The Abwehrflammenwerfer 42 was a German static defensive flamethrower , flame fougasse or flame mine used during the Second World War . The design was copied from Russian FOG-1 mines that were encountered in 1941 during Operation Barbarossa . These were usually buried at intervals of 11 to 27 metres (12 to 30 yd) covering road blocks, landing beaches, harbour walls and other obstacles. They were normally mixed in with other mines or emplaced behind barbed wire and could be command detonated or triggered by tripwires or other devices.
88-421: The mine consisted of a large fuel cylinder 53 centimetres (21 in) high and 30 centimetres (12 in) with a capacity of 29.5 litres (6.5 imp gal; 7.8 US gal) containing a black viscid liquid; a mix of light, medium, and heavy oils. A second, smaller cylinder, 67 millimetres (2.6 in) in diameter and 25 centimetres (9.8 in) high, was mounted on top of the fuel cylinder; it contained
176-659: A "long lance" sending forth "evil-smelling vapors and smoke", which has been variously interpreted by different historians as the "first-gas attack upon European soil" using gunpowder, "the first use of cannon in Europe", or merely a "toxic gas" with no evidence of gunpowder. It is difficult to accurately translate original Chinese alchemical texts, which tend to explain phenomena through metaphor, into modern scientific language with rigidly defined terminology in English. Early texts potentially mentioning gunpowder are sometimes marked by
264-460: A combination of Ottoman and Mughal designs. Shah Jahan also countered the British and other Europeans in his province of Gujarāt , which supplied Europe saltpeter for use in gunpowder warfare during the 17th century. Bengal and Mālwa participated in saltpeter production. The Dutch, French, Portuguese, and English used Chhapra as a center of saltpeter refining. Ever since the founding of
352-473: A formula with near-identical ideal composition ratios for explosive gunpowder. Other historians urge caution regarding claims of Islamic firearms use in the 1204–1324 period, as late medieval Arabic texts used the same word for gunpowder, naft , that they used for an earlier incendiary, naphtha. The earliest surviving documentary evidence for cannons in the Islamic world is from an Arabic manuscript dated to
440-436: A gunpowder composition containing pure carbon would burn similarly to a match head, at best. The current standard composition for the gunpowder manufactured by pyrotechnicians was adopted as long ago as 1780. Proportions by weight are 75% potassium nitrate (known as saltpeter or saltpetre), 15% softwood charcoal, and 10% sulfur. These ratios have varied over the centuries and by country, and can be altered somewhat depending on
528-476: A hazard of attempting to construct any homemade bomb . The materials and methods used with pipe bombs often result in unintentional detonation, usually resulting in serious injury or death to the assembler. In many countries, the manufacture or possession of a pipe bomb is a serious crime , regardless of its intended use. The bomb is usually a short section of steel water pipe containing the explosive mixture and closed at both ends with steel or brass caps. A fuse
616-742: A linguistic process where semantic change occurred. For instance, the Arabic word naft transitioned from denoting naphtha to denoting gunpowder, and the Chinese word pào changed in meaning from trebuchet to a cannon . This has led to arguments on the exact origins of gunpowder based on etymological foundations. Science and technology historian Bert S. Hall makes the observation that, "It goes without saying, however, that historians bent on special pleading, or simply with axes of their own to grind, can find rich material in these terminological thickets." Another major area of contention in modern studies of
704-523: A medicine to an incendiary and explosive, and the evolution of the gun from the fire lance to a metal gun, whereas similar records do not exist elsewhere. As Andrade explains, the large amount of variation in gunpowder recipes in China relative to Europe is "evidence of experimentation in China, where gunpowder was at first used as an incendiary and only later became an explosive and a propellant... in contrast, formulas in Europe diverged only very slightly from
792-499: A range of about 27 metres (89 ft), and lasted about 1.5 seconds. This article relating to landmines is a stub . You can help Misplaced Pages by expanding it . Black powder Gunpowder , also commonly known as black powder to distinguish it from modern smokeless powder , is the earliest known chemical explosive . It consists of a mixture of sulfur , charcoal (which is mostly carbon ), and potassium nitrate (saltpeter) . The sulfur and charcoal act as fuels while
880-838: A regular basis outside of China." May also states, "however [, ...] the Mongols used the gunpowder weapon in their wars against the Jin, the Song and in their invasions of Japan." Records show that, in England, gunpowder was being made in 1346 at the Tower of London ; a powder house existed at the Tower in 1461, and in 1515 three King's gunpowder makers worked there. Gunpowder was also being made or stored at other royal castles, such as Portchester . The English Civil War (1642–1645) led to an expansion of
968-512: A ruler and tried to ward off any Mongol attempt similar to the Siege of Baghdad (1258) . Firearms known as top-o-tufak also existed in many Muslim kingdoms in India by as early as 1366. From then on the employment of gunpowder warfare in India was prevalent, with events such as the "Siege of Belgaum " in 1473 by Sultan Muhammad Shah Bahmani. The shipwrecked Ottoman Admiral Seydi Ali Reis
SECTION 10
#17327729182421056-559: A shipwreck off the shore of Japan dated from 1281, during the Mongol invasions of Japan. By 1083 the Song court was producing hundreds of thousands of fire arrows for their garrisons. Bombs and the first proto-guns, known as "fire lances", became prominent during the 12th century and were used by the Song during the Jin-Song Wars . Fire lances were first recorded to have been used at the Siege of De'an in 1132 by Song forces against
1144-594: A soldier's position, generating fog that hinders vision, etc.). Some of it ends up as a thick layer of soot inside the barrel, where it also is a nuisance for subsequent shots, and a cause of jamming an automatic weapon. Moreover, this residue is hygroscopic , and with the addition of moisture absorbed from the air forms a corrosive substance . The soot contains potassium oxide or sodium oxide that turns into potassium hydroxide , or sodium hydroxide , which corrodes wrought iron or steel gun barrels. Gunpowder arms therefore require thorough and regular cleaning to remove
1232-408: A stock. Some consider this to be a cannon while others do not. The problem with identifying cannons in early 14th century Arabic texts is the term midfa , which appears from 1342 to 1352 but cannot be proven to be true hand-guns or bombards. Contemporary accounts of a metal-barrel cannon in the Islamic world do not occur until 1365. Needham believes that in its original form the term midfa refers to
1320-461: A supersonic shockwave . Ignition of gunpowder packed behind a projectile generates enough pressure to force the shot from the muzzle at high speed, but usually not enough force to rupture the gun barrel . It thus makes a good propellant but is less suitable for shattering rock or fortifications with its low-yield explosive power. Nonetheless, it was widely used to fill fused artillery shells (and used in mining and civil engineering projects) until
1408-481: A wad), and by 1287 at the latest, had become true guns, the hand cannon . According to Iqtidar Alam Khan, it was invading Mongols who introduced gunpowder to the Islamic world. The Muslims acquired knowledge of gunpowder sometime between 1240 and 1280, by which point the Syrian Hasan al-Rammah had written recipes, instructions for the purification of saltpeter, and descriptions of gunpowder incendiaries. It
1496-481: Is a low explosive : it does not detonate , but rather deflagrates (burns quickly). This is an advantage in a propellant device, where one does not desire a shock that would shatter the gun and potentially harm the operator; however, it is a drawback when an explosion is desired. In that case, the propellant (and most importantly, gases produced by its burning) must be confined. Since it contains its own oxidizer and additionally burns faster under pressure, its combustion
1584-400: Is an improvised explosive device (IED) that uses a tightly sealed section of pipe filled with an explosive material . The containment provided by the pipe means that simple low explosives can be used to produce a relatively large explosion due to the containment causing increased pressure. The fragmentation of the pipe itself creates potentially lethal shrapnel . Premature detonation is
1672-469: Is capable of bursting containers such as a shell, grenade, or improvised " pipe bomb " or "pressure cooker" casings to form shrapnel . In quarrying, high explosives are generally preferred for shattering rock. However, because of its low brisance , gunpowder causes fewer fractures and results in more usable stone compared to other explosives, making it useful for blasting slate , which is fragile, or monumental stone such as granite and marble . Gunpowder
1760-778: Is cited as composed of 79% nitre, 3% sulfur, and 18% charcoal per 100 of dry powder, with about 2% moisture. Prismatic Brown Powder is a large-grained product the Rottweil Company introduced in 1884 in Germany, which was adopted by the British Royal Navy shortly thereafter. The French navy adopted a fine, 3.1 millimeter, not prismatic grained product called Slow Burning Cocoa (SBC) or "cocoa powder". These brown powders reduced burning rate even further by using as little as 2 percent sulfur and using charcoal made from rye straw that had not been completely charred, hence
1848-532: Is implied by al-Rammah's usage of "terms that suggested he derived his knowledge from Chinese sources" and his references to saltpeter as "Chinese snow" ( Arabic : ثلج الصين thalj al-ṣīn ), fireworks as "Chinese flowers", and rockets as "Chinese arrows" that knowledge of gunpowder arrived from China. However, because al-Rammah attributes his material to "his father and forefathers", al-Hassan argues that gunpowder became prevalent in Syria and Egypt by "the end of
SECTION 20
#17327729182421936-450: Is inserted into the pipe with a lead running out through a hole in the side or capped end of the pipe. The fuse can be electric, with wires leading to a timer and battery, or can be a common fuse . All of the components are easily obtainable. Generally, high explosives such as trinitrotoluene are not used, because these and the detonators that they require are difficult for non-state users to obtain. Such explosives also do not require
2024-682: Is known to have introduced the earliest type of matchlock weapons, which the Ottomans used against the Portuguese during the Siege of Diu (1531) . After that, a diverse variety of firearms, large guns in particular, became visible in Tanjore , Dacca , Bijapur , and Murshidabad . Guns made of bronze were recovered from Calicut (1504)- the former capital of the Zamorins The Mughal emperor Akbar mass-produced matchlocks for
2112-526: Is suspected, typical recommendations are to keep all people at a minimum evacuation distance until authorized bomb disposal personnel arrive. For a pipe bomb, the US Department of Homeland Security recommends a minimum of 21 m (69 ft), and an outdoors distance of 366 m (1,201 ft). Pipe bombs are by nature improvised weapons and typically used by those without access to military devices such as grenades . They were successfully used in
2200-472: Is that it was William Lobb , the plant collector, who recognised the possibilities of sodium nitrate during his travels in South America. Lammot du Pont would have known about the use of graphite and probably also knew about the plants in south-west England. In his patent he was careful to state that his claim was for the combination of graphite with sodium nitrate-based powder, rather than for either of
2288-416: Is well suited for blank rounds , signal flares , burst charges , and rescue-line launches. It is also used in fireworks for lifting shells, in rockets as fuel, and in certain special effects . Combustion converts less than half the mass of gunpowder to gas; most of it turns into particulate matter. Some of it is ejected, wasting propelling power, fouling the air, and generally being a nuisance (giving away
2376-706: The Delhi Sultanate , and some of the Mongol soldiers remained in northern India after their conversion to Islam. It was written in the Tarikh-i Firishta (1606–1607) that Nasiruddin Mahmud the ruler of the Delhi Sultanate presented the envoy of the Mongol ruler Hulegu Khan with a dazzling pyrotechnics display upon his arrival in Delhi in 1258. Nasiruddin Mahmud tried to express his strength as
2464-473: The Jin . In the early 13th century the Jin used iron-casing bombs. Projectiles were added to fire lances, and re-usable fire lance barrels were developed, first out of hardened paper, and then metal. By 1257 some fire lances were firing wads of bullets. In the late 13th century metal fire lances became 'eruptors', proto-cannons firing co-viative projectiles (mixed with the propellant, rather than seated over it with
2552-508: The Khmer Empire . Within a decade large quantities of gunpowder could be found in the Khmer Empire . By the end of the century firearms were also used by the Trần dynasty . Even though the knowledge of making gunpowder-based weapons was known after the failed Mongol invasion of Java, and the predecessor of firearms, the pole gun ( bedil tombak ), is recorded as being used by Java in 1413,
2640-468: The Mughal Army . Akbar is personally known to have shot a leading Rajput commander during the Siege of Chittorgarh . The Mughals began to use bamboo rockets (mainly for signalling) and employ sappers : special units that undermined heavy stone fortifications to plant gunpowder charges. The Mughal Emperor Shah Jahan is known to have introduced much more advanced matchlocks, their designs were
2728-855: The Spanish Civil War (1936–1939). During World War II , members of the British Home Guard were trained to make and use them. In Northern Ireland , there have been hundreds of pipe bomb attacks since the mid-1990s as the Troubles came to an end. Most of the attacks have been launched by loyalist paramilitaries , especially the Red Hand Defenders , Orange Volunteers and Ulster Defence Association . However, they have also been used by Irish republican paramilitaries and by anti-drugs vigilante group Republican Action Against Drugs . They are also used extensively in
Abwehrflammenwerfer 42 - Misplaced Pages Continue
2816-738: The Sultanate of Mysore by Hyder Ali , French military officers were employed to train the Mysore Army. Hyder Ali and his son Tipu Sultan were the first to introduce modern cannons and muskets , their army was also the first in India to have official uniforms. During the Second Anglo-Mysore War Hyder Ali and his son Tipu Sultan unleashed the Mysorean rockets at their British opponents effectively defeating them on various occasions. The Mysorean rockets inspired
2904-705: The capture of Malacca (1511) resulted in a new type of hybrid tradition matchlock firearm, the istinggar . When the Portuguese came to the archipelago, they referred to the breech-loading swivel gun as berço , while the Spaniards call it verso . By the early 16th century, the Javanese already locally producing large guns, some of them still survived until the present day and dubbed as "sacred cannon" or "holy cannon". These cannons varied between 180- and 260-pounders, weighing anywhere between 3 and 8 tons, length of them between 3 and 6 m. Saltpeter harvesting
2992-415: The droit de fouille or "right to dig", to seize nitrous-containing soil and demolish walls of barnyards, without compensation to the owners. This caused farmers, the wealthy, or entire villages to bribe the petermen and the associated bureaucracy to leave their buildings alone and the saltpeter uncollected. Lavoisier instituted a crash program to increase saltpeter production, revised (and later eliminated)
3080-403: The droit de fouille , researched best refining and powder manufacturing methods, instituted management and record-keeping, and established pricing that encouraged private investment in works. Although saltpeter from new Prussian-style putrefaction works had not been produced yet (the process taking about 18 months), in only a year France had gunpowder to export. A chief beneficiary of this surplus
3168-807: The 9th century AD during the Tang dynasty , first in a formula contained in the Taishang Shengzu Jindan Mijue (太上聖祖金丹秘訣) in 808, and then about 50 years later in a Taoist text known as the Zhenyuan miaodao yaolüe (真元妙道要略). The Taishang Shengzu Jindan Mijue mentions a formula composed of six parts sulfur to six parts saltpeter to one part birthwort herb. According to the Zhenyuan miaodao yaolüe , "Some have heated together sulfur, realgar and saltpeter with honey ; smoke and flames result, so that their hands and faces have been burnt, and even
3256-463: The Mongols against European forces at the Battle of Mohi in 1241. Professor Kenneth Warren Chase credits the Mongols for introducing into Europe gunpowder and its associated weaponry. However, there is no clear route of transmission, and while the Mongols are often pointed to as the likeliest vector, Timothy May points out that "there is no concrete evidence that the Mongols used gunpowder weapons on
3344-518: The U.S. until the 1920s that the actual source of corrosion was the potassium chloride residue from potassium chlorate sensitized primers. The bulkier black powder fouling better disperses primer residue. Failure to mitigate primer corrosion by dispersion caused the false impression that nitrocellulose-based powder caused corrosion. Lesmok had some of the bulk of black powder for dispersing primer residue, but somewhat less total bulk than straight black powder, thus requiring less frequent bore cleaning. It
3432-510: The United Kingdom, the finest grain was known as sulfur-free mealed powder ( SMP ). Coarser grains were numbered as sulfur-free gunpowder (SFG n): 'SFG 12', 'SFG 20', 'SFG 40' and 'SFG 90', for example where the number represents the smallest BSS sieve mesh size, which retained no grains. Sulfur's main role in gunpowder is to decrease the ignition temperature. A sample reaction for sulfur-free gunpowder would be: The term black powder
3520-404: The brown color. Lesmok powder was a product developed by DuPont in 1911, one of several semi-smokeless products in the industry containing a mixture of black and nitrocellulose powder. It was sold to Winchester and others primarily for .22 and .32 small calibers. Its advantage was that it was believed at the time to be less corrosive than smokeless powders then in use. It was not understood in
3608-399: The bulk semi-smokeless powders ceased to be manufactured in the 1920s. The original dry-compounded powder used in 15th-century Europe was known as "Serpentine", either a reference to Satan or to a common artillery piece that used it. The ingredients were ground together with a mortar and pestle, perhaps for 24 hours, resulting in a fine flour. Vibration during transportation could cause
Abwehrflammenwerfer 42 - Misplaced Pages Continue
3696-419: The chemical reaction pressure can rise. They can also fail if the pipe is fully sealed and the chemical reaction triggered, but the total pressure buildup from the chemicals is insufficient to exceed the casing strength; such a bomb inevitably fails to trigger , but is still potentially dangerous if handled, since an external shock could trigger rupture of the statically pressurized casing. If any type of bomb
3784-427: The compass, and printing did not reach Europe until centuries after they were invented in China. Gunpowder is a granular mixture of: Potassium nitrate is the most important ingredient in terms of both bulk and function because the combustion process releases oxygen from the potassium nitrate, promoting the rapid burning of the other ingredients. To reduce the likelihood of accidental ignition by static electricity ,
3872-441: The components to separate again, requiring remixing in the field. Also if the quality of the saltpeter was low (for instance if it was contaminated with highly hygroscopic calcium nitrate ), or if the powder was simply old (due to the mildly hygroscopic nature of potassium nitrate), in humid weather it would need to be re-dried. The dust from "repairing" powder in the field was a major hazard. Pipe bomb A pipe bomb
3960-461: The containment design of a pipe bomb. Instead, explosive mixtures that the builder can more readily obtain themselves are used, such as gunpowder , match heads, or chlorate mixtures. These can be easily ignited by friction, static electricity , and sparks generated when packing the material inside the tube or attaching the end caps, causing many injuries or deaths amongst builders. Sharp objects such as nails or broken glass are sometimes added to
4048-553: The decline of its military might. The earliest Western accounts of gunpowder appear in texts written by English philosopher Roger Bacon in 1267 called Opus Majus and Opus Tertium . The oldest written recipes in continental Europe were recorded under the name Marcus Graecus or Mark the Greek between 1280 and 1300 in the Liber Ignium , or Book of Fires . Some sources mention possible gunpowder weapons being deployed by
4136-732: The development of the Congreve rocket , which the British widely used during the Napoleonic Wars and the War of 1812 . Cannons were introduced to Majapahit when Kublai Khan's Chinese army under the leadership of Ike Mese sought to invade Java in 1293. History of Yuan mentioned that the Mongol used cannons (Chinese: 炮— Pào ) against Daha forces. Cannons were used by the Ayutthaya Kingdom in 1352 during its invasion of
4224-549: The earliest Latin accounts of saltpeter purification are dated after 1200. The earliest chemical formula for gunpowder appeared in the 11th century Song dynasty text, Wujing Zongyao ( Complete Essentials from the Military Classics ), written by Zeng Gongliang between 1040 and 1044. The Wujing Zongyao provides encyclopedia references to a variety of mixtures that included petrochemicals—as well as garlic and honey. A slow match for flame-throwing mechanisms using
4312-459: The early 14th century. The author's name is uncertain but may have been Shams al-Din Muhammad, who died in 1350. Dating from around 1320–1350, the illustrations show gunpowder weapons such as gunpowder arrows, bombs, fire tubes, and fire lances or proto-guns. The manuscript describes a type of gunpowder weapon called a midfa which uses gunpowder to shoot projectiles out of a tube at the end of
4400-790: The end of World War II , and of ICI Nobel 's Roslin gunpowder factory which closed in 1954. This left ICI Nobel's Ardeer site in Scotland , which included a gunpowder factory, as the only factory in Great Britain producing gunpowder. The gunpowder area of the Ardeer site closed in October 1976. Gunpowder and gunpowder weapons were transmitted to India through the Mongol invasions of India . The Mongols were defeated by Alauddin Khalji of
4488-482: The fact, and may well have been colored by the contemporary experiences of the chronicler. Translation difficulties have led to errors or loose interpretations bordering on artistic licence . Ambiguous language can make it difficult to distinguish gunpowder weapons from similar technologies that do not rely on gunpowder. A commonly cited example is a report of the Battle of Mohi in Eastern Europe that mentions
SECTION 50
#17327729182424576-404: The flame tube was normally above ground. When the mine was triggered, a squib charge ignited the propellant, creating a burst of hot gas which forced the fuel from the main cylinder and out of the flame tube. A second squib ignited the fuel as it passed out of the end of the tube. The projected stream of burning fuel was 4.5 metres (15 ft) wide and 2.7 metres (8 ft 10 in) high with
4664-632: The former Curtis & Harvey 's Glynneath gunpowder factory at Pontneddfechan in Wales closed down. The factory was demolished by fire in 1932. The last remaining gunpowder mill at the Royal Gunpowder Factory, Waltham Abbey was damaged by a German parachute mine in 1941 and it never reopened. This was followed by the closure and demolition of the gunpowder section at the Royal Ordnance Factory , ROF Chorley , at
4752-411: The granules of modern gunpowder are typically coated with graphite , which prevents the build-up of electrostatic charge. Charcoal does not consist of pure carbon; rather, it consists of partially pyrolyzed cellulose , in which the wood is not completely decomposed. Carbon differs from ordinary charcoal . Whereas charcoal's autoignition temperature is relatively low, carbon's is much greater. Thus,
4840-584: The gunpowder industry, with the repeal of the Royal Patent in August 1641. In late 14th century Europe, gunpowder was improved by corning , the practice of drying it into small clumps to improve combustion and consistency. During this time, European manufacturers also began regularly purifying saltpeter, using wood ashes containing potassium carbonate to precipitate calcium from their dung liquor, and using ox blood, alum , and slices of turnip to clarify
4928-468: The history of gunpowder is regarding the transmission of gunpowder. While the literary and archaeological evidence supports a Chinese origin for gunpowder and guns, the manner in which gunpowder technology was transferred from China to the West is still under debate. It is unknown why the rapid spread of gunpowder technology across Eurasia took place over several decades whereas other technologies such as paper,
5016-429: The ideal proportions for use as an explosive and a propellant, suggesting that gunpowder was introduced as a mature technology." However, the history of gunpowder is not without controversy. A major problem confronting the study of early gunpowder history is ready access to sources close to the events described. Often the first records potentially describing use of gunpowder in warfare were written several centuries after
5104-732: The knowledge of making "true" firearms came much later, after the middle of the 15th century. It was brought by the Islamic nations of West Asia, most probably the Arabs . The precise year of introduction is unknown, but it may be safely concluded to be no earlier than 1460. Before the arrival of the Portuguese in Southeast Asia, the natives already possessed primitive firearms, the Java arquebus . Portuguese influence to local weaponry after
5192-571: The late 19th century led to a contraction of the gunpowder industry. After the end of World War I , the majority of the British gunpowder manufacturers merged into a single company, "Explosives Trades limited", and a number of sites were closed down, including those in Ireland. This company became Nobel Industries Limited, and in 1926 became a founding member of Imperial Chemical Industries . The Home Office removed gunpowder from its list of Permitted Explosives . Shortly afterwards, on 31 December 1931,
5280-419: The main problem of using cheaper sodium nitrate formulations when he patented DuPont "B" blasting powder. After manufacturing grains from press-cake in the usual way, his process tumbled the powder with graphite dust for 12 hours. This formed a graphite coating on each grain that reduced its ability to absorb moisture. Neither the use of graphite nor sodium nitrate was new. Glossing gunpowder corns with graphite
5368-520: The median of 17 of these 22 compositions for rockets (75% nitrates, 9.06% sulfur, and 15.94% charcoal), it is nearly identical to the modern reported ideal recipe of 75% potassium nitrate, 10% sulfur, and 15% charcoal. The text also mentions fuses, incendiary bombs, naphtha pots, fire lances, and an illustration and description of the earliest torpedo . The torpedo was called the "egg which moves itself and burns". Two iron sheets were fastened together and tightened using felt. The flattened pear-shaped vessel
SECTION 60
#17327729182425456-447: The mid-17th century fireworks were used for entertainment on an unprecedented scale in Europe, being popular even at resorts and public gardens. With the publication of Deutliche Anweisung zur Feuerwerkerey (1748), methods for creating fireworks were sufficiently well-known and well-described that "Firework making has become an exact science." In 1774 Louis XVI ascended to the throne of France at age 20. After he discovered that France
5544-513: The outer shell or inside of the bomb to increase the lethality of the device. Pipe bombs concentrate pressure and release it suddenly, through the failure of the outer casing. Plastic materials can be used, but metals typically have a much higher bursting strength and so will produce more concussive force. For example, common schedule 40 1-inch (25 mm) wrought steel pipe has a typical working pressure of 1,010 psi (7.0 MPa), and bursting pressure of 8,090 psi (55.8 MPa), though
5632-418: The pipe sealing method can significantly reduce the burst pressure. The pipe can rupture in different ways, depending on the rate of pressure rise and the ductility of the casing material. Pipe bombs can fail to explode if the gas pressure buildup is too slow, resulting in bleed-out through the detonator ignition hole. Insufficiently tight threading can also bleed gas pressure through the threads faster than
5720-400: The propellant powder, which was normally either black powder or a mixture of nitrocellulose and diethylene glycol dinitrate . A flame tube was fixed centrally on top of the fuel cylinder, it was a 50 millimetres (2.0 in) diameter pipe that rose from the centre of the fuel cylinder and curved to extend horizontally approximately 50 centimetres (20 in). When the mine was buried, only
5808-413: The purest sulfur was supplied from a crater from a mountain near the straits of Bali . On the origins of gunpowder technology, historian Tonio Andrade remarked, "Scholars today overwhelmingly concur that the gun was invented in China." Gunpowder and the gun are widely believed by historians to have originated from China due to the large body of evidence that documents the evolution of gunpowder from
5896-482: The purpose of the powder. For instance, power grades of black powder, unsuitable for use in firearms but adequate for blasting rock in quarrying operations, are called blasting powder rather than gunpowder with standard proportions of 70% nitrate, 14% charcoal, and 16% sulfur; blasting powder may be made with the cheaper sodium nitrate substituted for potassium nitrate and proportions may be as low as 40% nitrate, 30% charcoal, and 30% sulfur. In 1857, Lammot du Pont solved
5984-425: The residue. Gunpowder loads can be used in modern firearms as long as they are not gas-operated . The most compatible modern guns are smoothbore-barreled shotguns that are long-recoil operated with chrome-plated essential parts such as barrels and bores. Such guns have minimal fouling and corrosion and are easier to clean. The first confirmed reference to what can be considered gunpowder in China occurred in
6072-553: The saltpeter is an oxidizer . Gunpowder has been widely used as a propellant in firearms , artillery , rocketry , and pyrotechnics , including use as a blasting agent for explosives in quarrying , mining , building pipelines , tunnels , and roads . Gunpowder is classified as a low explosive because of its relatively slow decomposition rate, low ignition temperature and consequently low brisance (breaking/shattering) . Low explosives deflagrate (i.e., burn at subsonic speeds), whereas high explosives detonate , producing
6160-561: The second half of the 19th century, when the first high explosives were put into use. Gunpowder is one of the Four Great Inventions of China. Originally developed by Taoists for medicinal purposes, it was first used for warfare around AD 904. Its use in weapons has declined due to smokeless powder replacing it, whilst its relative inefficiency led to newer alternatives such as dynamite and ammonium nitrate/fuel oil replacing it in industrial applications. Gunpowder
6248-414: The siphon principle and for fireworks and rockets is mentioned. The mixture formulas in this book contain at most 50% saltpeter — not enough to create an explosion, they produce an incendiary instead. The Essentials was written by a Song dynasty court bureaucrat and there is little evidence that it had any immediate impact on warfare; there is no mention of its use in the chronicles of
6336-622: The solution. During the Renaissance, two European schools of pyrotechnic thought emerged, one in Italy and the other at Nuremberg, Germany. In Italy, Vannoccio Biringuccio , born in 1480, was a member of the guild Fraternita di Santa Barbara but broke with the tradition of secrecy by setting down everything he knew in a book titled De la pirotechnia , written in vernacular. It was published posthumously in 1540, with 9 editions over 138 years, and also reprinted by MIT Press in 1966. By
6424-519: The time. The state-controlled manufacture of gunpowder by the Ottoman Empire through early supply chains to obtain nitre, sulfur and high-quality charcoal from oaks in Anatolia contributed significantly to its expansion between the 15th and 18th century. It was not until later in the 19th century when the syndicalist production of Turkish gunpowder was greatly reduced, which coincided with
6512-463: The tube or cylinder of a naphtha projector ( flamethrower ), then after the invention of gunpowder it meant the tube of fire lances, and eventually it applied to the cylinder of hand-guns and cannons. According to Paul E. J. Hammer, the Mamluks certainly used cannons by 1342. According to J. Lavin, cannons were used by Moors at the siege of Algeciras in 1343. A metal cannon firing an iron ball
6600-446: The twelfth century or the beginning of the thirteenth". In Persia saltpeter was known as "Chinese salt" ( Persian : نمک چینی ) namak-i chīnī ) or "salt from Chinese salt marshes" ( نمک شوره چینی namak-i shūra-yi chīnī ). Hasan al-Rammah included 107 gunpowder recipes in his text al-Furusiyyah wa al-Manasib al-Harbiyya ( The Book of Military Horsemanship and Ingenious War Devices ), 22 of which are for rockets. If one takes
6688-470: The two individual technologies. French war powder in 1879 used the ratio 75% saltpeter, 12.5% charcoal, 12.5% sulfur. English war powder in 1879 used the ratio 75% saltpeter, 15% charcoal, 10% sulfur. The British Congreve rockets used 62.4% saltpeter, 23.2% charcoal and 14.4% sulfur, but the British Mark VII gunpowder was changed to 65% saltpeter, 20% charcoal and 15% sulfur. The explanation for
6776-528: The wars against the Tanguts in the 11th century, and China was otherwise mostly at peace during this century. However, it had already been used for fire arrows since at least the 10th century. Its first recorded military application dates its use to 904 in the form of incendiary projectiles. In the following centuries various gunpowder weapons such as bombs , fire lances , and the gun appeared in China. Explosive weapons such as bombs have been discovered in
6864-408: The whole house where they were working burned down." Based on these Taoist texts, the invention of gunpowder by Chinese alchemists was likely an accidental byproduct from experiments seeking to create the elixir of life . This experimental medicine origin is reflected in its Chinese name huoyao ( Chinese : 火药/火藥 ; pinyin : huǒ yào /xuo yɑʊ/ ), which means "fire medicine". Saltpeter
6952-517: The wide variety in formulation relates to usage. Powder used for rocketry can use a slower burn rate since it accelerates the projectile for a much longer time—whereas powders for weapons such as flintlocks, cap-locks, or matchlocks need a higher burn rate to accelerate the projectile in a much shorter distance. Cannons usually used lower burn-rate powders, because most would burst with higher burn-rate powders. Besides black powder, there are other historically important types of gunpowder. "Brown gunpowder"
7040-529: Was already an accepted technique in 1839, and sodium nitrate-based blasting powder had been made in Peru for many years using the sodium nitrate mined at Tarapacá (now in Chile). Also, in 1846, two plants were built in south-west England to make blasting powder using this sodium nitrate. The idea may well have been brought from Peru by Cornish miners returning home after completing their contracts. Another suggestion
7128-654: Was coined in the late 19th century, primarily in the United States, to distinguish prior gunpowder formulations from the new smokeless powders and semi-smokeless powders. Semi-smokeless powders featured bulk volume properties that approximated black powder, but had significantly reduced amounts of smoke and combustion products. Smokeless powder has different burning properties (pressure vs. time) and can generate higher pressures and work per gram. This can rupture older weapons designed for black powder. Smokeless powders ranged in color from brownish tan to yellow to white. Most of
7216-606: Was described by Shihab al-Din Abu al-Abbas al-Qalqashandi between 1365 and 1376. The musket appeared in the Ottoman Empire by 1465. In 1598, Chinese writer Zhao Shizhen described Turkish muskets as being superior to European muskets. The Chinese military book Wu Pei Chih (1621) later described Turkish muskets that used a rack-and-pinion mechanism, which was not known to have been used in European or Chinese firearms at
7304-521: Was filled with gunpowder, metal filings, "good mixtures", two rods, and a large rocket for propulsion. Judging by the illustration, it was evidently supposed to glide across the water. Fire lances were used in battles between the Muslims and Mongols in 1299 and 1303. Al-Hassan claims that in the Battle of Ain Jalut of 1260, the Mamluks used "the first cannon in history" against the Mongols, utilizing
7392-476: Was known to the Chinese by the mid-1st century AD and was primarily produced in the provinces of Sichuan , Shanxi , and Shandong . There is strong evidence of the use of saltpeter and sulfur in various medicinal combinations. A Chinese alchemical text dated 492 noted saltpeter burnt with a purple flame, providing a practical and reliable means of distinguishing it from other inorganic salts, thus enabling alchemists to evaluate and compare purification techniques;
7480-535: Was last sold by Winchester in 1947. The development of smokeless powders, such as cordite , in the late 19th century created the need for a spark-sensitive priming charge , such as gunpowder. However, the sulfur content of traditional gunpowders caused corrosion problems with Cordite Mk I and this led to the introduction of a range of sulfur-free gunpowders, of varying grain sizes. They typically contain 70.5 parts of saltpeter and 29.5 parts of charcoal. Like black powder, they were produced in different grain sizes. In
7568-594: Was not self-sufficient in gunpowder, a Gunpowder Administration was established; to head it, the lawyer Antoine Lavoisier was appointed. Although from a bourgeois family, after his degree in law Lavoisier became wealthy from a company set up to collect taxes for the Crown; this allowed him to pursue experimental natural science as a hobby. Without access to cheap saltpeter (controlled by the British), for hundreds of years France had relied on saltpetremen with royal warrants,
7656-572: Was recorded by Dutch and German travelers as being common in even the smallest villages and was collected from the decomposition process of large dung hills specifically piled for the purpose. The Dutch punishment for possession of non-permitted gunpowder appears to have been amputation. Ownership and manufacture of gunpowder was later prohibited by the colonial Dutch occupiers. According to colonel McKenzie quoted in Sir Thomas Stamford Raffles ', The History of Java (1817),
7744-603: Was the American Revolution . By careful testing and adjusting the proportions and grinding time, powder from mills such as at Essonne outside Paris became the best in the world by 1788, and inexpensive. Two British physicists, Andrew Noble and Frederick Abel , worked to improve the properties of gunpowder during the late 19th century. This formed the basis for the Noble-Abel gas equation for internal ballistics . The introduction of smokeless powder in
#241758