Misplaced Pages

Fern Pass

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Fern Pass (elevation 1212 m) is a mountain pass in the Tyrolean Alps in Austria . It is located between the Lechtal Alps on the west and the Mieming Mountains on the east. The highest peak in Germany , the Zugspitze is only 13.5 km away to the northeast. The pass lies between the Grubigstein (2233 m) on the northwest, the Wannig (2493 m) on the southeast, and the Loreakopf (2471 m) on the west.

#552447

43-401: The pass was created when a huge mountain slide (actually the collapse of an entire mountain, with an estimated volume of 1 km; the third-largest mountain slide ever in the eastern Alps) filled part of the valley to a height of 300–400 meters, distributing its boulders up to 16 km away. While it was initially believed that this had happened at least 12,000 years B.P. as a consequence of

86-408: A " μ " key, so it is necessary to use a key-code; this varies depending on the operating system, physical keyboard layout, and user's language. The LaTeX typesetting system features an SIunitx package in which the units of measurement are spelled out, for example, \qty{3}{\tera\hertz} formats as "3 THz". The use of prefixes can be traced back to the introduction of the metric system in

129-585: A driver, in order to maintain symmetry. The prefixes from tera- to quetta- are based on the Ancient Greek or Ancient Latin numbers from 4 to 10, referring to the 4th through 10th powers of 10 . The initial letter h has been removed from some of these stems and the initial letters z , y , r , and q have been added, ascending in reverse alphabetical order, to avoid confusion with other metric prefixes. When mega and micro were adopted in 1873, there were then three prefixes starting with "m", so it

172-460: A number of definitions for the non-SI unit, the calorie . There are gram calories and kilogram calories. One kilogram calorie, which equals one thousand gram calories, often appears capitalised and without a prefix (i.e. Cal ) when referring to " dietary calories " in food. It is common to apply metric prefixes to the gram calorie, but not to the kilogram calorie: thus, 1 kcal = 1000 cal = 1 Cal. Metric prefixes are widely used outside

215-483: A reintroduction of compound prefixes (e.g. kiloquetta- for 10 ) if a driver for prefixes at such scales ever materialises, with a restriction that the last prefix must always be quetta- or quecto- . This usage has not been approved by the BIPM. In written English, the symbol K is often used informally to indicate a multiple of thousand in many contexts. For example, one may talk of a 40K salary ( 40 000 ), or call

258-404: Is prepended to any unit symbol. The prefix kilo- , for example, may be added to gram to indicate multiplication by one thousand: one kilogram is equal to one thousand grams. The prefix milli- , likewise, may be added to metre to indicate division by one thousand; one millimetre is equal to one thousandth of a metre. Decimal multiplicative prefixes have been a feature of all forms of

301-781: The ISO/IEC 80000 standard. They are also used in the Unified Code for Units of Measure (UCUM). The BIPM specifies twenty-four prefixes for the International System of Units (SI) . The first uses of prefixes in SI date back to the definition of kilogram after the French Revolution at the end of the 18th century. Several more prefixes came into use, and were recognised by the 1947 IUPAC 14th International Conference of Chemistry before being officially adopted for

344-664: The University of Copenhagen instead uses the unambiguous "b2k", for "years before 2000 AD", often in combination with the Greenland Ice Core Chronology 2005 (GICC05) time scale. Some authors who use the YBP dating format also use "YAP" ("years after present") to denote years after 1950. SI prefix multipliers may be used to express larger periods of time, e.g. ka BP (thousand years BP), Ma BP (million years BP) and many others . Radiocarbon dating

387-653: The Year 2000 problem the Y2K problem . In these cases, an uppercase K is often used with an implied unit (although it could then be confused with the symbol for the kelvin temperature unit if the context is unclear). This informal postfix is read or spoken as "thousand", "grand", or just "k". The financial and general news media mostly use m or M, b or B, and t or T as abbreviations for million, billion (10 ) and trillion (10 ), respectively, for large quantities, typically currency and population. The medical and automotive fields in

430-448: The carbon isotopes in the atmosphere, which scientists must account for. In a convention that is not always observed, many sources restrict the use of BP dates to those produced with radiocarbon dating; the alternative notation "RCYBP" stands for the explicit "radio carbon years before present". The BP scale is sometimes used for dates established by means other than radiocarbon dating, such as stratigraphy . This usage differs from

473-553: The metric system , with six of these dating back to the system's introduction in the 1790s. Metric prefixes have also been used with some non-metric units. The SI prefixes are metric prefixes that were standardised for use in the International System of Units (SI) by the International Bureau of Weights and Measures (BIPM) in resolutions dating from 1960 to 2022. Since 2009, they have formed part of

SECTION 10

#1732771921553

516-534: The year , equal to exactly 31 557 600  seconds ( ⁠365 + 1  / 4 ⁠  days). The unit is so named because it was the average length of a year in the Julian calendar . Long time periods are then expressed by using metric prefixes with the annum, such as megaannum (Ma) or gigaannum (Ga). The SI unit of angle is the radian , but degrees , as well as arc-minutes and arc-seconds , see some scientific use. Common practice does not typically use

559-437: The 11th CGPM conference in 1960. Other metric prefixes used historically include hebdo- (10 ) and micri- (10 ). Double prefixes have been used in the past, such as micromillimetres or millimicrons (now nanometres ), micromicrofarads (μμF; now picofarads , pF), kilomegatonnes (now gigatonnes ), hectokilometres (now 100  kilometres ) and the derived adjective hectokilometric (typically used for qualifying

602-619: The 1790s, long before the 1960 introduction of the SI. The prefixes, including those introduced after 1960, are used with any metric unit, whether officially included in the SI or not (e.g., millidyne and milligauss). Metric prefixes may also be used with some non-metric units, but not, for example, with the non-SI units of time. The units kilogram , gram , milligram , microgram, and smaller are commonly used for measurement of mass . However, megagram, gigagram, and larger are rarely used; tonnes (and kilotonnes, megatonnes, etc.) or scientific notation are used instead. The megagram does not share

645-591: The Latin annus ), is commonly used with metric prefixes: ka , Ma, and Ga. Official policies about the use of SI prefixes with non-SI units vary slightly between the International Bureau of Weights and Measures (BIPM) and the American National Institute of Standards and Technology (NIST). For instance, the NIST advises that "to avoid confusion, prefix symbols (and prefix names) are not used with

688-484: The United States use the abbreviations cc or ccm for cubic centimetres. One  cubic centimetre is equal to one  millilitre . For nearly a century, engineers used the abbreviation MCM to designate a "thousand circular mils " in specifying the cross-sectional area of large electrical cables . Since the mid-1990s, kcmil has been adopted as the official designation of a thousand circular mils, but

731-750: The advantage over the Arlberg that it was relatively passable even in winter. Today's road is known as the Fernpass Straße (B 179). It connects Reutte through the Lermoos tunnel with Tarrenz and Imst . Via B 187 and B 189, it also leads to Garmisch-Partenkirchen in Germany . It also connects the Lech river valley with the Inn river valley. Therefore, it carries more traffic than almost any other pass in

774-404: The astronomical unit is mentioned in the SI standards as an accepted non-SI unit. Prefixes for the SI standard unit second are most commonly encountered for quantities less than one second. For larger quantities, the system of minutes (60 seconds), hours (60 minutes) and days (24 hours) is accepted for use with the SI and more commonly used. When speaking of spans of time,

817-477: The eastern Alps, except the Brenner Pass . The steepest gradient is 8 percent, and the elevation gain from Reutte to the pass is 359 m. On the other side to Telfs , the elevation gain is 579 m. Before Present Before Present ( BP ) or " years before present ( YBP )" is a time scale used mainly in archaeology , geology, and other scientific disciplines to specify when events occurred relative to

860-693: The event to 4,150 +/- 100 years B.P., i.e., to the 22nd century BC which corresponds to the latest stages of the Alpine neolithic period. The landscape is marked by a series of lakes, the largest of which is the Blindsee . Most of these are believed to have been created by the mountain slide. The first regular road crossing the Fern Pass was the Roman Via Claudia Augusta , connecting the province of Raetia to northern Italy . It had

903-476: The exponential decay relation and the "Libby half-life" 5568 a. The ages are expressed in years before present (BP) where "present" is defined as AD 1950. The year 1950 was chosen because it was the standard astronomical epoch at that time. It also marked the publication of the first radiocarbon dates in December 1949, and 1950 also antedates large-scale atmospheric testing of nuclear weapons , which altered

SECTION 20

#1732771921553

946-432: The first time in 1960. The most recent prefixes adopted were ronna- , quetta- , ronto- , and quecto- in 2022, after a proposal from British metrologist Richard J. C. Brown. The large prefixes ronna- and quetta- were adopted in anticipation of needs for use in data science, and because unofficial prefixes that did not meet SI requirements were already circulating. The small prefixes were also added, even without such

989-515: The flexibility allowed by official policy in the case of the degree Celsius (°C). NIST states: "Prefix symbols may be used with the unit symbol °C and prefix names may be used with the unit name degree Celsius . For example, 12 m°C (12 millidegrees Celsius) is acceptable." In practice, it is more common for prefixes to be used with the kelvin when it is desirable to denote extremely large or small absolute temperatures or temperature differences. Thus, temperatures of star interiors may be given with

1032-480: The fuel consumption measures). These are not compatible with the SI. Other obsolete double prefixes included "decimilli-" (10 ), which was contracted to "dimi-" and standardised in France up to 1961. There are no more letters of the Latin alphabet available for new prefixes (all the unused letters are already used for units). As such, Richard J.C. Brown (who proposed the prefixes adopted for 10 and 10 ) has proposed

1075-480: The global ratio of carbon-14 to carbon-12 . Dates determined using radiocarbon dating come as two kinds: uncalibrated (also called Libby or raw ) and calibrated (also called Cambridge ) dates. Uncalibrated radiocarbon dates should be clearly noted as such by "uncalibrated years BP", because they are not identical to calendar dates. This has to do with the fact that the level of atmospheric radiocarbon ( carbon-14 or C) has not been strictly constant during

1118-422: The hectolitre (100 litres). Larger volumes are usually denoted in kilolitres, megalitres or gigalitres, or else in cubic metres (1 cubic metre = 1 kilolitre) or cubic kilometres (1 cubic kilometre = 1 teralitre). For scientific purposes, the cubic metre is usually used. The kilometre, metre, centimetre, millimetre, and smaller units are common. The decimetre is rarely used. The micrometre is often referred to by

1161-418: The length of the day is usually standardised to 86 400  seconds so as not to create issues with the irregular leap second . Larger multiples of the second such as kiloseconds and megaseconds are occasionally encountered in scientific contexts, but are seldom used in common parlance. For long-scale scientific work, particularly in astronomy , the Julian year or annum (a) is a standardised variant of

1204-429: The metric SI system. Common examples include the megabyte and the decibel . Metric prefixes rarely appear with imperial or US units except in some special cases (e.g., microinch, kilofoot, kilopound ). They are also used with other specialised units used in particular fields (e.g., megaelectronvolt , gigaparsec , millibarn , kilodalton ). In astronomy, geology, and palaeontology, the year , with symbol 'a' (from

1247-516: The name (standard codes are used) of the laboratory concerned, and other information such as confidence levels, because of differences between the methods used by different laboratories and changes in calibrating methods. Conversion from Gregorian calendar years to Before Present years is by starting with the 1950-01-01 epoch of the Gregorian calendar and increasing the BP year count with each year into

1290-453: The older non-SI name micron , which is officially deprecated. In some fields, such as chemistry , the ångström (0.1 nm) has been used commonly instead of the nanometre. The femtometre , used mainly in particle physics, is sometimes called a fermi . For large scales, megametre, gigametre, and larger are rarely used. Instead, ad hoc non-metric units are used, such as the solar radius , astronomical units , light years , and parsecs ;

1333-416: The origin of practical radiocarbon dating in the 1950s. Because the "present" time changes, standard practice is to use 1 January 1950 as the commencement date (epoch) of the age scale, with 1950 being labelled as the "standard year". The abbreviation "BP" has been interpreted retrospectively as "Before Physics", which refers to the time before nuclear weapons testing artificially altered the proportion of

Fern Pass - Misplaced Pages Continue

1376-405: The past from that Gregorian date. For example, 1000 BP corresponds to 950 AD, 1949 BP corresponds to 1 AD, 1950 BP corresponds to 1 BC, 2000 BP corresponds to 51 BC. Metric prefix A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or submultiple of the unit. All metric prefixes used today are decadic . Each prefix has a unique symbol that

1419-423: The prefixes formerly used in the metric system have fallen into disuse and were not adopted into the SI. The decimal prefix for ten thousand, myria- (sometimes spelt myrio- ), and the early binary prefixes double- (2×) and demi- ( ⁠ 1 / 2 ⁠ ×) were parts of the original metric system adopted by France in 1795, but were not retained when the SI prefixes were internationally adopted by

1462-496: The recommendation by van der Plicht & Hogg, followed by the Quaternary Science Reviews , both of which requested that publications should use the unit "a" (for "annum", Latin for "year") and reserve the term "BP" for radiocarbon estimations. Some archaeologists use the lowercase letters bp , bc and ad as terminology for uncalibrated dates for these eras. The Centre for Ice and Climate at

1505-477: The risk of confusion that the tonne has with other units with the name "ton". The kilogram is the only coherent unit of the International System of Units that includes a metric prefix. The litre (equal to a cubic decimetre), millilitre (equal to a cubic centimetre), microlitre, and smaller are common. In Europe, the centilitre is often used for liquids, and the decilitre is used less frequently. Bulk agricultural products, such as grain, beer and wine, often use

1548-596: The span of time that can be radiocarbon-dated. Uncalibrated radiocarbon ages can be converted to calendar dates by calibration curves based on comparison of raw radiocarbon dates of samples independently dated by other methods, such as dendrochronology (dating based on tree growth-rings) and stratigraphy (dating based on sediment layers in mud or sedimentary rock). Such calibrated dates are expressed as cal BP, where "cal" indicates "calibrated years", or "calendar years", before 1950. Many scholarly and scientific journals require that published calibrated results be accompanied by

1591-428: The strong temperature increase and intense run-off after the end of the last deglaciation, pollen analysis performed as early as 1940 had already indicated an age of not much more than 4,000 years (i.e., an event date around 2000 BC), an estimate that was essentially confirmed by radiocarbon dating in the 1960s. Using uranium-thorium dating , scientists from Innsbruck University who published their data in 2007 dated

1634-440: The time-related unit symbols (names) min (minute), h (hour), d (day); nor with the angle-related symbols (names) ° (degree), ′ (minute), and ″ (second)", whereas the BIPM adds information about the use of prefixes with the symbol as for arcsecond when they state: "However astronomers use milliarcsecond, which they denote mas, and microarcsecond, μas, which they use as units for measuring very small angles." Some of

1677-415: The unit of MK (megakelvin), and molecular cooling may be given with the unit mK (millikelvin). In use the joule and kilojoule are common, with larger multiples seen in limited contexts. In addition, the kilowatt-hour , a composite unit formed from the kilowatt and hour, is often used for electrical energy; other multiples can be formed by modifying the prefix of watt (e.g. terawatt-hour). There exist

1720-598: Was created, it included the " μ " symbol for micro at codepoint 0xB5 ; later, the whole of ISO 8859-1 was incorporated into the initial version of Unicode . Many fonts that support both characters render them identical, but because the micro sign and the Greek lower-case letter have different applications (normally, a Greek letter would be used with other Greek letters, but the micro sign is never used like that), some fonts render them differently, e.g. Linux Libertine and Segoe UI . Most English-language keyboards do not have

1763-446: Was first used in 1949. Beginning in 1954, metrologists established 1950 as the origin year for the BP scale for use with radiocarbon dating, using a 1950-based reference sample of oxalic acid . According to scientist A. Currie Lloyd: The problem was tackled by the international radiocarbon community in the late 1950s, in cooperation with the U.S. National Bureau of Standards . A large quantity of contemporary oxalic acid dihydrate

Fern Pass - Misplaced Pages Continue

1806-520: Was necessary to use some other symbol besides upper and lowercase 'm'. Eventually the Greek letter "μ" was adopted. However, with the lack of a "μ" key on most typewriters, as well as computer keyboards, various other abbreviations remained common, including "mc", "mic", and "u". From about 1960 onwards, "u" prevailed in type-written documents. Because ASCII , EBCDIC , and other common encodings lacked code-points for " μ ", this tradition remained even as computers replaced typewriters. When ISO 8859-1

1849-525: Was prepared as NBS Standard Reference Material (SRM) 4990B. Its C concentration was about 5% above what was believed to be the natural level, so the standard for radiocarbon dating was defined as 0.95 times the C concentration of this material, adjusted to a C reference value of −19 per mil (PDB). This value is defined as "modern carbon" referenced to AD 1950. Radiocarbon measurements are compared to this modern carbon value, and expressed as "fraction of modern" (fM). "Radiocarbon ages" are calculated from fM using

#552447