Misplaced Pages

Easter hotspot

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Convection is single or multiphase fluid flow that occurs spontaneously through the combined effects of material property heterogeneity and body forces on a fluid , most commonly density and gravity (see buoyancy ). When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.

#790209

103-609: The Easter hotspot is a volcanic hotspot located in the southeastern Pacific Ocean . The hotspot created the Sala y Gómez Ridge which includes Easter Island , Salas y Gómez Island and the Pukao Seamount which is at the ridge's young western edge. Easter Island, because of its tectonomagmatic features (low eruptive rate, scattered rift zones, and scarce lateral collapses), represents an end-member type of hotspot volcano in this chain. The hotspot may also be responsible for

206-495: A ghost town ) and Fourpeaked Mountain in Alaska, which, before its September 2006 eruption, had not erupted since before 8000 BCE. Convection Convective flow may be transient (such as when a multiphase mixture of oil and water separates) or steady state (see convection cell ). The convection may be due to gravitational , electromagnetic or fictitious body forces. Heat transfer by natural convection plays

309-410: A hurricane . On astronomical scales, convection of gas and dust is thought to occur in the accretion disks of black holes , at speeds which may closely approach that of light. Thermal convection in liquids can be demonstrated by placing a heat source (for example, a Bunsen burner ) at the side of a container with a liquid. Adding a dye to the water (such as food colouring) will enable visualisation of

412-429: A broader sense: it refers to the motion of fluid driven by density (or other property) difference. In thermodynamics , convection often refers to heat transfer by convection , where the prefixed variant Natural Convection is used to distinguish the fluid mechanics concept of Convection (covered in this article) from convective heat transfer. Some phenomena which result in an effect superficially similar to that of

515-458: A candle in a sealed space with an inlet and exhaust port. The heat from the candle will cause a strong convection current which can be demonstrated with a flow indicator, such as smoke from another candle, being released near the inlet and exhaust areas respectively. A convection cell , also known as a Bénard cell , is a characteristic fluid flow pattern in many convection systems. A rising body of fluid typically loses heat because it encounters

618-465: A colder surface. In liquid, this occurs because it exchanges heat with colder liquid through direct exchange. In the example of the Earth's atmosphere, this occurs because it radiates heat. Because of this heat loss the fluid becomes denser than the fluid underneath it, which is still rising. Since it cannot descend through the rising fluid, it moves to one side. At some distance, its downward force overcomes

721-446: A convective cell may also be (inaccurately) referred to as a form of convection; for example, thermo-capillary convection and granular convection . Convection may happen in fluids at all scales larger than a few atoms. There are a variety of circumstances in which the forces required for convection arise, leading to different types of convection, described below. In broad terms, convection arises because of body forces acting within

824-437: A graduated spectrum, with much overlap between categories, and does not always fit neatly into only one of these three separate categories. The USGS defines a volcano as "erupting" whenever the ejection of magma from any point on the volcano is visible, including visible magma still contained within the walls of the summit crater. While there is no international consensus among volcanologists on how to define an active volcano,

927-416: A greater variation in density between the two fluids, a larger acceleration due to gravity that drives the convection or a larger distance through the convecting medium. Natural convection will be less likely and less rapid with more rapid diffusion (thereby diffusing away the thermal gradient that is causing the convection) or a more viscous (sticky) fluid. The onset of natural convection can be determined by

1030-512: A layer of fresher water will also cause convection. Natural convection has attracted a great deal of attention from researchers because of its presence both in nature and engineering applications. In nature, convection cells formed from air raising above sunlight-warmed land or water are a major feature of all weather systems. Convection is also seen in the rising plume of hot air from fire , plate tectonics , oceanic currents ( thermohaline circulation ) and sea-wind formation (where upward convection

1133-404: A lifting force (heat). All thunderstorms , regardless of type, go through three stages: the developing stage , the mature stage , and the dissipation stage . The average thunderstorm has a 24 km (15 mi) diameter. Depending on the conditions present in the atmosphere, these three stages take an average of 30 minutes to go through. Solar radiation affects the oceans: warm water from

SECTION 10

#1732765184791

1236-443: A paper was published suggesting a new definition for the word 'volcano' that includes processes such as cryovolcanism . It suggested that a volcano be defined as 'an opening on a planet or moon's surface from which magma , as defined for that body, and/or magmatic gas is erupted.' This article mainly covers volcanoes on Earth. See § Volcanoes on other celestial bodies and cryovolcano for more information. The word volcano

1339-451: A result of physical rearrangement of denser portions of the Earth's interior toward the center of the planet (that is, a type of prolonged falling and settling). The Stack effect or chimney effect is the movement of air into and out of buildings, chimneys, flue gas stacks, or other containers due to buoyancy. Buoyancy occurs due to a difference in indoor-to-outdoor air density resulting from temperature and moisture differences. The greater

1442-552: A role in the structure of Earth's atmosphere , its oceans , and its mantle . Discrete convective cells in the atmosphere can be identified by clouds , with stronger convection resulting in thunderstorms . Natural convection also plays a role in stellar physics . Convection is often categorised or described by the main effect causing the convective flow; for example, thermal convection. Convection cannot take place in most solids because neither bulk current flows nor significant diffusion of matter can take place. Granular convection

1545-425: A square cavity. It is differentially heated between the two vertical walls, where the left and right walls are held at 10 °C and 0 °C, respectively. The density anomaly manifests in its flow pattern. As the water is cooled at the right wall, the density increases, which accelerates the flow downward. As the flow develops and the water cools further, the decrease in density causes a recirculation current at

1648-632: A volcano is largely determined by the composition of the lava it erupts. The viscosity (how fluid the lava is) and the amount of dissolved gas are the most important characteristics of magma, and both are largely determined by the amount of silica in the magma. Magma rich in silica is much more viscous than silica-poor magma, and silica-rich magma also tends to contain more dissolved gases. Lava can be broadly classified into four different compositions: Mafic lava flows show two varieties of surface texture: ʻAʻa (pronounced [ˈʔaʔa] ) and pāhoehoe ( [paːˈho.eˈho.e] ), both Hawaiian words. ʻAʻa

1751-555: A volcano is of a conical mountain, spewing lava and poisonous gases from a crater at its summit; however, this describes just one of the many types of volcano. The features of volcanoes are varied. The structure and behaviour of volcanoes depend on several factors. Some volcanoes have rugged peaks formed by lava domes rather than a summit crater while others have landscape features such as massive plateaus . Vents that issue volcanic material (including lava and ash ) and gases (mainly steam and magmatic gases) can develop anywhere on

1854-465: A volcano that has experienced one or more eruptions that produced over 1,000 cubic kilometres (240 cu mi) of volcanic deposits in a single explosive event. Such eruptions occur when a very large magma chamber full of gas-rich, silicic magma is emptied in a catastrophic caldera -forming eruption. Ash flow tuffs emplaced by such eruptions are the only volcanic product with volumes rivalling those of flood basalts . Supervolcano eruptions, while

1957-739: Is a volcanic field of over 60 cinder cones. Based on satellite images, it has been suggested that cinder cones might occur on other terrestrial bodies in the Solar system too; on the surface of Mars and the Moon. Stratovolcanoes (composite volcanoes) are tall conical mountains composed of lava flows and tephra in alternate layers, the strata that gives rise to the name. They are also known as composite volcanoes because they are created from multiple structures during different kinds of eruptions. Classic examples include Mount Fuji in Japan, Mayon Volcano in

2060-479: Is a similar phenomenon in granular material instead of fluids. Advection is fluid motion created by velocity instead of thermal gradients. Convective heat transfer is the intentional use of convection as a method for heat transfer . Convection is a process in which heat is carried from place to place by the bulk movement of a fluid and gases. In the 1830s, in The Bridgewater Treatises ,

2163-484: Is a vertical section of rising air in the lower altitudes of the Earth's atmosphere. Thermals are created by the uneven heating of the Earth's surface from solar radiation. The Sun warms the ground, which in turn warms the air directly above it. The warmer air expands, becoming less dense than the surrounding air mass, and creating a thermal low . The mass of lighter air rises, and as it does, it cools by expansion at lower air pressures. It stops rising when it has cooled to

SECTION 20

#1732765184791

2266-495: Is also modified by Coriolis forces ). In engineering applications, convection is commonly visualized in the formation of microstructures during the cooling of molten metals, and fluid flows around shrouded heat-dissipation fins, and solar ponds. A very common industrial application of natural convection is free air cooling without the aid of fans: this can happen on small scales (computer chips) to large scale process equipment. Natural convection will be more likely and more rapid with

2369-548: Is an example. Volcanoes are usually not created where two tectonic plates slide past one another. Large eruptions can affect atmospheric temperature as ash and droplets of sulfuric acid obscure the Sun and cool Earth's troposphere . Historically, large volcanic eruptions have been followed by volcanic winters which have caused catastrophic famines. Other planets besides Earth have volcanoes. For example, volcanoes are very numerous on Venus. Mars has significant volcanoes. In 2009,

2472-590: Is called volcanism . On Earth, volcanoes are most often found where tectonic plates are diverging or converging , and because most of Earth's plate boundaries are underwater, most volcanoes are found underwater. For example, a mid-ocean ridge , such as the Mid-Atlantic Ridge , has volcanoes caused by divergent tectonic plates whereas the Pacific Ring of Fire has volcanoes caused by convergent tectonic plates. Volcanoes can also form where there

2575-411: Is caused by a variable composition of the fluid. If the varying property is a concentration gradient, it is known as solutal convection . For example, gravitational convection can be seen in the diffusion of a source of dry salt downward into wet soil due to the buoyancy of fresh water in saline. Variable salinity in water and variable water content in air masses are frequent causes of convection in

2678-412: Is characterized by a rough, clinkery surface and is the typical texture of cooler basalt lava flows. Pāhoehoe is characterized by its smooth and often ropey or wrinkly surface and is generally formed from more fluid lava flows. Pāhoehoe flows are sometimes observed to transition to ʻaʻa flows as they move away from the vent, but never the reverse. More silicic lava flows take the form of block lava, where

2781-565: Is derived from the name of Vulcano , a volcanic island in the Aeolian Islands of Italy whose name in turn comes from Vulcan , the god of fire in Roman mythology . The study of volcanoes is called volcanology , sometimes spelled vulcanology . According to the theory of plate tectonics, Earth's lithosphere , its rigid outer shell, is broken into sixteen larger and several smaller plates. These are in slow motion, due to convection in

2884-416: Is divided into a number of tectonic plates that are continuously being created and consumed at their opposite plate boundaries. Creation ( accretion ) occurs as mantle is added to the growing edges of a plate. This hot added material cools down by conduction and convection of heat. At the consumption edges of the plate, the material has thermally contracted to become dense, and it sinks under its own weight in

2987-584: Is expressed using the volcanic explosivity index (VEI), which ranges from 0 for Hawaiian-type eruptions to 8 for supervolcanic eruptions. As of December 2022 , the Smithsonian Institution 's Global Volcanism Program database of volcanic eruptions in the Holocene Epoch (the last 11,700 years) lists 9,901 confirmed eruptions from 859 volcanoes. The database also lists 1,113 uncertain eruptions and 168 discredited eruptions for

3090-585: Is imposed on a ferrofluid with varying magnetic susceptibility . In the presence of a temperature gradient this results in a nonuniform magnetic body force, which leads to fluid movement. A ferrofluid is a liquid which becomes strongly magnetized in the presence of a magnetic field . In a zero-gravity environment, there can be no buoyancy forces, and thus no convection possible, so flames in many circumstances without gravity smother in their own waste gases. Thermal expansion and chemical reactions resulting in expansion and contraction gases allows for ventilation of

3193-422: Is located in the center where the plasma is hotter. The outer edge of the granules is darker due to the cooler descending plasma. A typical granule has a diameter on the order of 1,000 kilometers and each lasts 8 to 20 minutes before dissipating. Below the photosphere is a layer of much larger "supergranules" up to 30,000 kilometers in diameter, with lifespans of up to 24 hours. Water is a fluid that does not obey

Easter hotspot - Misplaced Pages Continue

3296-408: Is no convection in free-fall ( inertial ) environments, such as that of the orbiting International Space Station. Natural convection can occur when there are hot and cold regions of either air or water, because both water and air become less dense as they are heated. But, for example, in the world's oceans it also occurs due to salt water being heavier than fresh water, so a layer of salt water on top of

3399-518: Is not unlike that of a lava lamp .) This downdraft of heavy, cold and dense water becomes a part of the North Atlantic Deep Water , a south-going stream. Mantle convection is the slow creeping motion of Earth's rocky mantle caused by convection currents carrying heat from the interior of the Earth to the surface. It is one of 3 driving forces that causes tectonic plates to move around the Earth's surface. The Earth's surface

3502-537: Is one of the several tuyas in the area of the Tuya River and Tuya Range in northern British Columbia. Tuya Butte was the first such landform analysed and so its name has entered the geological literature for this kind of volcanic formation. The Tuya Mountains Provincial Park was recently established to protect this unusual landscape, which lies north of Tuya Lake and south of the Jennings River near

3605-732: Is stretching and thinning of the crust's plates, such as in the East African Rift , the Wells Gray-Clearwater volcanic field , and the Rio Grande rift in North America. Volcanism away from plate boundaries has been postulated to arise from upwelling diapirs from the core–mantle boundary , 3,000 kilometres (1,900 mi) deep within Earth. This results in hotspot volcanism , of which the Hawaiian hotspot

3708-478: Is to use two identical jars, one filled with hot water dyed one colour, and cold water of another colour. One jar is then temporarily sealed (for example, with a piece of card), inverted and placed on top of the other. When the card is removed, if the jar containing the warmer liquid is placed on top no convection will occur. If the jar containing colder liquid is placed on top, a convection current will form spontaneously. Convection in gases can be demonstrated using

3811-410: Is transported outward from the core region primarily by convection rather than radiation . This occurs at radii which are sufficiently opaque that convection is more efficient than radiation at transporting energy. Granules on the photosphere of the Sun are the visible tops of convection cells in the photosphere, caused by convection of plasma in the photosphere. The rising part of the granules

3914-471: Is typically low in silica, shield volcanoes are more common in oceanic than continental settings. The Hawaiian volcanic chain is a series of shield cones, and they are common in Iceland , as well. Lava domes are built by slow eruptions of highly viscous lava. They are sometimes formed within the crater of a previous volcanic eruption, as in the case of Mount St. Helens , but can also form independently, as in

4017-509: Is wind driven: wind moving over water cools the water and also causes evaporation , leaving a saltier brine. In this process, the water becomes saltier and denser. and decreases in temperature. Once sea ice forms, salts are left out of the ice, a process known as brine exclusion. These two processes produce water that is denser and colder. The water across the northern Atlantic Ocean becomes so dense that it begins to sink down through less salty and less dense water. (This open ocean convection

4120-617: The Cascade Volcanoes or the Japanese Archipelago , or the eastern islands of Indonesia . Hotspots are volcanic areas thought to be formed by mantle plumes , which are hypothesized to be columns of hot material rising from the core-mantle boundary. As with mid-ocean ridges, the rising mantle rock experiences decompression melting which generates large volumes of magma. Because tectonic plates move across mantle plumes, each volcano becomes inactive as it drifts off

4223-477: The Hadley cell and the polar vortex , with the Hadley cell experiencing stronger convection due to the release of latent heat energy by condensation of water vapor at higher altitudes during cloud formation. Longitudinal circulation, on the other hand, comes about because the ocean has a higher specific heat capacity than land (and also thermal conductivity , allowing the heat to penetrate further beneath

Easter hotspot - Misplaced Pages Continue

4326-509: The Rayleigh number ( Ra ). Differences in buoyancy within a fluid can arise for reasons other than temperature variations, in which case the fluid motion is called gravitational convection (see below). However, all types of buoyant convection, including natural convection, do not occur in microgravity environments. All require the presence of an environment which experiences g-force ( proper acceleration ). The difference of density in

4429-430: The hydrologic cycle . For example, a foehn wind is a down-slope wind which occurs on the downwind side of a mountain range. It results from the adiabatic warming of air which has dropped most of its moisture on windward slopes. Because of the different adiabatic lapse rates of moist and dry air, the air on the leeward slopes becomes warmer than at the same height on the windward slopes. A thermal column (or thermal)

4532-834: The landform and may give rise to smaller cones such as Puʻu ʻŌʻō on a flank of Kīlauea in Hawaii. Volcanic craters are not always at the top of a mountain or hill and may be filled with lakes such as with Lake Taupō in New Zealand. Some volcanoes can be low-relief landform features, with the potential to be hard to recognize as such and be obscured by geological processes. Other types of volcano include cryovolcanoes (or ice volcanoes), particularly on some moons of Jupiter , Saturn , and Neptune ; and mud volcanoes , which are structures often not associated with known magmatic activity. Active mud volcanoes tend to involve temperatures much lower than those of igneous volcanoes except when

4635-466: The Boussinesq approximation. This is because its density varies nonlinearly with temperature, which causes its thermal expansion coefficient to be inconsistent near freezing temperatures. The density of water reaches a maximum at 4 °C and decreases as the temperature deviates. This phenomenon is investigated by experiment and numerical methods. Water is initially stagnant at 10 °C within

4738-533: The Equator tends to circulate toward the poles , while cold polar water heads towards the Equator. The surface currents are initially dictated by surface wind conditions. The trade winds blow westward in the tropics, and the westerlies blow eastward at mid-latitudes. This wind pattern applies a stress to the subtropical ocean surface with negative curl across the Northern Hemisphere , and

4841-622: The Philippines, and Mount Vesuvius and Stromboli in Italy. Ash produced by the explosive eruption of stratovolcanoes has historically posed the greatest volcanic hazard to civilizations. The lavas of stratovolcanoes are higher in silica, and therefore much more viscous, than lavas from shield volcanoes. High-silica lavas also tend to contain more dissolved gas. The combination is deadly, promoting explosive eruptions that produce great quantities of ash, as well as pyroclastic surges like

4944-613: The USGS defines a volcano as active whenever subterranean indicators, such as earthquake swarms , ground inflation, or unusually high levels of carbon dioxide or sulfur dioxide are present. The USGS defines a dormant volcano as any volcano that is not showing any signs of unrest such as earthquake swarms, ground swelling, or excessive noxious gas emissions, but which shows signs that it could yet become active again. Many dormant volcanoes have not erupted for thousands of years, but have still shown signs that they may be likely to erupt again in

5047-510: The boundary with the Yukon Territory . Mud volcanoes (mud domes) are formations created by geo-excreted liquids and gases, although several processes may cause such activity. The largest structures are 10 kilometres in diameter and reach 700 meters high. The material that is expelled in a volcanic eruption can be classified into three types: The concentrations of different volcanic gases can vary considerably from one volcano to

5150-402: The case of Lassen Peak . Like stratovolcanoes, they can produce violent, explosive eruptions, but the lava generally does not flow far from the originating vent. Cryptodomes are formed when viscous lava is forced upward causing the surface to bulge. The 1980 eruption of Mount St. Helens was an example; lava beneath the surface of the mountain created an upward bulge, which later collapsed down

5253-435: The chimney, away from the direct influence of the fire, will also indicate a considerable increase of temperature; in this case a portion of the air, passing through and near the fire, has become heated, and has carried up the chimney the temperature acquired from the fire. There is at present no single term in our language employed to denote this third mode of the propagation of heat; but we venture to propose for that purpose,

SECTION 50

#1732765184791

5356-475: The convection of fluid rock and molten metal within the Earth's interior (see below). Gravitational convection, like natural thermal convection, also requires a g-force environment in order to occur. Ice convection on Pluto is believed to occur in a soft mixture of nitrogen ice and carbon monoxide ice. It has also been proposed for Europa , and other bodies in the outer Solar System. Thermomagnetic convection can occur when an external magnetic field

5459-799: The enormous area they cover, and subsequent concealment under vegetation and glacial deposits, supervolcanoes can be difficult to identify in the geologic record without careful geologic mapping . Known examples include Yellowstone Caldera in Yellowstone National Park and Valles Caldera in New Mexico (both western United States); Lake Taupō in New Zealand; Lake Toba in Sumatra , Indonesia; and Ngorongoro Crater in Tanzania. Volcanoes that, though large, are not large enough to be called supervolcanoes, may also form calderas in

5562-407: The first type, plumes rise from the lower mantle, and corresponding unstable regions of lithosphere drip back into the mantle. In the second type, subducting oceanic plates (which largely constitute the upper thermal boundary layer of the mantle) plunge back into the mantle and move downwards towards the core-mantle boundary . Mantle convection occurs at rates of centimeters per year, and it takes on

5665-425: The flame, as waste gases are displaced by cool, fresh, oxygen-rich gas. moves in to take up the low pressure zones created when flame-exhaust water condenses. Systems of natural circulation include tornadoes and other weather systems , ocean currents , and household ventilation . Some solar water heaters use natural circulation. The Gulf Stream circulates as a result of the evaporation of water. In this process,

5768-431: The flow is covered with angular, vesicle-poor blocks. Rhyolitic flows typically consist largely of obsidian . Tephra is made when magma inside the volcano is blown apart by the rapid expansion of hot volcanic gases. Magma commonly explodes as the gas dissolved in it comes out of solution as the pressure decreases when it flows to the surface . These violent explosions produce particles of material that can then fly from

5871-424: The flow. Another common experiment to demonstrate thermal convection in liquids involves submerging open containers of hot and cold liquid coloured with dye into a large container of the same liquid without dye at an intermediate temperature (for example, a jar of hot tap water coloured red, a jar of water chilled in a fridge coloured blue, lowered into a clear tank of water at room temperature). A third approach

5974-490: The fluid is the key driving mechanism. If the differences of density are caused by heat, this force is called as "thermal head" or "thermal driving head." A fluid system designed for natural circulation will have a heat source and a heat sink . Each of these is in contact with some of the fluid in the system, but not all of it. The heat source is positioned lower than the heat sink. Most fluids expand when heated, becoming less dense , and contract when cooled, becoming denser. At

6077-409: The fluid, such as gravity. Natural convection is a flow whose motion is caused by some parts of a fluid being heavier than other parts. In most cases this leads to natural circulation : the ability of a fluid in a system to circulate continuously under gravity, with transfer of heat energy. The driving force for natural convection is gravity. In a column of fluid, pressure increases with depth from

6180-610: The formation of a submarine volcano off the coast of Mayotte . Subglacial volcanoes develop underneath ice caps . They are made up of lava plateaus capping extensive pillow lavas and palagonite . These volcanoes are also called table mountains, tuyas , or (in Iceland) mobergs. Very good examples of this type of volcano can be seen in Iceland and in British Columbia . The origin of the term comes from Tuya Butte , which

6283-508: The formation of the Tuamotu Archipelago , Line Islands , and the chain of seamounts lying in between. This volcanology article is a stub . You can help Misplaced Pages by expanding it . Volcano A volcano is a rupture in the crust of a planetary-mass object , such as Earth , that allows hot lava , volcanic ash , and gases to escape from a magma chamber below the surface. The process that forms volcanoes

SECTION 60

#1732765184791

6386-585: The future. In an article justifying the re-classification of Alaska's Mount Edgecumbe volcano from "dormant" to "active", volcanologists at the Alaska Volcano Observatory pointed out that the term "dormant" in reference to volcanoes has been deprecated over the past few decades and that "[t]he term "dormant volcano" is so little used and undefined in modern volcanology that the Encyclopedia of Volcanoes (2000) does not contain it in

6489-466: The glossaries or index", however the USGS still widely employs the term. Previously a volcano was often considered to be extinct if there were no written records of its activity. Such a generalization is inconsistent with observation and deeper study, as has occurred recently with the unexpected eruption of the Chaitén volcano in 2008. Modern volcanic activity monitoring techniques, and improvements in

6592-496: The heat source of a system of natural circulation, the heated fluid becomes lighter than the fluid surrounding it, and thus rises. At the heat sink, the nearby fluid becomes denser as it cools, and is drawn downward by gravity. Together, these effects create a flow of fluid from the heat source to the heat sink and back again. Gravitational convection is a type of natural convection induced by buoyancy variations resulting from material properties other than temperature. Typically this

6695-492: The interior of a continent and lead to rifting. Early stages of rifting are characterized by flood basalts and may progress to the point where a tectonic plate is completely split. A divergent plate boundary then develops between the two halves of the split plate. However, rifting often fails to completely split the continental lithosphere (such as in an aulacogen ), and failed rifts are characterized by volcanoes that erupt unusual alkali lava or carbonatites . Examples include

6798-419: The mid-oceanic ridge is above sea level, volcanic islands are formed, such as Iceland . Subduction zones are places where two plates, usually an oceanic plate and a continental plate, collide. The oceanic plate subducts (dives beneath the continental plate), forming a deep ocean trench just offshore. In a process called flux melting , water released from the subducting plate lowers the melting temperature of

6901-551: The modelling of the factors that produce eruptions, have helped the understanding of why volcanoes may remain dormant for a long time, and then become unexpectedly active again. The potential for eruptions, and their style, depend mainly upon the state of the magma storage system under the volcano, the eruption trigger mechanism and its timescale. For example, the Yellowstone volcano has a repose/recharge period of around 700,000 years, and Toba of around 380,000 years. Vesuvius

7004-567: The moist air rises, it cools, causing some of the water vapor in the rising packet of air to condense . When the moisture condenses, it releases energy known as latent heat of condensation which allows the rising packet of air to cool less than its surrounding air, continuing the cloud's ascension. If enough instability is present in the atmosphere, this process will continue long enough for cumulonimbus clouds to form, which support lightning and thunder. Generally, thunderstorms require three conditions to form: moisture, an unstable airmass, and

7107-415: The most dangerous type, are very rare; four are known from the last million years , and about 60 historical VEI 8 eruptions have been identified in the geologic record over millions of years. A supervolcano can produce devastation on a continental scale, and severely cool global temperatures for many years after the eruption due to the huge volumes of sulfur and ash released into the atmosphere. Because of

7210-433: The much slower (lagged) ocean circulation system. The large-scale structure of the atmospheric circulation varies from year to year, but the basic climatological structure remains fairly constant. Latitudinal circulation occurs because incident solar radiation per unit area is highest at the heat equator , and decreases as the latitude increases, reaching minima at the poles. It consists of two primary convection cells,

7313-438: The mud volcano is actually a vent of an igneous volcano. Volcanic fissure vents are flat, linear fractures through which lava emerges. Shield volcanoes, so named for their broad, shield-like profiles, are formed by the eruption of low-viscosity lava that can flow a great distance from a vent. They generally do not explode catastrophically but are characterized by relatively gentle effusive eruptions . Since low-viscosity magma

7416-452: The next. Water vapour is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide . Other principal volcanic gases include hydrogen sulfide , hydrogen chloride , and hydrogen fluoride . A large number of minor and trace gases are also found in volcanic emissions, for example hydrogen , carbon monoxide , halocarbons , organic compounds, and volatile metal chlorides. The form and style of an eruption of

7519-876: The north side of the mountain. Cinder cones result from eruptions of mostly small pieces of scoria and pyroclastics (both resemble cinders, hence the name of this volcano type) that build up around the vent. These can be relatively short-lived eruptions that produce a cone-shaped hill perhaps 30 to 400 metres (100 to 1,300 ft) high. Most cinder cones erupt only once and some may be found in monogenetic volcanic fields that may include other features that form when magma comes into contact with water such as maar explosion craters and tuff rings . Cinder cones may form as flank vents on larger volcanoes, or occur on their own. Parícutin in Mexico and Sunset Crater in Arizona are examples of cinder cones. In New Mexico , Caja del Rio

7622-417: The ocean basin, outweighing the effects of friction with the cold western boundary current which originates from high latitudes. The overall process, known as western intensification, causes currents on the western boundary of an ocean basin to be stronger than those on the eastern boundary. As it travels poleward, warm water transported by strong warm water current undergoes evaporative cooling. The cooling

7725-549: The ocean surface as new islands or floating pumice rafts . In May and June 2018, a multitude of seismic signals were detected by earthquake monitoring agencies all over the world. They took the form of unusual humming sounds, and some of the signals detected in November of that year had a duration of up to 20 minutes. An oceanographic research campaign in May 2019 showed that the previously mysterious humming noises were caused by

7828-420: The ocean surface, due to the rapid cooling effect and increased buoyancy in water (as compared to air), which often causes volcanic vents to form steep pillars on the ocean floor. Hydrothermal vents are common near these volcanoes, and some support peculiar ecosystems based on chemotrophs feeding on dissolved minerals. Over time, the formations created by submarine volcanoes may become so large that they break

7931-471: The ocean's surface. In the deep ocean basins, the tremendous weight of the water prevents the explosive release of steam and gases; however, submarine eruptions can be detected by hydrophones and by the discoloration of water because of volcanic gases . Pillow lava is a common eruptive product of submarine volcanoes and is characterized by thick sequences of discontinuous pillow-shaped masses which form underwater. Even large submarine eruptions may not disturb

8034-401: The oceans and atmosphere which do not involve heat, or else involve additional compositional density factors other than the density changes from thermal expansion (see thermohaline circulation ). Similarly, variable composition within the Earth's interior which has not yet achieved maximal stability and minimal energy (in other words, with densest parts deepest) continues to cause a fraction of

8137-468: The one that destroyed the city of Saint-Pierre in Martinique in 1902. They are also steeper than shield volcanoes, with slopes of 30–35° compared to slopes of generally 5–10°, and their loose tephra are material for dangerous lahars . Large pieces of tephra are called volcanic bombs . Big bombs can measure more than 1.2 metres (4 ft) across and weigh several tons. A supervolcano is defined as

8240-483: The order of hundreds of millions of years to complete a cycle of convection. Neutrino flux measurements from the Earth's core (see kamLAND ) show the source of about two-thirds of the heat in the inner core is the radioactive decay of K , uranium and thorium. This has allowed plate tectonics on Earth to continue far longer than it would have if it were simply driven by heat left over from Earth's formation; or with heat produced from gravitational potential energy , as

8343-425: The overlying mantle wedge, thus creating magma . This magma tends to be extremely viscous because of its high silica content, so it often does not reach the surface but cools and solidifies at depth . When it does reach the surface, however, a volcano is formed. Thus subduction zones are bordered by chains of volcanoes called volcanic arcs . Typical examples are the volcanoes in the Pacific Ring of Fire , such as

8446-619: The plume, and new volcanoes are created where the plate advances over the plume. The Hawaiian Islands are thought to have been formed in such a manner, as has the Snake River Plain , with the Yellowstone Caldera being part of the North American plate currently above the Yellowstone hotspot . However, the mantle plume hypothesis has been questioned. Sustained upwelling of hot mantle rock can develop under

8549-526: The process of subduction at an ocean trench. This subducted material sinks to some depth in the Earth's interior where it is prohibited from sinking further. The subducted oceanic crust triggers volcanism. Convection within Earth's mantle is the driving force for plate tectonics . Mantle convection is the result of a thermal gradient: the lower mantle is hotter than the upper mantle , and is therefore less dense. This sets up two primary types of instabilities. In

8652-472: The reverse across the Southern Hemisphere . The resulting Sverdrup transport is equatorward. Because of conservation of potential vorticity caused by the poleward-moving winds on the subtropical ridge 's western periphery and the increased relative vorticity of poleward moving water, transport is balanced by a narrow, accelerating poleward current, which flows along the western boundary of

8755-418: The rising force beneath it, and the fluid begins to descend. As it descends, it warms again and the cycle repeats itself. Additionally, convection cells can arise due to density variations resulting from differences in the composition of electrolytes. Atmospheric circulation is the large-scale movement of air, and is a means by which thermal energy is distributed on the surface of the Earth , together with

8858-481: The same temperature as the surrounding air. Associated with a thermal is a downward flow surrounding the thermal column. The downward moving exterior is caused by colder air being displaced at the top of the thermal. Another convection-driven weather effect is the sea breeze . Warm air has a lower density than cool air, so warm air rises within cooler air, similar to hot air balloons . Clouds form as relatively warmer air carrying moisture rises within cooler air. As

8961-435: The same time interval. Volcanoes vary greatly in their level of activity, with individual volcanic systems having an eruption recurrence ranging from several times a year to once in tens of thousands of years. Volcanoes are informally described as erupting , active , dormant , or extinct , but the definitions of these terms are not entirely uniform among volcanologists. The level of activity of most volcanoes falls upon

9064-492: The same way; they are often described as "caldera volcanoes". Submarine volcanoes are common features of the ocean floor. Volcanic activity during the Holocene Epoch has been documented at only 119 submarine volcanoes, but there may be more than one million geologically young submarine volcanoes on the ocean floor. In shallow water, active volcanoes disclose their presence by blasting steam and rocky debris high above

9167-622: The solidified erupted material that makes up the mantle of a volcano may be stripped away that its inner anatomy becomes apparent. Using the metaphor of biological anatomy , such a process is called "dissection". Cinder Hill , a feature of Mount Bird on Ross Island , Antarctica , is a prominent example of a dissected volcano. Volcanoes that were, on a geological timescale, recently active, such as for example Mount Kaimon in southern Kyūshū , Japan , tend to be undissected. Eruption styles are broadly divided into magmatic, phreatomagmatic, and phreatic eruptions. The intensity of explosive volcanism

9270-423: The space between the fire and the thermometer, by the process termed radiation . If we place a second thermometer in contact with any part of the grate, and away from the direct influence of the fire, we shall find that this thermometer also denotes an increase of temperature; but here the heat must have travelled through the metal of the grate, by what is termed conduction . Lastly, a third thermometer placed in

9373-557: The surface ) and thereby absorbs and releases more heat , but the temperature changes less than land. This brings the sea breeze, air cooled by the water, ashore in the day, and carries the land breeze, air cooled by contact with the ground, out to sea during the night. Longitudinal circulation consists of two cells, the Walker circulation and El Niño / Southern Oscillation . Some more localized phenomena than global atmospheric movement are also due to convection, including wind and some of

9476-406: The surrounding areas, and initially not seismically monitored before its unanticipated and catastrophic eruption of 1991. Two other examples of volcanoes that were once thought to be extinct, before springing back into eruptive activity were the long-dormant Soufrière Hills volcano on the island of Montserrat , thought to be extinct until activity resumed in 1995 (turning its capital Plymouth into

9579-410: The term convection is attested in a scientific sense. In treatise VIII by William Prout , in the book on chemistry , it says: [...] This motion of heat takes place in three ways, which a common fire-place very well illustrates. If, for instance, we place a thermometer directly before a fire, it soon begins to rise, indicating an increase of temperature. In this case the heat has made its way through

9682-518: The term convection , [in footnote: [Latin] Convectio , a carrying or conveying] which not only expresses the leading fact, but also accords very well with the two other terms. Later, in the same treatise VIII, in the book on meteorology , the concept of convection is also applied to "the process by which heat is communicated through water". Today, the word convection has different but related usages in different scientific or engineering contexts or applications. In fluid mechanics , convection has

9785-434: The theory of plate tectonics. For example, some volcanoes are polygenetic with more than one period of activity during their history; other volcanoes that become extinct after erupting exactly once are monogenetic (meaning "one life") and such volcanoes are often grouped together in a geographical region. At the mid-ocean ridges , two tectonic plates diverge from one another as hot mantle rock creeps upwards beneath

9888-408: The thermal difference and the height of the structure, the greater the buoyancy force, and thus the stack effect. The stack effect helps drive natural ventilation and infiltration. Some cooling towers operate on this principle; similarly the solar updraft tower is a proposed device to generate electricity based on the stack effect. The convection zone of a star is the range of radii in which energy

9991-444: The thinned oceanic crust . The decrease of pressure in the rising mantle rock leads to adiabatic expansion and the partial melting of the rock, causing volcanism and creating new oceanic crust. Most divergent plate boundaries are at the bottom of the oceans, and so most volcanic activity on Earth is submarine, forming new seafloor . Black smokers (also known as deep sea vents) are evidence of this kind of volcanic activity. Where

10094-431: The underlying ductile mantle , and most volcanic activity on Earth takes place along plate boundaries, where plates are converging (and lithosphere is being destroyed) or are diverging (and new lithosphere is being created). During the development of geological theory, certain concepts that allowed the grouping of volcanoes in time, place, structure and composition have developed that ultimately have had to be explained in

10197-492: The volcano. Solid particles smaller than 2 mm in diameter ( sand-sized or smaller) are called volcanic ash. Tephra and other volcaniclastics (shattered volcanic material) make up more of the volume of many volcanoes than do lava flows. Volcaniclastics may have contributed as much as a third of all sedimentation in the geologic record. The production of large volumes of tephra is characteristic of explosive volcanism. Through natural processes, mainly erosion , so much of

10300-424: The volcanoes of the East African Rift . A volcano needs a reservoir of molten magma (e.g. a magma chamber), a conduit to allow magma to rise through the crust, and a vent to allow the magma to escape above the surface as lava. The erupted volcanic material (lava and tephra) that is deposited around the vent is known as a volcanic edifice , typically a volcanic cone or mountain. The most common perception of

10403-502: The water increases in salinity and density. In the North Atlantic Ocean, the water becomes so dense that it begins to sink down. Convection occurs on a large scale in atmospheres , oceans, planetary mantles , and it provides the mechanism of heat transfer for a large fraction of the outermost interiors of the Sun and all stars. Fluid movement during convection may be invisibly slow, or it may be obvious and rapid, as in

10506-503: The weight of the overlying fluid. The pressure at the bottom of a submerged object then exceeds that at the top, resulting in a net upward buoyancy force equal to the weight of the displaced fluid. Objects of higher density than that of the displaced fluid then sink. For example, regions of warmer low-density air rise, while those of colder high-density air sink. This creates a circulating flow: convection. Gravity drives natural convection. Without gravity, convection does not occur, so there

10609-421: Was described by Roman writers as having been covered with gardens and vineyards before its unexpected eruption of 79 CE , which destroyed the towns of Herculaneum and Pompeii . Accordingly, it can sometimes be difficult to distinguish between an extinct volcano and a dormant (inactive) one. Long volcano dormancy is known to decrease awareness. Pinatubo was an inconspicuous volcano, unknown to most people in

#790209