well as repair work. The equipment is relatively inexpensive and simple, generally employing the combustion of acetylene in oxygen to produce a welding flame temperature of about 3100 °C (5600 °F). The flame, since it is less concentrated than an electric arc, causes slower weld cooling, which can lead to greater residual stresses and weld distortion, though it eases
5220-525: Is the Victoria Bridge on Prince Street, Picton, New South Wales . Also constructed of ironbark, the bridge is still in use today for pedestrian and light traffic. The Bailey truss was designed by the British in 1940–1941 for military uses during World War II. A short selection of prefabricated modular components could be easily and speedily combined on land in various configurations to adapt to
5336-611: Is used in the teaching of statics, by the building of model bridges from spaghetti . Spaghetti is brittle and although it can carry a modest tension force, it breaks easily if bent. A model spaghetti bridge thus demonstrates the use of a truss structure to produce a usefully strong complete structure from individually weak elements. In the United States , because wood was in abundance, early truss bridges would typically use carefully fitted timbers for members taking compression and iron rods for tension members , usually constructed as
5452-470: Is used to connect thin sheets or wires made of metal or thermoplastic by vibrating them at high frequency and under high pressure. The equipment and methods involved are similar to that of resistance welding, but instead of electric current, vibration provides energy input. When welding metals, the vibrations are introduced horizontally, and the materials are not melted; with plastics, which should have similar melting temperatures, vertically. Ultrasonic welding
5568-621: The Dearborn River High Bridge near Augusta, Montana, built in 1897; and the Fair Oaks Bridge in Fair Oaks, California , built 1907–09. The Scenic Bridge near Tarkio, Montana , is an example of a Pratt deck truss bridge, where the roadway is on top of the truss. The queenpost truss , sometimes called "queen post" or queenspost, is similar to a king post truss in that the outer supports are angled towards
5684-1316: The Fort Wayne Street Bridge in Goshen, Indiana , the Schell Bridge in Northfield, Massachusetts , the Inclined Plane Bridge in Johnstown, Pennsylvania , the Easton–Phillipsburg Toll Bridge in Easton, Pennsylvania , the Connecticut River Bridge in Brattleboro, Vermont , the Metropolis Bridge in Metropolis, Illinois , and the Healdsburg Memorial Bridge in Healdsburg, California . A Post truss
5800-495: The Howe truss . The interior diagonals are under tension under balanced loading and vertical elements under compression. If pure tension elements (such as eyebars ) are used in the diagonals, then crossing elements may be needed near the center to accept concentrated live loads as they traverse the span. It can be subdivided, creating Y- and K-shaped patterns. The Pratt truss was invented in 1844 by Thomas and Caleb Pratt. This truss
5916-481: The River Tamar between Devon and Cornwall uses a single tubular upper chord. As the horizontal tension and compression forces are balanced these horizontal forces are not transferred to the supporting pylons (as is the case with most arch types). This in turn enables the truss to be fabricated on the ground and then to be raised by jacking as supporting masonry pylons are constructed. This truss has been used in
SECTION 50
#17328019481156032-461: The 1590 version this was changed to " ...thei shullen welle togidere her swerdes in-to scharris... " (they shall weld together their swords into plowshares), suggesting this particular use of the word probably became popular in English sometime between these periods. The Old English word for welding iron was samod ('to bring together') or samodwellung ('to bring together hot'). The word
6148-412: The 1920s and 1930s, Pennsylvania and several states continued to build steel truss bridges, using massive steel through-truss bridges for long spans. Other states, such as Michigan , used standard plan concrete girder and beam bridges, and only a limited number of truss bridges were built. The truss may carry its roadbed on top, in the middle, or at the bottom of the truss. Bridges with the roadbed at
6264-421: The 1930s and then during World War II. In 1930, the first all-welded merchant vessel, M/S Carolinian , was launched. During the middle of the century, many new welding methods were invented. In 1930, Kyle Taylor was responsible for the release of stud welding , which soon became popular in shipbuilding and construction. Submerged arc welding was invented the same year and continues to be popular today. In 1932
6380-685: The Pennsylvania truss adds to this design half-length struts or ties in the top, bottom, or both parts of the panels. It is named after the Pennsylvania Railroad , which pioneered this design. It was once used for hundreds of bridges in the United States, but fell out of favor in the 1930s and very few examples of this design remain. Examples of this truss type include the Lower Trenton Bridge in Trenton, New Jersey ,
6496-564: The Soviet scientist N. F. Kazakov proposed the diffusion bonding method. Other recent developments in welding include the 1958 breakthrough of electron beam welding, making deep and narrow welding possible through the concentrated heat source. Following the invention of the laser in 1960, laser beam welding debuted several decades later, and has proved to be especially useful in high-speed, automated welding. Magnetic pulse welding (MPW) has been industrially used since 1967. Friction stir welding
6612-545: The US started being built on a large scale in the 1870s. Bowstring truss bridges were a common truss design during this time, with their arched top chords. Companies like the Massillon Bridge Company of Massillon, Ohio , and the King Bridge Company of Cleveland , became well-known, as they marketed their designs to cities and townships. The bowstring truss design fell out of favor due to
6728-469: The arc and can add alloying components to the weld metal. World War I caused a major surge in the use of welding, with the various military powers attempting to determine which of the several new welding processes would be best. The British primarily used arc welding, even constructing a ship, the "Fullagar" with an entirely welded hull. Arc welding was first applied to aircraft during the war as well, as some German airplane fuselages were constructed using
6844-437: The atmosphere. Porosity and brittleness were the primary problems, and the solutions that developed included the use of hydrogen , argon , and helium as welding atmospheres. During the following decade, further advances allowed for the welding of reactive metals like aluminum and magnesium . This in conjunction with developments in automatic welding, alternating current, and fluxes fed a major expansion of arc welding during
6960-454: The balance between labor, machinery, and material costs has certain favorable proportions. The inclusion of the elements shown is largely an engineering decision based upon economics, being a balance between the costs of raw materials, off-site fabrication, component transportation, on-site erection, the availability of machinery, and the cost of labor. In other cases, the appearance of the structure may take on greater importance and so influence
7076-433: The base material plays a large role—if the diffusivity is high, the material cooling rate is high and the HAZ is relatively small. Conversely, a low diffusivity leads to slower cooling and a larger HAZ. The amount of heat injected by the welding process plays an important role as well, as processes like oxyacetylene welding have an unconcentrated heat input and increase the size of the HAZ. Processes like laser beam welding give
SECTION 60
#17328019481157192-486: The base material. Welding also requires a form of shield to protect the filler metals or melted metals from being contaminated or oxidized . Many different energy sources can be used for welding, including a gas flame (chemical), an electric arc (electrical), a laser , an electron beam , friction , and ultrasound . While often an industrial process, welding may be performed in many different environments, including in open air, under water , and in outer space . Welding
7308-425: The bridge illustrated in the infobox at the top, vertical members are in tension, lower horizontal members in tension, shear , and bending, outer diagonal and top members are in compression, while the inner diagonals are in tension. The central vertical member stabilizes the upper compression member, preventing it from buckling . If the top member is sufficiently stiff then this vertical element may be eliminated. If
7424-402: The butt joint, lap joint, corner joint, edge joint, and T-joint (a variant of this last is the cruciform joint ). Other variations exist as well—for example, double-V preparation joints are characterized by the two pieces of material each tapering to a single center point at one-half their height. Single-U and double-U preparation joints are also fairly common—instead of having straight edges like
7540-454: The center of the structure. The primary difference is the horizontal extension at the center which relies on beam action to provide mechanical stability. This truss style is only suitable for relatively short spans. The Smith truss , patented by Robert W Smith on July 16, 1867, has mostly diagonal criss-crossed supports. Smith's company used many variations of this pattern in the wooden covered bridges it built. Welding Welding
7656-732: The center, the opposite of the Pratt truss . In contrast to the Pratt truss, the diagonal web members are in compression and the vertical web members are in tension. Few of these bridges remain standing. Examples include Jay Bridge in Jay, New York ; McConnell's Mill Covered Bridge in Slippery Rock Township, Lawrence County, Pennsylvania ; Sandy Creek Covered Bridge in Jefferson County, Missouri ; and Westham Island Bridge in Delta, British Columbia , Canada. The K-truss
7772-414: The compression members and to control deflection. It is mainly used for rail bridges, showing off a simple and very strong design. In the Pratt truss the intersection of the verticals and the lower horizontal tension members are used to anchor the supports for the short-span girders under the tracks (among other things). With the Baltimore truss, there are almost twice as many points for this to happen because
7888-600: The construction of a stadium, with the upper chords of parallel trusses supporting a roof that may be rolled back. The Smithfield Street Bridge in Pittsburgh, Pennsylvania , is another example of this type. An example of a lenticular pony truss bridge that uses regular spans of iron is the Turn-of-River Bridge designed and manufactured by the Berlin Iron Bridge Co. The Pauli truss is
8004-429: The design decisions beyond mere matters of economics. Modern materials such as prestressed concrete and fabrication methods, such as automated welding , and the changing price of steel relative to that of labor have significantly influenced the design of modern bridges. A pure truss can be represented as a pin-jointed structure, one where the only forces on the truss members are tension or compression, not bending. This
8120-518: The distance between the wire and the base material is quickly rectified by a large change in current. For example, if the wire and the base material get too close, the current will rapidly increase, which in turn causes the heat to increase and the tip of the wire to melt, returning it to its original separation distance. The type of current used plays an important role in arc welding. Consumable electrode processes such as shielded metal arc welding and gas metal arc welding generally use direct current, but
8236-443: The durability of many designs increases significantly. Most solids used are engineering materials consisting of crystalline solids in which the atoms or ions are arranged in a repetitive geometric pattern which is known as a lattice structure . The only exception is material that is made from glass which is a combination of a supercooled liquid and polymers which are aggregates of large organic molecules. Crystalline solids cohesion
8352-484: The earliest examples is the Old Blenheim Bridge , which with a span of 210 feet (64 m) and a total length of 232 feet (71 m) long was the second-longest covered bridge in the United States, until its destruction from flooding in 2011. The Busching bridge, often erroneously used as an example of a Long truss, is an example of a Howe truss, as the verticals are metal rods. A Parker truss bridge
8468-600: The electrode can be charged either positively or negatively. In welding, the positively charged anode will have a greater heat concentration, and as a result, changing the polarity of the electrode affects weld properties. If the electrode is positively charged, the base metal will be hotter, increasing weld penetration and welding speed. Alternatively, a negatively charged electrode results in more shallow welds. Non-consumable electrode processes, such as gas tungsten arc welding, can use either type of direct current, as well as alternating current. However, with direct current, because
8584-442: The electrode only creates the arc and does not provide filler material, a positively charged electrode causes shallow welds, while a negatively charged electrode makes deeper welds. Alternating current rapidly moves between these two, resulting in medium-penetration welds. One disadvantage of AC, the fact that the arc must be re-ignited after every zero crossings, has been addressed with the invention of special power units that produce
8700-404: The electrode perfectly steady, and as a result, the arc length and thus voltage tend to fluctuate. Constant voltage power supplies hold the voltage constant and vary the current, and as a result, are most often used for automated welding processes such as gas metal arc welding, flux-cored arc welding, and submerged arc welding. In these processes, arc length is kept constant, since any fluctuation in
8816-438: The filler metal used, and its compatibility with the base materials. It is surrounded by the heat-affected zone , the area that had its microstructure and properties altered by the weld. These properties depend on the base material's behavior when subjected to heat. The metal in this area is often weaker than both the base material and the fusion zone, and is also where residual stresses are found. Many distinct factors influence
8932-613: The first processes to develop late in the century, and electric resistance welding followed soon after. Welding technology advanced quickly during the early 20th century, as world wars drove the demand for reliable and inexpensive joining methods. Following the wars, several modern welding techniques were developed, including manual methods like shielded metal arc welding , now one of the most popular welding methods, as well as semi-automatic and automatic processes such as gas metal arc welding , submerged arc welding , flux-cored arc welding and electroslag welding . Developments continued with
9048-582: The invention of laser beam welding , electron beam welding , magnetic pulse welding , and friction stir welding in the latter half of the century. Today, as the science continues to advance, robot welding is commonplace in industrial settings, and researchers continue to develop new welding methods and gain greater understanding of weld quality. The term weld is derived from the Middle English verb well ( wæll ; plural/present tense: wælle ) or welling ( wællen ), meaning 'to heat' (to
9164-536: The invention of metal electrodes in the late 1800s by a Russian, Nikolai Slavyanov (1888), and an American, C. L. Coffin (1890). Around 1900, A. P. Strohmenger released a coated metal electrode in Britain , which gave a more stable arc. In 1905, Russian scientist Vladimir Mitkevich proposed using a three-phase electric arc for welding. Alternating current welding was invented by C. J. Holslag in 1919, but did not become popular for another decade. Resistance welding
9280-412: The length of the arc is directly related to the voltage, and the amount of heat input is related to the current. Constant current power supplies are most often used for manual welding processes such as gas tungsten arc welding and shielded metal arc welding, because they maintain a relatively constant current even as the voltage varies. This is important because in manual welding, it can be difficult to hold
9396-482: The lower chord (a horizontal member of a truss) is sufficiently resistant to bending and shear, the outer vertical elements may be eliminated, but with additional strength added to other members in compensation. The ability to distribute the forces in various ways has led to a large variety of truss bridge types. Some types may be more advantageous when the wood is employed for compression elements while other types may be easier to erect in particular site conditions, or when
9512-532: The material may not have the ability to withstand the stress and could cause cracking, one method the control these stress would be to control the heating and cooling rate, such as pre-heating and post- heating The durability and life of dynamically loaded, welded steel structures is determined in many cases by the welds, in particular the weld transitions. Through selective treatment of the transitions by grinding (abrasive cutting) , shot peening , High-frequency impact treatment , Ultrasonic impact treatment , etc.
9628-715: The maximum temperature possible); 'to bring to a boil'. The modern word was probably derived from the past-tense participle welled ( wællende ), with the addition of d for this purpose being common in the Germanic languages of the Angles and Saxons . It was first recorded in English in 1590. A fourteenth century translation of the Christian Bible into English by John Wycliffe translates Isaiah 2:4 as " ...thei shul bete togidere their swerdes into shares... " (they shall beat together their swords into plowshares). In
9744-426: The metal. In general, resistance welding methods are efficient and cause little pollution, but their applications are somewhat limited and the equipment cost can be high. Spot welding is a popular resistance welding method used to join overlapping metal sheets of up to 3 mm thick. Two electrodes are simultaneously used to clamp the metal sheets together and to pass current through the sheets. The advantages of
9860-697: The method include efficient energy use , limited workpiece deformation, high production rates, easy automation, and no required filler materials. Weld strength is significantly lower than with other welding methods, making the process suitable for only certain applications. It is used extensively in the automotive industry—ordinary cars can have several thousand spot welds made by industrial robots . A specialized process called shot welding , can be used to spot weld stainless steel. Like spot welding, seam welding relies on two electrodes to apply pressure and current to join metal sheets. However, instead of pointed electrodes, wheel-shaped electrodes roll along and often feed
9976-515: The more common designs. The Allan truss , designed by Percy Allan , is partly based on the Howe truss . The first Allan truss was completed on 13 August 1894 over Glennies Creek at Camberwell, New South Wales and the last Allan truss bridge was built over Mill Creek near Wisemans Ferry in 1929. Completed in March 1895, the Tharwa Bridge located at Tharwa, Australian Capital Territory ,
10092-650: The most common English words in everyday use are Scandinavian in origin. The history of joining metals goes back several millennia. The earliest examples of this come from the Bronze and Iron Ages in Europe and the Middle East . The ancient Greek historian Herodotus states in The Histories of the 5th century BC that Glaucus of Chios "was the man who single-handedly invented iron welding". Forge welding
10208-415: The most popular metal arc welding process. In 1957, the flux-cored arc welding process debuted, in which the self-shielded wire electrode could be used with automatic equipment, resulting in greatly increased welding speeds, and that same year, plasma arc welding was invented by Robert Gage. Electroslag welding was introduced in 1958, and it was followed by its cousin, electrogas welding , in 1961. In 1953,
10324-412: The needs at the site and allow rapid deployment of completed trusses. In the image, note the use of pairs of doubled trusses to adapt to the span and load requirements. In other applications the trusses may be stacked vertically, and doubled as necessary. The Baltimore truss is a subclass of the Pratt truss. A Baltimore truss has additional bracing in the lower section of the truss to prevent buckling in
10440-436: The process, and the industry continued to grow during the following centuries. In 1800, Sir Humphry Davy discovered the short-pulse electrical arc and presented his results in 1801. In 1802, Russian scientist Vasily Petrov created the continuous electric arc, and subsequently published "News of Galvanic-Voltaic Experiments" in 1803, in which he described experiments carried out in 1802. Of great importance in this work
10556-553: The process. Also noteworthy is the first welded road bridge in the world, the Maurzyce Bridge in Poland (1928). During the 1920s, significant advances were made in welding technology, including the introduction of automatic welding in 1920, in which electrode wire was fed continuously. Shielding gas became a subject receiving much attention, as scientists attempted to protect welds from the effects of oxygen and nitrogen in
10672-442: The quality of welding procedure specification , how to judge the skill of the person performing the weld, and how to ensure the quality of a welding job. Methods such as visual inspection , radiography , ultrasonic testing , phased-array ultrasonics , dye penetrant inspection , magnetic particle inspection , or industrial computed tomography can help with detection and analysis of certain defects. The heat-affected zone (HAZ)
10788-650: The quality of a weld, either destructive or nondestructive testing methods are commonly used to verify that welds are free of defects, have acceptable levels of residual stresses and distortion, and have acceptable heat-affected zone (HAZ) properties. Types of welding defects include cracks, distortion, gas inclusions (porosity), non-metallic inclusions, lack of fusion, incomplete penetration, lamellar tearing, and undercutting. The metalworking industry has instituted codes and specifications to guide welders , weld inspectors , engineers , managers, and property owners in proper welding technique, design of welds, how to judge
10904-428: The resulting force between them is zero. When the ions are exerted in tension force, the inter-ionic spacing increases creating an electrostatic attractive force, while a repulsing force under compressive force between the atomic nuclei is dominant. Covalent bonding takes place when one of the constituent atoms loses one or more electrons, with the other atom gaining the electrons, resulting in an electron cloud that
11020-474: The roadbed but are not connected, a pony truss or half-through truss. Sometimes both the upper and lower chords support roadbeds, forming a double-decked truss . This can be used to separate rail from road traffic or to separate the two directions of road traffic. Since through truss bridges have supports located over the bridge deck, they are susceptible to being hit by overheight loads when used on highways. The I-5 Skagit River bridge collapsed after such
11136-574: The short verticals will also be used to anchor the supports. Thus the short-span girders can be made lighter because their span is shorter. A good example of the Baltimore truss is the Amtrak Old Saybrook – Old Lyme Bridge in Connecticut , United States. The Bollman Truss Railroad Bridge at Savage, Maryland , United States is the only surviving example of a revolutionary design in the history of American bridge engineering. The type
11252-451: The simplest truss styles to implement, the king post consists of two angled supports leaning into a common vertical support. This type of bridge uses a substantial number of lightweight elements, easing the task of construction. Truss elements are usually of wood, iron, or steel. A lenticular truss bridge includes a lens-shape truss, with trusses between an upper chord functioning as an arch that curves up and then down to end points, and
11368-667: The single-V and double-V preparation joints, they are curved, forming the shape of a U. Lap joints are also commonly more than two pieces thick—depending on the process used and the thickness of the material, many pieces can be welded together in a lap joint geometry. Many welding processes require the use of a particular joint design; for example, resistance spot welding, laser beam welding, and electron beam welding are most frequently performed on lap joints. Other welding methods, like shielded metal arc welding, are extremely versatile and can weld virtually any type of joint. Some processes can also be used to make multipass welds, in which one weld
11484-454: The standard for covered bridges built in central Ohio in the late 1800s and early 1900s. The Pegram truss is a hybrid between the Warren and Parker trusses where the upper chords are all of equal length and the lower chords are longer than the corresponding upper chord. Because of the difference in upper and lower chord length, each panel is not square. The members which would be vertical in
11600-604: The strength of welds and the material around them, including the welding method, the amount and concentration of energy input, the weldability of the base material, filler material, and flux material, the design of the joint, and the interactions between all these factors. For example, the factor of welding position influences weld quality, that welding codes & specifications may require testing—both welding procedures and welders—using specified welding positions: 1G (flat), 2G (horizontal), 3G (vertical), 4G (overhead), 5G (horizontal fixed pipe), or 6G (inclined fixed pipe). To test
11716-414: The strength to maintain its shape, and the resulting shape and strength of the structure are only maintained by the interlocking of the components. This assumption means that members of the truss (chords, verticals, and diagonals) will act only in tension or compression. A more complex analysis is required where rigid joints impose significant bending loads upon the elements, as in a Vierendeel truss . In
11832-481: The term lenticular truss and, according to Thomas Boothby, the casual use of the term has clouded the literature. The Long truss was designed by Stephen H. Long in 1830. The design resembles a Howe truss , but is entirely made of wood instead of a combination of wood and metal. The longest surviving example is the Eldean Covered Bridge north of Troy, Ohio , spanning 224 feet (68 m). One of
11948-542: The top or the bottom are the most common as this allows both the top and bottom to be stiffened, forming a box truss . When the roadbed is atop the truss, it is a deck truss; an example of this was the I-35W Mississippi River bridge . When the truss members are both above and below the roadbed it is called a through truss; an example of this is the Pulaski Skyway , and where the sides extend above
12064-428: The upper chord under compression. In a cantilever truss the situation is reversed, at least over a portion of the span. The typical cantilever truss bridge is a "balanced cantilever", which enables the construction to proceed outward from a central vertical spar in each direction. Usually these are built in pairs until the outer sections may be anchored to footings. A central gap, if present, can then be filled by lifting
12180-468: The use of a continuous wire feed, the weld deposition rate is high. Working conditions are much improved over other arc welding processes, since the flux hides the arc and almost no smoke is produced. The process is commonly used in industry, especially for large products and in the manufacture of welded pressure vessels. Other arc welding processes include atomic hydrogen welding , electroslag welding (ESW), electrogas welding , and stud arc welding . ESW
12296-415: The welding of high alloy steels. A similar process, generally called oxyfuel cutting, is used to cut metals. These processes use a welding power supply to create and maintain an electric arc between an electrode and the base material to melt metals at the welding point. They can use either direct current (DC) or alternating current (AC), and consumable or non-consumable electrodes . The welding region
12412-420: The welding process used, with shielded metal arc welding having a value of 0.75, gas metal arc welding and submerged arc welding, 0.9, and gas tungsten arc welding, 0.8. Methods of alleviating the stresses and brittleness created in the HAZ include stress relieving and tempering . One major defect concerning the HAZ would be cracking at the toes , due to the rapid expansion (heating) and contraction (cooling)
12528-585: The workpiece, making it possible to make long continuous welds. In the past, this process was used in the manufacture of beverage cans, but now its uses are more limited. Other resistance welding methods include butt welding , flash welding , projection welding , and upset welding . Energy beam welding methods, namely laser beam welding and electron beam welding , are relatively new processes that have become quite popular in high production applications. The two processes are quite similar, differing most notably in their source of power. Laser beam welding employs
12644-415: Was also developed during the final decades of the 19th century, with the first patents going to Elihu Thomson in 1885, who produced further advances over the next 15 years. Thermite welding was invented in 1893, and around that time another process, oxyfuel welding , became well established. Acetylene was discovered in 1836 by Edmund Davy , but its use was not practical in welding until about 1900, when
12760-414: Was also easy to assemble. Wells Creek Bollman Bridge is the only other bridge designed by Wendel Bollman still in existence, but it is a Warren truss configuration. The bowstring truss bridge was patented in 1841 by Squire Whipple . While similar in appearance to a tied-arch bridge , a bowstring truss has diagonal load-bearing members: these diagonals result in a structure that more closely matches
12876-519: Was invented in 1991 by Wayne Thomas at The Welding Institute (TWI, UK) and found high-quality applications all over the world. All of these four new processes continue to be quite expensive due to the high cost of the necessary equipment, and this has limited their applications. The most common gas welding process is oxyfuel welding, also known as oxyacetylene welding. It is one of the oldest and most versatile welding processes, but in recent years it has become less popular in industrial applications. It
12992-405: Was named after its inventor, Wendel Bollman , a self-educated Baltimore engineer. It was the first successful all-metal bridge design (patented in 1852) to be adopted and consistently used on a railroad. The design employs wrought iron tension members and cast iron compression members. The use of multiple independent tension elements reduces the likelihood of catastrophic failure. The structure
13108-683: Was popular with the Baltimore and Ohio Railroad . The Appomattox High Bridge on the Norfolk and Western Railway included 21 Fink deck truss spans from 1869 until their replacement in 1886. There are also inverted Fink truss bridges such as the Moody Pedestrian Bridge in Austin, Texas. The Howe truss , patented in 1840 by Massachusetts millwright William Howe , includes vertical members and diagonals that slope up towards
13224-457: Was the description of a stable arc discharge and the indication of its possible use for many applications, one being melting metals. In 1808, Davy, who was unaware of Petrov's work, rediscovered the continuous electric arc. In 1881–82 inventors Nikolai Benardos (Russian) and Stanisław Olszewski (Polish) created the first electric arc welding method known as carbon arc welding using carbon electrodes. The advances in arc welding continued with
13340-848: Was the second Allan truss bridge to be built, the oldest surviving bridge in the Australian Capital Territory and the oldest, longest continuously used Allan truss bridge. Completed in November 1895, the Hampden Bridge in Wagga Wagga, New South Wales , Australia, the first of the Allan truss bridges with overhead bracing, was originally designed as a steel bridge but was constructed with timber to reduce cost. In his design, Allan used Australian ironbark for its strength. A similar bridge also designed by Percy Allen
13456-532: Was used in the construction of the Iron pillar of Delhi , erected in Delhi , India about 310 AD and weighing 5.4 metric tons . The Middle Ages brought advances in forge welding , in which blacksmiths pounded heated metal repeatedly until bonding occurred. In 1540, Vannoccio Biringuccio published De la pirotechnia , which includes descriptions of the forging operation. Renaissance craftsmen were skilled in
#114885