Misplaced Pages

Evolution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Heredity , also called inheritance or biological inheritance , is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction , the offspring cells or organisms acquire the genetic information of their parents. Through heredity, variations between individuals can accumulate and cause species to evolve by natural selection . The study of heredity in biology is genetics .

#510489

143-506: Evolution is the change in the heritable characteristics of biological populations over successive generations. It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, resulting in certain characteristics becoming more or less common within a population over successive generations. The process of evolution has given rise to biodiversity at every level of biological organisation . The scientific theory of evolution by natural selection

286-460: A molecule that encodes genetic information. DNA is a long polymer that incorporates four types of bases , which are interchangeable. The Nucleic acid sequence (the sequence of bases along a particular DNA molecule) specifies the genetic information: this is comparable to a sequence of letters spelling out a passage of text. Before a cell divides through mitosis , the DNA is copied, so that each of

429-408: A mouse , the plant Arabidopsis thaliana , the puffer fish , and the bacteria E. coli . In December 2013, scientists first sequenced the entire genome of a Neanderthal , an extinct species of humans . The genome was extracted from the toe bone of a 130,000-year-old Neanderthal found in a Siberian cave . New sequencing technologies, such as massive parallel sequencing have also opened up

572-440: A DNA sequence within a chromosome is known as a locus . If the DNA sequence at a locus varies between individuals, the different forms of this sequence are called alleles. DNA sequences can change through mutations, producing new alleles. If a mutation occurs within a gene, the new allele may affect the trait that the gene controls, altering the phenotype of the organism. However, while this simple correspondence between an allele and

715-458: A DNA sequence within a chromosome is known as a locus . If the DNA sequence at a particular locus varies between individuals, the different forms of this sequence are called alleles . DNA sequences can change through mutations , producing new alleles. If a mutation occurs within a gene, the new allele may affect the trait that the gene controls, altering the phenotype of the organism. However, while this simple correspondence between an allele and

858-567: A GC-biased E. coli mutator strain in 1967, along with the proposal of the neutral theory , established the plausibility of mutational explanations for molecular patterns, which are now common in the molecular evolution literature. For instance, mutation biases are frequently invoked in models of codon usage. Such models also include effects of selection, following the mutation-selection-drift model, which allows both for mutation biases and differential selection based on effects on translation. Hypotheses of mutation bias have played an important role in

1001-430: A big potential to modify the genetic control in a host organism. The movement of TEs is a driving force of genome evolution in eukaryotes because their insertion can disrupt gene functions, homologous recombination between TEs can produce duplications, and TE can shuffle exons and regulatory sequences to new locations. Retrotransposons are found mostly in eukaryotes but not found in prokaryotes. Retrotransposons form

1144-511: A chromosome becoming duplicated (usually by genetic recombination ), which can introduce extra copies of a gene into a genome. Extra copies of genes are a major source of the raw material needed for new genes to evolve. This is important because most new genes evolve within gene families from pre-existing genes that share common ancestors. For example, the human eye uses four genes to make structures that sense light: three for colour vision and one for night vision ; all four are descended from

1287-506: A defined structure that are able to change their location in the genome. TEs are categorized as either as a mechanism that replicates by copy-and-paste or as a mechanism that can be excised from the genome and inserted at a new location. In the human genome, there are three important classes of TEs that make up more than 45% of the human DNA; these classes are The long interspersed nuclear elements (LINEs), The interspersed nuclear elements (SINEs), and endogenous retroviruses. These elements have

1430-612: A few generations and then would remove variation from a population on which natural selection could act. This led to Darwin adopting some Lamarckian ideas in later editions of On the Origin of Species and his later biological works. Darwin's primary approach to heredity was to outline how it appeared to work (noticing that traits that were not expressed explicitly in the parent at the time of reproduction could be inherited, that certain traits could be sex-linked , etc.) rather than suggesting mechanisms. Darwin's initial model of heredity

1573-618: A genome sequence and aids in navigating around the genome. The Human Genome Project was organized to map and to sequence the human genome . A fundamental step in the project was the release of a detailed genomic map by Jean Weissenbach and his team at the Genoscope in Paris. Reference genome sequences and maps continue to be updated, removing errors and clarifying regions of high allelic complexity. The decreasing cost of genomic mapping has permitted genealogical sites to offer it as

SECTION 10

#1732771985511

1716-549: A group is called a haplotype . This can be important when one allele in a particular haplotype is strongly beneficial: natural selection can drive a selective sweep that will also cause the other alleles in the haplotype to become more common in the population; this effect is called genetic hitchhiking or genetic draft. Genetic draft caused by the fact that some neutral genes are genetically linked to others that are under selection can be partially captured by an appropriate effective population size. A special case of natural selection

1859-534: A large portion of the genomes of many eukaryotes. A retrotransposon is a transposable element that transposes through an RNA intermediate. Retrotransposons are composed of DNA , but are transcribed into RNA for transposition, then the RNA transcript is copied back to DNA formation with the help of a specific enzyme called reverse transcriptase. A retrotransposon that carries reverse transcriptase in its sequence can trigger its own transposition but retrotransposons that lack

2002-405: A main driving role to generate genetic novelty and natural genome editing. Works of science fiction illustrate concerns about the availability of genome sequences. Michael Crichton's 1990 novel Jurassic Park and the subsequent film tell the story of a billionaire who creates a theme park of cloned dinosaurs on a remote island, with disastrous outcomes. A geneticist extracts dinosaur DNA from

2145-413: A major role in shaping the genome. Duplication may range from extension of short tandem repeats , to duplication of a cluster of genes, and all the way to duplication of entire chromosomes or even entire genomes . Such duplications are probably fundamental to the creation of genetic novelty. Horizontal gene transfer is invoked to explain how there is often an extreme similarity between small portions of

2288-467: A major theme of the book. The 1997 film Gattaca is set in a futurist society where genomes of children are engineered to contain the most ideal combination of their parents' traits, and metrics such as risk of heart disease and predicted life expectancy are documented for each person based on their genome. People conceived outside of the eugenics program, known as "In-Valids" suffer discrimination and are relegated to menial occupations. The protagonist of

2431-402: A manner similar to a sequence of letters spelling out a sentence. Before a cell divides, the DNA is copied, so that each of the resulting two cells will inherit the DNA sequence. Portions of a DNA molecule that specify a single functional unit are called genes; different genes have different sequences of bases. Within cells, each long strand of DNA is called a chromosome . The specific location of

2574-460: A mode of inheritance is also achieved primarily through statistical analysis of pedigree data. In case the involved loci are known, methods of molecular genetics can also be employed. An allele is said to be dominant if it is always expressed in the appearance of an organism (phenotype) provided that at least one copy of it is present. For example, in peas the allele for green pods, G , is dominant to that for yellow pods, g . Thus pea plants with

2717-428: A new site. This cut-and-paste mechanism typically reinserts transposons near their original location (within 100 kb). DNA transposons are found in bacteria and make up 3% of the human genome and 12% of the genome of the roundworm C. elegans . Genome size is the total number of the DNA base pairs in one copy of a haploid genome. Genome size varies widely across species. Invertebrates have small genomes, this

2860-400: A nutrient in a long-term laboratory experiment , Flavobacterium evolving a novel enzyme that allows these bacteria to grow on the by-products of nylon manufacturing, and the soil bacterium Sphingobium evolving an entirely new metabolic pathway that degrades the synthetic pesticide pentachlorophenol . An interesting but still controversial idea is that some adaptations might increase

3003-411: A part of early Lamarckian ideas on evolution. During the 18th century, Dutch microscopist Antonie van Leeuwenhoek (1632–1723) discovered "animalcules" in the sperm of humans and other animals. Some scientists speculated they saw a "little man" ( homunculus ) inside each sperm . These scientists formed a school of thought known as the "spermists". They contended the only contributions of the female to

SECTION 20

#1732771985511

3146-606: A phenomenon termed de novo gene birth . The generation of new genes can also involve small parts of several genes being duplicated, with these fragments then recombining to form new combinations with new functions ( exon shuffling ). When new genes are assembled from shuffling pre-existing parts, domains act as modules with simple independent functions, which can be mixed together to produce new combinations with new and complex functions. For example, polyketide synthases are large enzymes that make antibiotics ; they contain up to 100 independent domains that each catalyse one step in

3289-537: A population are therefore more likely to be replaced by the offspring of parents with favourable characteristics for that environment. In the early 20th century, competing ideas of evolution were refuted and evolution was combined with Mendelian inheritance and population genetics to give rise to modern evolutionary theory. In this synthesis the basis for heredity is in DNA molecules that pass information from generation to generation. The processes that change DNA in

3432-566: A population include natural selection, genetic drift, mutation , and gene flow . All life on Earth—including humanity —shares a last universal common ancestor (LUCA), which lived approximately 3.5–3.8 billion years ago. The fossil record includes a progression from early biogenic graphite to microbial mat fossils to fossilised multicellular organisms . Existing patterns of biodiversity have been shaped by repeated formations of new species ( speciation ), changes within species ( anagenesis ), and loss of species ( extinction ) throughout

3575-427: A population is not critical, but instead a measure known as the effective population size. The effective population is usually smaller than the total population since it takes into account factors such as the level of inbreeding and the stage of the lifecycle in which the population is the smallest. The effective population size may not be the same for every gene in the same population. It is usually difficult to measure

3718-426: A population through neutral transitions due to the principles of excess capacity, presuppression, and ratcheting, and it has been applied in areas ranging from the origins of the spliceosome to the complex interdependence of microbial communities . The time it takes a neutral allele to become fixed by genetic drift depends on population size; fixation is more rapid in smaller populations. The number of individuals in

3861-496: A range of genes from bacteria, fungi and plants. Viruses can also carry DNA between organisms, allowing transfer of genes even across biological domains . Large-scale gene transfer has also occurred between the ancestors of eukaryotic cells and bacteria, during the acquisition of chloroplasts and mitochondria . It is possible that eukaryotes themselves originated from horizontal gene transfers between bacteria and archaea . Some heritable changes cannot be explained by changes to

4004-415: A reference, whereas analyses of coverage depth and mapping topology can provide details regarding structural variations such as chromosomal translocations and segmental duplications. DNA sequences that carry the instructions to make proteins are referred to as coding sequences. The proportion of the genome occupied by coding sequences varies widely. A larger genome does not necessarily contain more genes, and

4147-411: A result, genes close together on a chromosome may not always be shuffled away from each other and genes that are close together tend to be inherited together, a phenomenon known as linkage . This tendency is measured by finding how often two alleles occur together on a single chromosome compared to expectations , which is called their linkage disequilibrium . A set of alleles that is usually inherited in

4290-487: A reverse transcriptase must use reverse transcriptase synthesized by another retrotransposon. Retrotransposons can be transcribed into RNA, which are then duplicated at another site into the genome. Retrotransposons can be divided into long terminal repeats (LTRs) and non-long terminal repeats (Non-LTRs). Long terminal repeats (LTRs) are derived from ancient retroviral infections, so they encode proteins related to retroviral proteins including gag (structural proteins of

4433-651: A service, to the extent that one may submit one's genome to crowdsourced scientific endeavours such as DNA.LAND at the New York Genome Center , an example both of the economies of scale and of citizen science . Viral genomes can be composed of either RNA or DNA. The genomes of RNA viruses can be either single-stranded RNA or double-stranded RNA , and may contain one or more separate RNA molecules (segments: monopartit or multipartit genome). DNA viruses can have either single-stranded or double-stranded genomes. Most DNA virus genomes are composed of

Evolution - Misplaced Pages Continue

4576-449: A single ancestral gene. New genes can be generated from an ancestral gene when a duplicate copy mutates and acquires a new function. This process is easier once a gene has been duplicated because it increases the redundancy of the system; one gene in the pair can acquire a new function while the other copy continues to perform its original function. Other types of mutations can even generate entirely new genes from previously noncoding DNA,

4719-404: A single, linear molecule of DNA, but some are made up of a circular DNA molecule. Prokaryotes and eukaryotes have DNA genomes. Archaea and most bacteria have a single circular chromosome , however, some bacterial species have linear or multiple chromosomes. If the DNA is replicated faster than the bacterial cells divide, multiple copies of the chromosome can be present in a single cell, and if

4862-417: A species or population, in particular shifts in allele frequency and adaptation. Macroevolution is the outcome of long periods of microevolution. Thus, the distinction between micro- and macroevolution is not a fundamental one—the difference is simply the time involved. However, in macroevolution, the traits of the entire species may be important. For instance, a large amount of variation among individuals allows

5005-541: A species to rapidly adapt to new habitats , lessening the chance of it going extinct, while a wide geographic range increases the chance of speciation, by making it more likely that part of the population will become isolated. In this sense, microevolution and macroevolution might involve selection at different levels—with microevolution acting on genes and organisms, versus macroevolutionary processes such as species selection acting on entire species and affecting their rates of speciation and extinction. A common misconception

5148-560: A species. Within a species, the vast majority of nucleotides are identical between individuals, but sequencing multiple individuals is necessary to understand the genetic diversity. In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome ( Bacteriophage MS2 ). The next year, Fred Sanger completed the first DNA-genome sequence: Phage Φ-X174 , of 5386 base pairs. The first bacterial genome to be sequenced

5291-409: A striking example are people with the inherited trait of albinism , who do not tan at all and are very sensitive to sunburn . Heritable characteristics are passed from one generation to the next via DNA , a molecule that encodes genetic information. DNA is a long biopolymer composed of four types of bases. The sequence of bases along a particular DNA molecule specifies the genetic information, in

5434-487: A substantial fraction of junk DNA with no evident function. Almost all eukaryotes have mitochondria and a small mitochondrial genome . Algae and plants also contain chloroplasts with a chloroplast genome. The study of the genome is called genomics . The genomes of many organisms have been sequenced and various regions have been annotated. The Human Genome Project was started in October 1990, and then reported

5577-472: A system in which organisms interact with every other element, physical as well as biological , in their local environment. Eugene Odum , a founder of ecology, defined an ecosystem as: "Any unit that includes all of the organisms...in a given area interacting with the physical environment so that a flow of energy leads to clearly defined trophic structure, biotic diversity, and material cycles (i.e., exchange of materials between living and nonliving parts) within

5720-426: A trait works in some cases, most traits are influenced by multiple genes in a quantitative or epistatic manner. Evolution can occur if there is genetic variation within a population. Variation comes from mutations in the genome, reshuffling of genes through sexual reproduction and migration between populations ( gene flow ). Despite the constant introduction of new variation through mutation and gene flow, most of

5863-489: A trait works in some cases, most traits are more complex and are controlled by multiple interacting genes within and among organisms. Developmental biologists suggest that complex interactions in genetic networks and communication among cells can lead to heritable variations that may underlie some of the mechanics in developmental plasticity and canalization . Recent findings have confirmed important examples of heritable changes that cannot be explained by direct agency of

Evolution - Misplaced Pages Continue

6006-403: A variety of ideas about heredity: Theophrastus proposed that male flowers caused female flowers to ripen; Hippocrates speculated that "seeds" were produced by various body parts and transmitted to offspring at the time of conception; and Aristotle thought that male and female fluids mixed at conception. Aeschylus , in 458 BC, proposed the male as the parent, with the female as a "nurse for

6149-453: Is directional selection , which is a shift in the average value of a trait over time—for example, organisms slowly getting taller. Secondly, disruptive selection is selection for extreme trait values and often results in two different values becoming most common, with selection against the average value. This would be when either short or tall organisms had an advantage, but not those of medium height. Finally, in stabilising selection there

6292-437: Is more noticeable . Indeed, the evolution of microorganisms is particularly important to evolutionary research since their rapid reproduction allows the study of experimental evolution and the observation of evolution and adaptation in real time. Adaptation is the process that makes organisms better suited to their habitat. Also, the term adaptation may refer to a trait that is important for an organism's survival. For example,

6435-424: Is a byproduct of this process that may sometimes be adaptively beneficial. Gene flow is the exchange of genes between populations and between species. It can therefore be a source of variation that is new to a population or to a species. Gene flow can be caused by the movement of individuals between separate populations of organisms, as might be caused by the movement of mice between inland and coastal populations, or

6578-485: Is also correlated to a small number of transposable elements. Fish and Amphibians have intermediate-size genomes, and birds have relatively small genomes but it has been suggested that birds lost a substantial portion of their genomes during the phase of transition to flight.  Before this loss, DNA methylation allows the adequate expansion of the genome. In humans, the nuclear genome comprises approximately 3.1 billion nucleotides of DNA, divided into 24 linear molecules,

6721-415: Is an inherited characteristic and an individual might inherit the "brown-eye trait" from one of their parents. Inherited traits are controlled by genes and the complete set of genes within an organism's genome (genetic material) is called its genotype . The complete set of observable traits that make up the structure and behaviour of an organism is called its phenotype . Some of these traits come from

6864-432: Is another DIRS-like elements belong to Non-LTRs. Non-LTRs are widely spread in eukaryotic genomes. Long interspersed elements (LINEs) encode genes for reverse transcriptase and endonuclease, making them autonomous transposable elements. The human genome has around 500,000 LINEs, taking around 17% of the genome. Short interspersed elements (SINEs) are usually less than 500 base pairs and are non-autonomous, so they rely on

7007-402: Is called deep homology . During evolution, some structures may lose their original function and become vestigial structures. Such structures may have little or no function in a current species, yet have a clear function in ancestral species, or other closely related species. Examples include pseudogenes , the non-functional remains of eyes in blind cave-dwelling fish, wings in flightless birds,

7150-444: Is carried in plasmids . For this, the word genome should not be used as a synonym of chromosome . Eukaryotic genomes are composed of one or more linear DNA chromosomes. The number of chromosomes varies widely from Jack jumper ants and an asexual nemotode , which each have only one pair, to a fern species that has 720 pairs. It is surprising the amount of DNA that eukaryotic genomes contain compared to other genomes. The amount

7293-408: Is commonly used in the scientific literature is usually restricted to the large chromosomal DNA molecules in bacteria. Eukaryotic genomes are even more difficult to define because almost all eukaryotic species contain nuclear chromosomes plus extra DNA molecules in the mitochondria . In addition, algae and plants have chloroplast DNA. Most textbooks make a distinction between the nuclear genome and

SECTION 50

#1732771985511

7436-564: Is even more than what is necessary for DNA protein-coding and noncoding genes due to the fact that eukaryotic genomes show as much as 64,000-fold variation in their sizes. However, this special characteristic is caused by the presence of repetitive DNA, and transposable elements (TEs). A typical human cell has two copies of each of 22 autosomes , one inherited from each parent, plus two sex chromosomes , making it diploid. Gametes , such as ova, sperm, spores, and pollen, are haploid, meaning they carry only one copy of each chromosome. In addition to

7579-492: Is facilitated by active DNA demethylation , a process that entails the DNA base excision repair pathway. This pathway is employed in the erasure of CpG methylation (5mC) in primordial germ cells. The erasure of 5mC occurs via its conversion to 5-hydroxymethylcytosine (5hmC) driven by high levels of the ten-eleven dioxygenase enzymes TET1 and TET2 . Genomes are more than the sum of an organism's genes and have traits that may be measured and studied without reference to

7722-404: Is growing evidence that there is transgenerational inheritance of epigenetic changes in humans and other animals. The description of a mode of biological inheritance consists of three main categories: These three categories are part of every exact description of a mode of inheritance in the above order. In addition, more specifications may be added as follows: Determination and description of

7865-591: Is measured by an organism's ability to survive and reproduce, which determines the size of its genetic contribution to the next generation. However, fitness is not the same as the total number of offspring: instead fitness is indicated by the proportion of subsequent generations that carry an organism's genes. For example, if an organism could survive well and reproduce rapidly, but its offspring were all too small and weak to survive, this organism would make little genetic contribution to future generations and would thus have low fitness. If an allele increases fitness more than

8008-401: Is rather exceptional, eukaryotes generally have these features in their genes and their genomes contain variable amounts of repetitive DNA. In mammals and plants, the majority of the genome is composed of repetitive DNA. High-throughput technology makes sequencing to assemble new genomes accessible to everyone. Sequence polymorphisms are typically discovered by comparing resequenced isolates to

8151-419: Is selection against extreme trait values on both ends, which causes a decrease in variance around the average value and less diversity. This would, for example, cause organisms to eventually have a similar height. Natural selection most generally makes nature the measure against which individuals and individual traits, are more or less likely to survive. "Nature" in this sense refers to an ecosystem , that is,

8294-417: Is sexual selection, which is selection for any trait that increases mating success by increasing the attractiveness of an organism to potential mates. Traits that evolved through sexual selection are particularly prominent among males of several animal species. Although sexually favoured, traits such as cumbersome antlers, mating calls, large body size and bright colours often attract predation, which compromises

8437-410: Is that developmental biology (' evo-devo ') played little part in the synthesis, but an account of Gavin de Beer 's work by Stephen Jay Gould suggests he may be an exception. Almost all aspects of the synthesis have been challenged at times, with varying degrees of success. There is no doubt, however, that the synthesis was a great landmark in evolutionary biology. It cleared up many confusions, and

8580-426: Is that evolution has goals, long-term plans, or an innate tendency for "progress", as expressed in beliefs such as orthogenesis and evolutionism; realistically, however, evolution has no long-term goal and does not necessarily produce greater complexity. Although complex species have evolved, they occur as a side effect of the overall number of organisms increasing, and simple forms of life still remain more common in

8723-443: Is the nearly neutral theory , according to which a mutation that would be effectively neutral in a small population is not necessarily neutral in a large population. Other theories propose that genetic drift is dwarfed by other stochastic forces in evolution, such as genetic hitchhiking, also known as genetic draft. Another concept is constructive neutral evolution (CNE), which explains that complex systems can emerge and spread into

SECTION 60

#1732771985511

8866-491: Is the more common means of reproduction among eukaryotes and multicellular organisms. The Red Queen hypothesis has been used to explain the significance of sexual reproduction as a means to enable continual evolution and adaptation in response to coevolution with other species in an ever-changing environment. Another hypothesis is that sexual reproduction is primarily an adaptation for promoting accurate recombinational repair of damage in germline DNA, and that increased diversity

9009-438: Is the process by which traits that enhance survival and reproduction become more common in successive generations of a population. It embodies three principles: More offspring are produced than can possibly survive, and these conditions produce competition between organisms for survival and reproduction. Consequently, organisms with traits that give them an advantage over their competitors are more likely to pass on their traits to

9152-421: Is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multi-cellular organisms (see developmental biology ). The work is both in vivo and in silico . There are many enormous differences in size in genomes, specially mentioned before in

9295-535: Is very difficult to come up with a precise definition of "genome." It usually refers to the DNA (or sometimes RNA) molecules that carry the genetic information in an organism but sometimes it is difficult to decide which molecules to include in the definition; for example, bacteria usually have one or two large DNA molecules ( chromosomes ) that contain all of the essential genetic material but they also contain smaller extrachromosomal plasmid molecules that carry important genetic information. The definition of 'genome' that

9438-514: The Moravian monk Gregor Mendel who published his work on pea plants in 1865. However, his work was not widely known and was rediscovered in 1901. It was initially assumed that Mendelian inheritance only accounted for large (qualitative) differences, such as those seen by Mendel in his pea plants – and the idea of additive effect of (quantitative) genes was not realised until R.A. Fisher 's (1918) paper, " The Correlation Between Relatives on

9581-421: The neutral theory of molecular evolution most evolutionary changes are the result of the fixation of neutral mutations by genetic drift. In this model, most genetic changes in a population are thus the result of constant mutation pressure and genetic drift. This form of the neutral theory has been debated since it does not seem to fit some genetic variation seen in nature. A better-supported version of this model

9724-453: The product of a gene , or prevent the gene from functioning, or have no effect. About half of the mutations in the coding regions of protein-coding genes are deleterious — the other half are neutral. A small percentage of the total mutations in this region confer a fitness benefit. Some of the mutations in other parts of the genome are deleterious but the vast majority are neutral. A few are beneficial. Mutations can involve large sections of

9867-492: The DNA molecule. These phenomena are classed as epigenetic inheritance systems that are causally or independently evolving over genes. Research into modes and mechanisms of epigenetic inheritance is still in its scientific infancy, but this area of research has attracted much recent activity as it broadens the scope of heritability and evolutionary biology in general. DNA methylation marking chromatin , self-sustaining metabolic loops , gene silencing by RNA interference , and

10010-501: The Supposition of Mendelian Inheritance " Mendel's overall contribution gave scientists a useful overview that traits were inheritable. His pea plant demonstration became the foundation of the study of Mendelian Traits. These traits can be traced on a single locus. In the 1930s, work by Fisher and others resulted in a combination of Mendelian and biometric schools into the modern evolutionary synthesis . The modern synthesis bridged

10153-426: The X and Y chromosomes of mammals, so the technical definition of the genome must include both copies of the sex chromosomes. For example, the standard reference genome of humans consists of one copy of each of the 22 autosomes plus one X chromosome and one Y chromosome. A genome sequence is the complete list of the nucleotides (A, C, G, and T for DNA genomes) that make up all the chromosomes of an individual or

10296-515: The ability of organisms to generate genetic diversity and adapt by natural selection (increasing organisms' evolvability). Adaptation occurs through the gradual modification of existing structures. Consequently, structures with similar internal organisation may have different functions in related organisms. This is the result of a single ancestral structure being adapted to function in different ways. The bones within bat wings, for example, are very similar to those in mice feet and primate hands, due to

10439-401: The adaptation of horses' teeth to the grinding of grass. By using the term adaptation for the evolutionary process and adaptive trait for the product (the bodily part or function), the two senses of the word may be distinguished. Adaptations are produced by natural selection. The following definitions are due to Theodosius Dobzhansky: Adaptation may cause either the gain of a new feature, or

10582-505: The alleles are subject to sampling error . This drift halts when an allele eventually becomes fixed, either by disappearing from the population or by replacing the other alleles entirely. Genetic drift may therefore eliminate some alleles from a population due to chance alone. Even in the absence of selective forces, genetic drift can cause two separate populations that begin with the same genetic structure to drift apart into two divergent populations with different sets of alleles. According to

10725-457: The alleles in an organism. Genome In the fields of molecular biology and genetics , a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses ). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as regulatory sequences (see non-coding DNA ), and often

10868-438: The biosphere. For example, the overwhelming majority of species are microscopic prokaryotes , which form about half the world's biomass despite their small size and constitute the vast majority of Earth's biodiversity. Simple organisms have therefore been the dominant form of life on Earth throughout its history and continue to be the main form of life up to the present day, with complex life only appearing more diverse because it

11011-412: The blood of ancient mosquitoes and fills in the gaps with DNA from modern species to create several species of dinosaurs. A chaos theorist is asked to give his expert opinion on the safety of engineering an ecosystem with the dinosaurs, and he repeatedly warns that the outcomes of the project will be unpredictable and ultimately uncontrollable. These warnings about the perils of using genomic information are

11154-549: The cells divide faster than the DNA can be replicated, multiple replication of the chromosome is initiated before the division occurs, allowing daughter cells to inherit complete genomes and already partially replicated chromosomes. Most prokaryotes have very little repetitive DNA in their genomes. However, some symbiotic bacteria (e.g. Serratia symbiotica ) have reduced genomes and a high fraction of pseudogenes: only ~40% of their DNA encodes proteins. Some bacteria have auxiliary genetic material, also part of their genome, which

11297-486: The change over time in this genetic variation. The frequency of one particular allele will become more or less prevalent relative to other forms of that gene. Variation disappears when a new allele reaches the point of fixation —when it either disappears from the population or replaces the ancestral allele entirely. Mutations are changes in the DNA sequence of a cell's genome and are the ultimate source of genetic variation in all organisms. When mutations occur, they may alter

11440-478: The chromosomes in the nucleus, organelles such as the chloroplasts and mitochondria have their own DNA. Mitochondria are sometimes said to have their own genome often referred to as the " mitochondrial genome ". The DNA found within the chloroplast may be referred to as the " plastome ". Like the bacteria they originated from, mitochondria and chloroplasts have a circular chromosome. Unlike prokaryotes where exon-intron organization of protein coding genes exists but

11583-401: The descent of all these structures from a common mammalian ancestor. However, since all living organisms are related to some extent, even organs that appear to have little or no structural similarity, such as arthropod , squid and vertebrate eyes, or the limbs and wings of arthropods and vertebrates, can depend on a common set of homologous genes that control their assembly and function; this

11726-445: The details of any particular genes and their products. Researchers compare traits such as karyotype (chromosome number), genome size , gene order, codon usage bias , and GC-content to determine what mechanisms could have produced the great variety of genomes that exist today (for recent overviews, see Brown 2002; Saccone and Pesole 2003; Benfey and Protopapas 2004; Gibson and Muse 2004; Reese 2004; Gregory 2005). Duplications play

11869-426: The development of thinking about the evolution of genome composition, including isochores. Different insertion vs. deletion biases in different taxa can lead to the evolution of different genome sizes. The hypothesis of Lynch regarding genome size relies on mutational biases toward increase or decrease in genome size. However, mutational hypotheses for the evolution of composition suffered a reduction in scope when it

12012-487: The direct control of genes include the inheritance of cultural traits and symbiogenesis . From a neo-Darwinian perspective, evolution occurs when there are changes in the frequencies of alleles within a population of interbreeding organisms, for example, the allele for black colour in a population of moths becoming more common. Mechanisms that can lead to changes in allele frequencies include natural selection, genetic drift, and mutation bias. Evolution by natural selection

12155-486: The evolutionary history of life on Earth. Morphological and biochemical traits tend to be more similar among species that share a more recent common ancestor , which historically was used to reconstruct phylogenetic trees , although direct comparison of genetic sequences is a more common method today. Evolutionary biologists have continued to study various aspects of evolution by forming and testing hypotheses as well as constructing theories based on evidence from

12298-413: The field or laboratory and on data generated by the methods of mathematical and theoretical biology . Their discoveries have influenced not just the development of biology but also other fields including agriculture, medicine, and computer science . Evolution in organisms occurs through changes in heritable characteristics—the inherited characteristics of an organism. In humans, for example, eye colour

12441-424: The fitness of an allele is not a fixed characteristic; if the environment changes, previously neutral or harmful traits may become beneficial and previously beneficial traits become harmful. However, even if the direction of selection does reverse in this way, traits that were lost in the past may not re-evolve in an identical form. However, a re-activation of dormant genes, as long as they have not been eliminated from

12584-403: The fundamental unit of life is the cell, and not some preformed parts of an organism. Various hereditary mechanisms, including blending inheritance were also envisaged without being properly tested or quantified, and were later disputed. Nevertheless, people were able to develop domestic breeds of animals as well as crops through artificial selection. The inheritance of acquired traits also formed

12727-463: The gap between experimental geneticists and naturalists; and between both and palaeontologists, stating that: The idea that speciation occurs after populations are reproductively isolated has been much debated. In plants, polyploidy must be included in any view of speciation. Formulations such as 'evolution consists primarily of changes in the frequencies of alleles between one generation and another' were proposed rather later. The traditional view

12870-471: The genome and were only suppressed perhaps for hundreds of generations, can lead to the re-occurrence of traits thought to be lost like hindlegs in dolphins, teeth in chickens, wings in wingless stick insects, tails and additional nipples in humans etc. "Throwbacks" such as these are known as atavisms . Natural selection within a population for a trait that can vary across a range of values, such as height, can be categorised into three different types. The first

13013-477: The genome of a species is very similar among all individuals of that species. However, discoveries in the field of evolutionary developmental biology have demonstrated that even relatively small differences in genotype can lead to dramatic differences in phenotype both within and between species. An individual organism's phenotype results from both its genotype and the influence of the environment it has lived in. The modern evolutionary synthesis defines evolution as

13156-406: The genomes of two organisms that are otherwise very distantly related. Horizontal gene transfer seems to be common among many microbes . Also, eukaryotic cells seem to have experienced a transfer of some genetic material from their chloroplast and mitochondrial genomes to their nuclear chromosomes. Recent empirical data suggest an important role of viruses and sub-viral RNA-networks to represent

13299-455: The human genome All the cells of an organism originate from a single cell, so they are expected to have identical genomes; however, in some cases, differences arise. Both the process of copying DNA during cell division and exposure to environmental mutagens can result in mutations in somatic cells. In some cases, such mutations lead to cancer because they cause cells to divide more quickly and invade surrounding tissues. In certain lymphocytes in

13442-425: The human genome and 9% of the fruit fly genome. Tandem repeats can be functional. For example, telomeres are composed of the tandem repeat TTAGGG in mammals, and they play an important role in protecting the ends of the chromosome. In other cases, expansions in the number of tandem repeats in exons or introns can cause disease . For example, the human gene huntingtin (Htt) typically contains 6–29 tandem repeats of

13585-517: The human immune system, V(D)J recombination generates different genomic sequences such that each cell produces a unique antibody or T cell receptors. During meiosis , diploid cells divide twice to produce haploid germ cells. During this process, recombination results in a reshuffling of the genetic material from homologous chromosomes so each gamete has a unique genome. Genome-wide reprogramming in mouse primordial germ cells involves epigenetic imprint erasure leading to totipotency . Reprogramming

13728-635: The idea of developmental bias . Haldane and Fisher argued that, because mutation is a weak pressure easily overcome by selection, tendencies of mutation would be ineffectual except under conditions of neutral evolution or extraordinarily high mutation rates. This opposing-pressures argument was long used to dismiss the possibility of internal tendencies in evolution, until the molecular era prompted renewed interest in neutral evolution. Noboru Sueoka and Ernst Freese proposed that systematic biases in mutation might be responsible for systematic differences in genomic GC composition between species. The identification of

13871-415: The interaction between a person's genotype and sunlight; thus, suntans are not passed on to people's children. However, some people tan more easily than others, due to differences in their genotype: a striking example is people with the inherited trait of albinism , who do not tan at all and are very sensitive to sunburn . Heritable traits are known to be passed from one generation to the next via DNA ,

14014-449: The interaction of its genotype with the environment while others are neutral. Some observable characteristics are not inherited. For example, suntanned skin comes from the interaction between a person's genotype and sunlight; thus, suntans are not passed on to people's children. The phenotype is the ability of the skin to tan when exposed to sunlight. However, some people tan more easily than others, due to differences in genotypic variation;

14157-460: The introduction of variation (arrival biases) can impose biases on evolution without requiring neutral evolution or high mutation rates. Several studies report that the mutations implicated in adaptation reflect common mutation biases though others dispute this interpretation. Recombination allows alleles on the same strand of DNA to become separated. However, the rate of recombination is low (approximately two events per chromosome per generation). As

14300-434: The laws of heredity through compiling data on family phenotypes (nose size, ear shape, etc.) and expression of pathological conditions and abnormal characteristics, particularly with respect to the age of appearance. One of the projects aims was to tabulate data to better understand why certain traits are consistently expressed while others are highly irregular. The idea of particulate inheritance of genes can be attributed to

14443-508: The level of the individual organism are genes called transposons , which can replicate and spread throughout a genome. Selection at a level above the individual, such as group selection , may allow the evolution of cooperation. Genetic drift is the random fluctuation of allele frequencies within a population from one generation to the next. When selective forces are absent or relatively weak, allele frequencies are equally likely to drift upward or downward in each successive generation because

14586-452: The longer term, evolution produces new species through splitting ancestral populations of organisms into new groups that cannot or will not interbreed. These outcomes of evolution are distinguished based on time scale as macroevolution versus microevolution. Macroevolution refers to evolution that occurs at or above the level of species, in particular speciation and extinction, whereas microevolution refers to smaller evolutionary changes within

14729-404: The loss of an ancestral feature. An example that shows both types of change is bacterial adaptation to antibiotic selection, with genetic changes causing antibiotic resistance by both modifying the target of the drug, or increasing the activity of transporters that pump the drug out of the cell. Other striking examples are the bacteria Escherichia coli evolving the ability to use citric acid as

14872-456: The mechanics in developmental plasticity and canalisation . Heritability may also occur at even larger scales. For example, ecological inheritance through the process of niche construction is defined by the regular and repeated activities of organisms in their environment. This generates a legacy of effects that modify and feed back into the selection regime of subsequent generations. Other examples of heritability in evolution that are not under

15015-407: The movement of pollen between heavy-metal-tolerant and heavy-metal-sensitive populations of grasses. Gene transfer between species includes the formation of hybrid organisms and horizontal gene transfer . Horizontal gene transfer is the transfer of genetic material from one organism to another organism that is not its offspring; this is most common among bacteria. In medicine, this contributes to

15158-476: The multicellular eukaryotic genomes. Much of this is due to the differing abundances of transposable elements, which evolve by creating new copies of themselves in the chromosomes. Eukaryote genomes often contain many thousands of copies of these elements, most of which have acquired mutations that make them defective. Here is a table of some significant or representative genomes. See #See also for lists of sequenced genomes. Initial sequencing and analysis of

15301-423: The next generation than those with traits that do not confer an advantage. This teleonomy is the quality whereby the process of natural selection creates and preserves traits that are seemingly fitted for the functional roles they perform. Consequences of selection include nonrandom mating and genetic hitchhiking . The central concept of natural selection is the evolutionary fitness of an organism. Fitness

15444-490: The next generation were the womb in which the homunculus grew, and prenatal influences of the womb. An opposing school of thought, the ovists, believed that the future human was in the egg, and that sperm merely stimulated the growth of the egg. Ovists thought women carried eggs containing boy and girl children, and that the gender of the offspring was determined well before conception. An early research initiative emerged in 1878 when Alpheus Hyatt led an investigation to study

15587-795: The nucleotides CAG (encoding a polyglutamine tract). An expansion to over 36 repeats results in Huntington's disease , a neurodegenerative disease. Twenty human disorders are known to result from similar tandem repeat expansions in various genes. The mechanism by which proteins with expanded polygulatamine tracts cause death of neurons is not fully understood. One possibility is that the proteins fail to fold properly and avoid degradation, instead accumulating in aggregates that also sequester important transcription factors, thereby altering gene expression. Tandem repeats are usually caused by slippage during replication, unequal crossing-over and gene conversion. Transposable elements (TEs) are sequences of DNA with

15730-497: The offspring of sexual organisms contain random mixtures of their parents' chromosomes that are produced through independent assortment. In a related process called homologous recombination , sexual organisms exchange DNA between two matching chromosomes. Recombination and reassortment do not alter allele frequencies, but instead change which alleles are associated with each other, producing offspring with new combinations of alleles. Sex usually increases genetic variation and may increase

15873-447: The organelle (mitochondria and chloroplast) genomes so when they speak of, say, the human genome, they are only referring to the genetic material in the nucleus. This is the most common use of 'genome' in the scientific literature. Most eukaryotes are diploid , meaning that there are two of each chromosome in the nucleus but the 'genome' refers to only one copy of each chromosome. Some eukaryotes have distinctive sex chromosomes, such as

16016-455: The other alleles of that gene, then with each generation this allele has a higher probability of becoming common within the population. These traits are said to be "selected for ." Examples of traits that can increase fitness are enhanced survival and increased fecundity . Conversely, the lower fitness caused by having a less beneficial or deleterious allele results in this allele likely becoming rarer—they are "selected against ." Importantly,

16159-576: The overall process, like a step in an assembly line. One example of mutation is wild boar piglets. They are camouflage coloured and show a characteristic pattern of dark and light longitudinal stripes. However, mutations in the melanocortin 1 receptor ( MC1R ) disrupt the pattern. The majority of pig breeds carry MC1R mutations disrupting wild-type colour and different mutations causing dominant black colouring. In asexual organisms, genes are inherited together, or linked , as they cannot mix with genes of other organisms during reproduction. In contrast,

16302-400: The pair of alleles either GG (homozygote) or Gg (heterozygote) will have green pods. The allele for yellow pods is recessive. The effects of this allele are only seen when it is present in both chromosomes, gg (homozygote). This derives from Zygosity , the degree to which both copies of a chromosome or gene have the same genetic sequence, in other words, the degree of similarity of

16445-462: The parents. Inherited traits are controlled by genes and the complete set of genes within an organism's genome is called its genotype . The complete set of observable traits of the structure and behavior of an organism is called its phenotype . These traits arise from the interaction of the organism's genotype with the environment . As a result, many aspects of an organism's phenotype are not inherited. For example, suntanned skin derives from

16588-517: The presence of hip bones in whales and snakes, and sexual traits in organisms that reproduce via asexual reproduction. Examples of vestigial structures in humans include wisdom teeth , the coccyx , the vermiform appendix , and other behavioural vestiges such as goose bumps and primitive reflexes . However, many traits that appear to be simple adaptations are in fact exaptations : structures originally adapted for one function, but which coincidentally became somewhat useful for some other function in

16731-465: The process. One example is the African lizard Holaspis guentheri , which developed an extremely flat head for hiding in crevices, as can be seen by looking at its near relatives. However, in this species, the head has become so flattened that it assists in gliding from tree to tree—an exaptation. Within cells, molecular machines such as the bacterial flagella and protein sorting machinery evolved by

16874-590: The proportion of non-repetitive DNA decreases along with increasing genome size in complex eukaryotes. Noncoding sequences include introns , sequences for non-coding RNAs, regulatory regions, and repetitive DNA. Noncoding sequences make up 98% of the human genome. There are two categories of repetitive DNA in the genome: tandem repeats and interspersed repeats. Short, non-coding sequences that are repeated head-to-tail are called tandem repeats . Microsatellites consisting of 2–5 basepair repeats, while minisatellite repeats are 30–35 bp. Tandem repeats make up about 4% of

17017-412: The prospect of personal genome sequencing as a diagnostic tool, as pioneered by Manteia Predictive Medicine . A major step toward that goal was the completion in 2007 of the full genome of James D. Watson , one of the co-discoverers of the structure of DNA. Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than

17160-439: The proteins encoded by LINEs for transposition. The Alu element is the most common SINE found in primates. It is about 350 base pairs and occupies about 11% of the human genome with around 1,500,000 copies. DNA transposons encode a transposase enzyme between inverted terminal repeats. When expressed, the transposase recognizes the terminal inverted repeats that flank the transposon and catalyzes its excision and reinsertion in

17303-490: The rate of evolution. The two-fold cost of sex was first described by John Maynard Smith . The first cost is that in sexually dimorphic species only one of the two sexes can bear young. This cost does not apply to hermaphroditic species, like most plants and many invertebrates . The second cost is that any individual who reproduces sexually can only pass on 50% of its genes to any individual offspring, with even less passed on as each new generation passes. Yet sexual reproduction

17446-425: The recruitment of several pre-existing proteins that previously had different functions. Another example is the recruitment of enzymes from glycolysis and xenobiotic metabolism to serve as structural proteins called crystallins within the lenses of organisms' eyes. Heritable In humans, eye color is an example of an inherited characteristic: an individual might inherit the "brown-eye trait" from one of

17589-406: The relative importance of selection and neutral processes, including drift. The comparative importance of adaptive and non-adaptive forces in driving evolutionary change is an area of current research . Mutation bias is usually conceived as a difference in expected rates for two different kinds of mutation, e.g., transition-transversion bias, GC-AT bias, deletion-insertion bias. This is related to

17732-471: The resulting two cells will inherit the DNA sequence. A portion of a DNA molecule that specifies a single functional unit is called a gene ; different genes have different sequences of bases. Within cells , the long strands of DNA form condensed structures called chromosomes . Organisms inherit genetic material from their parents in the form of homologous chromosomes , containing a unique combination of DNA sequences that code for genes. The specific location of

17875-427: The selection regime of subsequent generations. Descendants inherit genes plus environmental characteristics generated by the ecological actions of ancestors. Other examples of heritability in evolution that are not under the direct control of genes include the inheritance of cultural traits , group heritability , and symbiogenesis . These examples of heritability that operate above the gene are covered broadly under

18018-550: The sequence of nucleotides in the DNA. These phenomena are classed as epigenetic inheritance systems. DNA methylation marking chromatin , self-sustaining metabolic loops, gene silencing by RNA interference and the three-dimensional conformation of proteins (such as prions ) are areas where epigenetic inheritance systems have been discovered at the organismic level. Developmental biologists suggest that complex interactions in genetic networks and communication among cells can lead to heritable variations that may underlay some of

18161-555: The sequence of the human genome in April 2003, although the initial "finished" sequence was missing 8% of the genome consisting mostly of repetitive sequences. With advancements in technology that could handle sequencing of the many repetitive sequences found in human DNA that were not fully uncovered by the original Human Genome Project study, scientists reported the first end-to-end human genome sequence in March 2022. The term genome

18304-423: The shortest 45 000 000 nucleotides in length and the longest 248 000 000 nucleotides, each contained in a different chromosome. There is no clear and consistent correlation between morphological complexity and genome size in either prokaryotes or lower eukaryotes . Genome size is largely a function of the expansion and contraction of repetitive DNA elements. Since genomes are very complex, one research strategy

18447-403: The spread of antibiotic resistance , as when one bacteria acquires resistance genes it can rapidly transfer them to other species. Horizontal transfer of genes from bacteria to eukaryotes such as the yeast Saccharomyces cerevisiae and the adzuki bean weevil Callosobruchus chinensis has occurred. An example of larger-scale transfers are the eukaryotic bdelloid rotifers , which have received

18590-637: The survival of individual males. This survival disadvantage is balanced by higher reproductive success in males that show these hard-to-fake , sexually selected traits. Evolution influences every aspect of the form and behaviour of organisms. Most prominent are the specific behavioural and physical adaptations that are the outcome of natural selection. These adaptations increase fitness by aiding activities such as finding food, avoiding predators or attracting mates. Organisms can also respond to selection by cooperating with each other, usually by aiding their relatives or engaging in mutually beneficial symbiosis . In

18733-637: The system...." Each population within an ecosystem occupies a distinct niche , or position, with distinct relationships to other parts of the system. These relationships involve the life history of the organism, its position in the food chain and its geographic range. This broad understanding of nature enables scientists to delineate specific forces which, together, comprise natural selection. Natural selection can act at different levels of organisation , such as genes, cells, individual organisms, groups of organisms and species. Selection can act at multiple levels simultaneously. An example of selection occurring below

18876-446: The three dimensional conformation of proteins (such as prions ) are areas where epigenetic inheritance systems have been discovered at the organismic level. Heritability may also occur at even larger scales. For example, ecological inheritance through the process of niche construction is defined by the regular and repeated activities of organisms in their environment. This generates a legacy of effect that modifies and feeds back into

19019-465: The title of multilevel or hierarchical selection , which has been a subject of intense debate in the history of evolutionary science. When Charles Darwin proposed his theory of evolution in 1859, one of its major problems was the lack of an underlying mechanism for heredity. Darwin believed in a mix of blending inheritance and the inheritance of acquired traits ( pangenesis ). Blending inheritance would lead to uniformity across populations in only

19162-541: The virus), pol (reverse transcriptase and integrase), pro (protease), and in some cases env (envelope) genes. These genes are flanked by long repeats at both 5' and 3' ends. It has been reported that LTRs consist of the largest fraction in most plant genome and might account for the huge variation in genome size. Non-long terminal repeats (Non-LTRs) are classified as long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and Penelope-like elements (PLEs). In Dictyostelium discoideum , there

19305-525: The young life sown within her". Ancient understandings of heredity transitioned to two debated doctrines in the 18th century. The Doctrine of Epigenesis and the Doctrine of Preformation were two distinct views of the understanding of heredity. The Doctrine of Epigenesis, originated by Aristotle , claimed that an embryo continually develops. The modifications of the parent's traits are passed off to an embryo during its lifetime. The foundation of this doctrine

19448-614: Was adopted by, and then heavily modified by, his cousin Francis Galton , who laid the framework for the biometric school of heredity. Galton found no evidence to support the aspects of Darwin's pangenesis model, which relied on acquired traits. The inheritance of acquired traits was shown to have little basis in the 1880s when August Weismann cut the tails off many generations of mice and found that their offspring continued to develop tails. Scientists in Antiquity had

19591-413: Was based on the theory of inheritance of acquired traits . In direct opposition, the Doctrine of Preformation claimed that "like generates like" where the germ would evolve to yield offspring similar to the parents. The Preformationist view believed procreation was an act of revealing what had been created long before. However, this was disputed by the creation of the cell theory in the 19th century, where

19734-429: Was completed in 1996, again by The Institute for Genomic Research. The development of new technologies has made genome sequencing dramatically cheaper and easier, and the number of complete genome sequences is growing rapidly. The US National Institutes of Health maintains one of several comprehensive databases of genomic information. Among the thousands of completed genome sequencing projects include those for rice ,

19877-840: Was conceived independently by two British naturalists, Charles Darwin and Alfred Russel Wallace , in the mid-19th century as an explanation for why organisms are adapted to their physical and biological environments. The theory was first set out in detail in Darwin's book On the Origin of Species . Evolution by natural selection is established by observable facts about living organisms: (1) more offspring are often produced than can possibly survive; (2) traits vary among individuals with respect to their morphology , physiology , and behaviour; (3) different traits confer different rates of survival and reproduction (differential fitness ); and (4) traits can be passed from generation to generation ( heritability of fitness). In successive generations, members of

20020-529: Was created in 1920 by Hans Winkler , professor of botany at the University of Hamburg , Germany. The website Oxford Dictionaries and the Online Etymology Dictionary suggest the name is a blend of the words gene and chromosome . However, see omics for a more thorough discussion. A few related -ome words already existed, such as biome and rhizome , forming a vocabulary into which genome fits systematically. It

20163-515: Was directly responsible for stimulating a great deal of research in the post- World War II era. Trofim Lysenko however caused a backlash of what is now called Lysenkoism in the Soviet Union when he emphasised Lamarckian ideas on the inheritance of acquired traits . This movement affected agricultural research and led to food shortages in the 1960s and seriously affected the USSR. There

20306-543: Was discovered that (1) GC-biased gene conversion makes an important contribution to composition in diploid organisms such as mammals and (2) bacterial genomes frequently have AT-biased mutation. Contemporary thinking about the role of mutation biases reflects a different theory from that of Haldane and Fisher. More recent work showed that the original "pressures" theory assumes that evolution is based on standing variation: when evolution depends on events of mutation that introduce new alleles, mutational and developmental biases in

20449-400: Was that of Haemophilus influenzae , completed by a team at The Institute for Genomic Research in 1995. A few months later, the first eukaryotic genome was completed, with sequences of the 16 chromosomes of budding yeast Saccharomyces cerevisiae published as the result of a European-led effort begun in the mid-1980s. The first genome sequence for an archaeon , Methanococcus jannaschii ,

#510489