In music , a fifteenth or double octave , abbreviated 15 , is the interval between one musical note and another with one-quarter the wavelength or quadruple the frequency . It has also been referred to as the bisdiapason. The fourth harmonic, it is two octaves . It is referred to as a fifteenth because, in the diatonic scale, there are 15 notes between them if one counts both ends (as is customary). Two octaves (based on the Italian word for eighth) do not make a sixteenth, but a fifteenth. In other contexts, the term two octaves is likely to be used.
73-409: For example, if one note has a frequency of 400 Hz , the note a fifteenth above it is at 1600 Hz ( 15 ), and the note a fifteenth below is at 100 Hz ( 15 ). The ratio of frequencies of two notes a fifteenth apart is therefore 4:1. As the fifteenth is a multiple of octaves, the human ear tends to hear both notes as being essentially "the same", as it does the octave. Like
146-461: A vagal maneuver takes longer and only lowers the rate to a much smaller extent. Heart rate is not a stable value and it increases or decreases in response to the body's need in a way to maintain an equilibrium ( basal metabolic rate ) between requirement and delivery of oxygen and nutrients. The normal SA node firing rate is affected by autonomic nervous system activity: sympathetic stimulation increases and parasympathetic stimulation decreases
219-440: A combination of autorhythmicity and innervation, the cardiovascular center is able to provide relatively precise control over the heart rate, but other factors can impact on this. These include hormones, notably epinephrine, norepinephrine, and thyroid hormones; levels of various ions including calcium, potassium, and sodium; body temperature; hypoxia; and pH balance. The catecholamines , epinephrine and norepinephrine, secreted by
292-470: A fifteenth away (notated as 2′). Like the notation 8 for octave ( Italian : ottava ), 15 ( Italian : quindicesima ) means "play two octaves higher than written." It could also mean two octaves lower, but that is usually notated 15 . Either direction can be cancelled with the word loco , but often a dashed line or bracket indicates the extent of the music affected. The notations 16 and 16 are sometimes mistakenly used instead. On organs,
365-488: A given age, the standard deviation of HR max from the age-specific population mean is about 12bpm, and a 95% interval for the prediction error is about 24bpm. For example, Dr. Fritz Hagerman observed that the maximum heart rates of men in their 20s on Olympic rowing teams vary from 160 to 220. Such a variation would equate to an age range of -16 to 68 using the Wingate formula. The formulas are quite accurate at predicting
438-410: A human sleeps, a heartbeat with rates around 40–50 bpm is common and considered normal. When the heart is not beating in a regular pattern, this is referred to as an arrhythmia . Abnormalities of heart rate sometimes indicate disease . While heart rhythm is regulated entirely by the sinoatrial node under normal conditions, heart rate is regulated by sympathetic and parasympathetic input to
511-517: A low pH value. Alkalosis is a condition in which there are too few hydrogen ions, and the patient's blood has an elevated pH. Normal blood pH falls in the range of 7.35–7.45, so a number lower than this range represents acidosis and a higher number represents alkalosis. Enzymes, being the regulators or catalysts of virtually all biochemical reactions – are sensitive to pH and will change shape slightly with values outside their normal range. These variations in pH and accompanying slight physical changes to
584-552: A more detailed treatment of this and the above frequency ranges, see Electromagnetic spectrum . Gravitational waves are also described in Hertz. Current observations are conducted in the 30–7000 Hz range by laser interferometers like LIGO , and the nanohertz (1–1000 nHz) range by pulsar timing arrays . Future space-based detectors are planned to fill in the gap, with LISA operating from 0.1–10 mHz (with some sensitivity from 10 μHz to 100 mHz), and DECIGO in
657-533: A person increases their cardiovascular fitness, their HR rest will drop, and the heart rate reserve will increase. Percentage of HR reserve is statistically indistinguishable from percentage of VO 2 reserve. This is often used to gauge exercise intensity (first used in 1957 by Karvonen). Karvonen's study findings have been questioned, due to the following: For healthy people, the Target Heart Rate (THR) or Training Heart Rate Range (THRR)
730-540: A reduced startle response has been associated with a passive defense, and the diminished initial heart rate response has been predicted to have a greater tendency to dissociation. Current evidence suggests that heart rate variability can be used as an accurate measure of psychological stress and may be used for an objective measurement of psychological stress. The heart rate can be slowed by altered sodium and potassium levels, hypoxia , acidosis , alkalosis , and hypothermia . The relationship between electrolytes and HR
803-759: A series of visceral receptors with impulses traveling through visceral sensory fibers within the vagus and sympathetic nerves via the cardiac plexus. Among these receptors are various proprioreceptors , baroreceptors , and chemoreceptors , plus stimuli from the limbic system which normally enable the precise regulation of heart function, via cardiac reflexes. Increased physical activity results in increased rates of firing by various proprioreceptors located in muscles, joint capsules, and tendons. The cardiovascular centres monitor these increased rates of firing, suppressing parasympathetic stimulation or increasing sympathetic stimulation as needed in order to increase blood flow. Similarly, baroreceptors are stretch receptors located in
SECTION 10
#1732772812653876-539: A significant fraction of the population, current equations used to estimate HR max are not accurate enough. Froelicher and Myers describe maximum heart formulas as "largely useless". Measurement via a maximal test is preferable whenever possible, which can be as accurate as ±2bpm. Heart rate reserve (HR reserve ) is the difference between a person's measured or predicted maximum heart rate and resting heart rate. Some methods of measurement of exercise intensity measure percentage of heart rate reserve. Additionally, as
949-475: A study conducted on 8 female and male student actors ages 18 to 25, their reaction to an unforeseen occurrence (the cause of stress) during a performance was observed in terms of heart rate. In the data collected, there was a noticeable trend between the location of actors (onstage and offstage) and their elevation in heart rate in response to stress; the actors present offstage reacted to the stressor immediately, demonstrated by their immediate elevation in heart rate
1022-433: A suite of chemoreceptors innervated by the glossopharyngeal and vagus nerves. These chemoreceptors provide feedback to the cardiovascular centers about the need for increased or decreased blood flow, based on the relative levels of these substances. The limbic system can also significantly impact HR related to emotional state. During periods of stress, it is not unusual to identify higher than normal HRs, often accompanied by
1095-447: A surge in the stress hormone cortisol. Individuals experiencing extreme anxiety may manifest panic attacks with symptoms that resemble those of heart attacks. These events are typically transient and treatable. Meditation techniques have been developed to ease anxiety and have been shown to lower HR effectively. Doing simple deep and slow breathing exercises with one's eyes closed can also significantly reduce this anxiety and HR. Using
1168-427: Is 1/time (T ). Expressed in base SI units, the unit is the reciprocal second (1/s). In English, "hertz" is also used as the plural form. As an SI unit, Hz can be prefixed ; commonly used multiples are kHz (kilohertz, 10 Hz ), MHz (megahertz, 10 Hz ), GHz (gigahertz, 10 Hz ) and THz (terahertz, 10 Hz ). One hertz (i.e. one per second) simply means "one periodic event occurs per second" (where
1241-447: Is a conducted tachyarrhythmia with ventricular rate of 600 beats per minute, which is comparable to the heart rate of a mouse. For general purposes, a number of formulas are used to estimate HR max . However, these predictive formulas have been criticized as inaccurate because they only produce generalized population-averages and may deviate significantly from the actual value. ( See § Limitations .) Notwithstanding later research,
1314-434: Is a desired range of heart rate reached during aerobic exercise which enables one's heart and lungs to receive the most benefit from a workout. This theoretical range varies based mostly on age; however, a person's physical condition, sex, and previous training also are used in the calculation. The THR can be calculated as a range of 65–85% intensity, with intensity defined simply as percentage of HR max . However, it
1387-494: Is also used to describe the clock speeds at which computers and other electronics are driven. The units are sometimes also used as a representation of the energy of a photon , via the Planck relation E = hν , where E is the photon's energy, ν is its frequency, and h is the Planck constant . The hertz is defined as one per second for periodic events. The International Committee for Weights and Measures defined
1460-564: Is complex, but maintaining electrolyte balance is critical to the normal wave of depolarization. Of the two ions, potassium has the greater clinical significance. Initially, both hyponatremia (low sodium levels) and hypernatremia (high sodium levels) may lead to tachycardia. Severely high hypernatremia may lead to fibrillation , which may cause cardiac output to cease. Severe hyponatremia leads to both bradycardia and other arrhythmias. Hypokalemia (low potassium levels) also leads to arrhythmias, whereas hyperkalemia (high potassium levels) causes
1533-454: Is reached more quickly and the period of repolarization is shortened. However, massive releases of these hormones coupled with sympathetic stimulation may actually lead to arrhythmias. There is no parasympathetic stimulation to the adrenal medulla. In general, increased levels of the thyroid hormones ( thyroxine (T4) and triiodothyronine (T3)), increase the heart rate; excessive levels can trigger tachycardia . The impact of thyroid hormones
SECTION 20
#17327728126531606-490: Is rhythmically generated by the sinoatrial node . It is also influenced by central factors through sympathetic and parasympathetic nerves. Nervous influence over the heart rate is centralized within the two paired cardiovascular centres of the medulla oblongata . The cardioaccelerator regions stimulate activity via sympathetic stimulation of the cardioaccelerator nerves, and the cardioinhibitory centers decrease heart activity via parasympathetic stimulation as one component of
1679-442: Is similar to an individual driving a car with one foot on the brake pedal. To speed up, one need merely remove one's foot from the brake and let the engine increase speed. In the case of the heart, decreasing parasympathetic stimulation decreases the release of ACh, which allows HR to increase up to approximately 100 bpm. Any increases beyond this rate would require sympathetic stimulation. The cardiovascular centre receive input from
1752-476: Is the frequency of the heartbeat measured by the number of contractions of the heart per minute ( beats per minute , or bpm). The heart rate varies according to the body's physical needs, including the need to absorb oxygen and excrete carbon dioxide . It is also modulated by numerous factors, including (but not limited to) genetics, physical fitness , stress or psychological status, diet, drugs, hormonal status, environment, and disease/illness, as well as
1825-461: Is the most recent, had the largest data set, and performed best on a fresh data set when compared with other formulas, although it had only a small amount of data for ages 60 and older so those estimates should be viewed with caution. In addition, most formulas are developed for adults and are not applicable to children and adolescents. Maximum heart rates vary significantly between individuals. Age explains only about half of HR max variance. For
1898-493: Is the unit of frequency in the International System of Units (SI), often described as being equivalent to one event (or cycle ) per second . The hertz is an SI derived unit whose formal expression in terms of SI base units is s , meaning that one hertz is one per second or the reciprocal of one second . It is used only in the case of periodic events. It is named after Heinrich Rudolf Hertz (1857–1894),
1971-657: Is typically of a much longer duration than that of the catecholamines. The physiologically active form of triiodothyronine, has been shown to directly enter cardiomyocytes and alter activity at the level of the genome. It also impacts the beta-adrenergic response similar to epinephrine and norepinephrine. Calcium ion levels have a great impact on heart rate and myocardial contractility : increased calcium levels cause an increase in both. High levels of calcium ions result in hypercalcemia and excessive levels can induce cardiac arrest . Drugs known as calcium channel blockers slow HR by binding to these channels and blocking or slowing
2044-452: Is usually measured in kilohertz (kHz), megahertz (MHz), or gigahertz (GHz). with the latter known as microwaves . Light is electromagnetic radiation that is even higher in frequency, and has frequencies in the range of tens of terahertz (THz, infrared ) to a few petahertz (PHz, ultraviolet ), with the visible spectrum being 400–790 THz. Electromagnetic radiation with frequencies in the low terahertz range (intermediate between those of
2117-412: The adrenal medulla form one component of the extended fight-or-flight mechanism. The other component is sympathetic stimulation. Epinephrine and norepinephrine have similar effects: binding to the beta-1 adrenergic receptors , and opening sodium and calcium ion chemical- or ligand-gated channels. The rate of depolarization is increased by this additional influx of positively charged ions, so the threshold
2190-447: The vagus nerve . During rest, both centers provide slight stimulation to the heart, contributing to autonomic tone. This is a similar concept to tone in skeletal muscles. Normally, vagal stimulation predominates as, left unregulated, the SA node would initiate a sinus rhythm of approximately 100 bpm. Both sympathetic and parasympathetic stimuli flow through the paired cardiac plexus near
2263-449: The 0.1–10 Hz range. In computers, most central processing units (CPU) are labeled in terms of their clock rate expressed in megahertz ( MHz ) or gigahertz ( GHz ). This specification refers to the frequency of the CPU's master clock signal . This signal is nominally a square wave , which is an electrical voltage that switches between low and high logic levels at regular intervals. As
Fifteenth - Misplaced Pages Continue
2336-468: The 1970s. In some usage, the "per second" was omitted, so that "megacycles" (Mc) was used as an abbreviation of "megacycles per second" (that is, megahertz (MHz)). Sound is a traveling longitudinal wave , which is an oscillation of pressure . Humans perceive the frequency of a sound as its pitch . Each musical note corresponds to a particular frequency. An infant's ear is able to perceive frequencies ranging from 20 Hz to 20 000 Hz ;
2409-814: The 1999–2008 period, 71 bpm was the average for men, and 73 bpm was the average for women. Resting heart rate is often correlated with mortality. In the Copenhagen City Heart Study a heart rate of 65 bpm rather than 80 bpm was associated with 4.6 years longer life expectancy in men and 3.6 years in women. Other studies have shown all-cause mortality is increased by 1.22 (hazard ratio) when heart rate exceeds 90 beats per minute. ECG of 46,129 individuals with low risk for cardiovascular disease revealed that 96% had resting heart rates ranging from 48 to 98 beats per minute. The mortality rate of patients with myocardial infarction increased from 15% to 41% if their admission heart rate
2482-498: The active site on the enzyme decrease the rate of formation of the enzyme-substrate complex, subsequently decreasing the rate of many enzymatic reactions, which can have complex effects on HR. Severe changes in pH will lead to denaturation of the enzyme. The last variable is body temperature. Elevated body temperature is called hyperthermia , and suppressed body temperature is called hypothermia . Slight hyperthermia results in increasing HR and strength of contraction. Hypothermia slows
2555-434: The aortic sinus, carotid bodies, the venae cavae, and other locations, including pulmonary vessels and the right side of the heart itself. Rates of firing from the baroreceptors represent blood pressure, level of physical activity, and the relative distribution of blood. The cardiac centers monitor baroreceptor firing to maintain cardiac homeostasis, a mechanism called the baroreceptor reflex. With increased pressure and stretch,
2628-558: The atria. Increased venous return stretches the walls of the atria where specialized baroreceptors are located. However, as the atrial baroreceptors increase their rate of firing and as they stretch due to the increased blood pressure, the cardiac center responds by increasing sympathetic stimulation and inhibiting parasympathetic stimulation to increase HR. The opposite is also true. Increased metabolic byproducts associated with increased activity, such as carbon dioxide, hydrogen ions, and lactic acid, plus falling oxygen levels, are detected by
2701-476: The average adult human can hear sounds between 20 Hz and 16 000 Hz . The range of ultrasound , infrasound and other physical vibrations such as molecular and atomic vibrations extends from a few femtohertz into the terahertz range and beyond. Electromagnetic radiation is often described by its frequency—the number of oscillations of the perpendicular electric and magnetic fields per second—expressed in hertz. Radio frequency radiation
2774-950: The average HR max at age 76 was about 10bpm higher than the Haskell and Fox equation. Consequently, the formula cannot be recommended for use in exercise physiology and related fields. HR max is strongly correlated to age, and most formulas are solely based on this. Studies have been mixed on the effect of gender, with some finding that gender is statistically significant, although small when considering overall equation error, while others finding negligible effect. The inclusion of physical activity status, maximal oxygen uptake, smoking, body mass index, body weight, or resting heart rate did not significantly improve accuracy. Nonlinear models are slightly more accurate predictors of average age-specific HR max , particularly above 60 years of age, but are harder to apply, and provide statistically negligible improvement over linear models. The Wingate formula
2847-451: The average heart rate of a group of similarly-aged individuals, but relatively poor for a given individual. Robergs and Landwehr opine that for VO2 max , prediction errors in HR max need to be less than ±3 bpm. No current formula meets this accuracy. For prescribing exercise training heart rate ranges, the errors in the more accurate formulas may be acceptable, but again it is likely that, for
2920-412: The base of the heart. The cardioaccelerator center also sends additional fibers, forming the cardiac nerves via sympathetic ganglia (the cervical ganglia plus superior thoracic ganglia T1–T4) to both the SA and AV nodes, plus additional fibers to the atria and ventricles. The ventricles are more richly innervated by sympathetic fibers than parasympathetic fibers. Sympathetic stimulation causes the release of
2993-417: The beta–1 receptor. High blood pressure medications are used to block these receptors and so reduce the heart rate. Parasympathetic stimulation originates from the cardioinhibitory region of the brain with impulses traveling via the vagus nerve (cranial nerve X). The vagus nerve sends branches to both the SA and AV nodes, and to portions of both the atria and ventricles. Parasympathetic stimulation releases
Fifteenth - Misplaced Pages Continue
3066-585: The body's blood supply and gas exchange until the surgery is complete, and sinus rhythm can be restored. Excessive hyperthermia and hypothermia will both result in death, as enzymes drive the body systems to cease normal function, beginning with the central nervous system. A study shows that bottlenose dolphins can learn – apparently via instrumental conditioning – to rapidly and selectively slow down their heart rate during diving for conserving oxygen depending on external signals. In humans regulating heart rate by methods such as listening to music, meditation or
3139-440: The event being counted may be a complete cycle); 100 Hz means "one hundred periodic events occur per second", and so on. The unit may be applied to any periodic event—for example, a clock might be said to tick at 1 Hz , or a human heart might be said to beat at 1.2 Hz . The occurrence rate of aperiodic or stochastic events is expressed in reciprocal second or inverse second (1/s or s ) in general or, in
3212-466: The faster pacemaker cells driving the self-generated rhythmic firing and responsible for the heart's autorhythmicity are located. In one study 98% of cardiologists suggested that as a desirable target range, 50 to 90 beats per minute is more appropriate than 60 to 100. The available evidence indicates that the normal range for resting heart rate is 50–90 beats per minute (bpm). In a study of over 35,000 American men and women over age 40 during
3285-417: The firing rate. Normal pulse rates at rest, in beats per minute (BPM): The basal or resting heart rate (HR rest ) is defined as the heart rate when a person is awake, in a neutrally temperate environment, and has not been subject to any recent exertion or stimulation, such as stress or surprise. The normal resting heart rate is based on the at-rest firing rate of the heart's sinoatrial node , where
3358-403: The first person to provide conclusive proof of the existence of electromagnetic waves . For high frequencies, the unit is commonly expressed in multiples : kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz). Some of the unit's most common uses are in the description of periodic waveforms and musical tones , particularly those used in radio - and audio-related applications. It
3431-469: The formula "was never supposed to be an absolute guide to rule people's training." While this formula is commonly used (and easy to remember and calculate), research has consistently found that it is subject to bias, particularly in older adults. Compared to the age-specific average HR max , the Haskell and Fox formula overestimates HR max in young adults, agrees with it at age 40, and underestimates HR max in older adults. For example, in one study,
3504-423: The heart rate speeds up or slows down. Most involve stimulant-like endorphins and hormones being released in the brain, some of which are those that are 'forced'/'enticed' out by the ingestion and processing of drugs such as cocaine or atropine . This section discusses target heart rates for healthy persons, which would be inappropriately high for most persons with coronary artery disease. The heart rate
3577-409: The heart to become weak and flaccid, and ultimately to fail. Heart muscle relies exclusively on aerobic metabolism for energy. Severe myocardial infarction (commonly called a heart attack) can lead to a decreasing heart rate , since metabolic reactions fueling heart contraction are restricted. Acidosis is a condition in which excess hydrogen ions are present, and the patient's blood expresses
3650-449: The hertz has become the primary unit of measurement accepted by the general populace to determine the performance of a CPU, many experts have criticized this approach, which they claim is an easily manipulable benchmark . Some processors use multiple clock cycles to perform a single operation, while others can perform multiple operations in a single cycle. For personal computers, CPU clock speeds have ranged from approximately 1 MHz in
3723-413: The highest normally usable radio frequencies and long-wave infrared light) is often called terahertz radiation . Even higher frequencies exist, such as that of X-rays and gamma rays , which can be measured in exahertz (EHz). For historical reasons, the frequencies of light and higher frequency electromagnetic radiation are more commonly specified in terms of their wavelengths or photon energies : for
SECTION 50
#17327728126533796-442: The interaction between these factors. It is usually equal or close to the pulse rate measured at any peripheral point. The American Heart Association states the normal resting adult human heart rate is 60–100 bpm. An ultra-trained athlete would have a resting heart rate of 37–38 bpm. Tachycardia is a high heart rate, defined as above 100 bpm at rest. Bradycardia is a low heart rate, defined as below 60 bpm at rest. When
3869-494: The inward movement of calcium ions. Caffeine and nicotine are both stimulants of the nervous system and of the cardiac centres causing an increased heart rate. Caffeine works by increasing the rates of depolarization at the SA node , whereas nicotine stimulates the activity of the sympathetic neurons that deliver impulses to the heart. Both surprise and stress induce physiological response: elevate heart rate substantially . In
3942-459: The late 1970s ( Atari , Commodore , Apple computers ) to up to 6 GHz in IBM Power microprocessors . Various computer buses , such as the front-side bus connecting the CPU and northbridge , also operate at various frequencies in the megahertz range. Higher frequencies than the International System of Units provides prefixes for are believed to occur naturally in the frequencies of
4015-429: The minute the unexpected event occurred, but the actors present onstage at the time of the stressor reacted in the following 5 minute period (demonstrated by their increasingly elevated heart rate). This trend regarding stress and heart rate is supported by previous studies; negative emotion /stimulus has a prolonged effect on heart rate in individuals who are directly impacted. In regard to the characters present onstage,
4088-457: The most accurate way of measuring any single person's HR max is via a cardiac stress test . In this test, a person is subjected to controlled physiologic stress (generally by treadmill or bicycle ergometer) while being monitored by an electrocardiogram (ECG). The intensity of exercise is periodically increased until certain changes in heart function are detected on the ECG monitor, at which point
4161-518: The most widely cited formula for HR max is still: Although attributed to various sources, it is widely thought to have been devised in 1970 by Dr. William Haskell and Dr. Samuel Fox. They did not develop this formula from original research, but rather by plotting data from approximately 11 references consisting of published research or unpublished scientific compilations. It gained widespread use through being used by Polar Electro in its heart rate monitors, which Dr. Haskell has "laughed about", as
4234-405: The neurotransmitter norepinephrine (also known as noradrenaline ) at the neuromuscular junction of the cardiac nerves. This shortens the repolarization period, thus speeding the rate of depolarization and contraction, which results in an increased heartrate. It opens chemical or ligand-gated sodium and calcium ion channels, allowing an influx of positively charged ions. Norepinephrine binds to
4307-526: The neurotransmitter acetylcholine (ACh) at the neuromuscular junction. ACh slows HR by opening chemical- or ligand-gated potassium ion channels to slow the rate of spontaneous depolarization, which extends repolarization and increases the time before the next spontaneous depolarization occurs. Without any nervous stimulation, the SA node would establish a sinus rhythm of approximately 100 bpm. Since resting rates are considerably less than this, it becomes evident that parasympathetic stimulation normally slows HR. This
4380-484: The octave, in the Western system of music notation notes a fifteenth apart are given the same name—the name of a note an octave above A is also A. However, because of the large frequency distance between the notes, it is less likely than an octave to be judged the same pitch by non-musicians. Passages in parallel fifteenths are much less common than parallel octaves. In particular, sometimes an organist will use two stops
4453-571: The physiological ways to deliver more blood to an organ is to increase heart rate. Normal resting heart rates range from 60 to 100 bpm. Bradycardia is defined as a resting heart rate below 60 bpm. However, heart rates from 50 to 60 bpm are common among healthy people and do not necessarily require special attention. Tachycardia is defined as a resting heart rate above 100 bpm, though persistent rest rates between 80 and 100 bpm, mainly if they are present during sleep, may be signs of hyperthyroidism or anemia (see below). There are many ways in which
SECTION 60
#17327728126534526-680: The quantum-mechanical vibrations of massive particles, although these are not directly observable and must be inferred through other phenomena. By convention, these are typically not expressed in hertz, but in terms of the equivalent energy, which is proportional to the frequency by the factor of the Planck constant . The CJK Compatibility block in Unicode contains characters for common SI units for frequency. These are intended for compatibility with East Asian character encodings, and not for use in new documents (which would be expected to use Latin letters, e.g. "MHz"). Heart rate Heart rate
4599-399: The rate and strength of heart contractions. This distinct slowing of the heart is one component of the larger diving reflex that diverts blood to essential organs while submerged. If sufficiently chilled, the heart will stop beating, a technique that may be employed during open heart surgery. In this case, the patient's blood is normally diverted to an artificial heart-lung machine to maintain
4672-443: The rate of baroreceptor firing increases, and the cardiac centers decrease sympathetic stimulation and increase parasympathetic stimulation. As pressure and stretch decrease, the rate of baroreceptor firing decreases, and the cardiac centers increase sympathetic stimulation and decrease parasympathetic stimulation. There is a similar reflex, called the atrial reflex or Bainbridge reflex , associated with varying rates of blood flow to
4745-564: The rules for capitalisation of a common noun ; i.e., hertz becomes capitalised at the beginning of a sentence and in titles but is otherwise in lower case. The hertz is named after the German physicist Heinrich Hertz (1857–1894), who made important scientific contributions to the study of electromagnetism . The name was established by the International Electrotechnical Commission (IEC) in 1935. It
4818-409: The second as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium -133 atom" and then adds: "It follows that the hyperfine splitting in the ground state of the caesium 133 atom is exactly 9 192 631 770 hertz , ν hfs Cs = 9 192 631 770 Hz ." The dimension of the unit hertz
4891-463: The sinoatrial node. The accelerans nerve provides sympathetic input to the heart by releasing norepinephrine onto the cells of the sinoatrial node (SA node), and the vagus nerve provides parasympathetic input to the heart by releasing acetylcholine onto sinoatrial node cells. Therefore, stimulation of the accelerans nerve increases heart rate, while stimulation of the vagus nerve decreases it. As water and blood are incompressible fluids, one of
4964-413: The specific case of radioactivity , in becquerels . Whereas 1 Hz (one per second) specifically refers to one cycle (or periodic event) per second, 1 Bq (also one per second) specifically refers to one radionuclide event per second on average. Even though frequency, angular velocity , angular frequency and radioactivity all have the dimension T , of these only frequency is expressed using
5037-405: The stops labelled "Fifteenth" ("Superoctave" or "Superoktave") are two octaves above the principal ( diapason ), or an octave above stops labelled "Octave". If the principal is 8′, then the octave is 4′ and the superoctave 2′. Note that this is different from the organ coupler named "super octave", which adds notes an octave above, not two octaves above. Hertz The hertz (symbol: Hz )
5110-486: The subject is directed to stop. Typical duration of the test ranges ten to twenty minutes. Adults who are beginning a new exercise regimen are often advised to perform this test only in the presence of medical staff due to risks associated with high heart rates. The theoretical maximum heart rate of a human is 300 bpm; however, there have been multiple cases where this theoretical upper limit has been exceeded. The fastest human ventricular conduction rate recorded to this day
5183-480: The unit hertz. Thus a disc rotating at 60 revolutions per minute (rpm) is said to have an angular velocity of 2 π rad/s and a frequency of rotation of 1 Hz . The correspondence between a frequency f with the unit hertz and an angular velocity ω with the unit radians per second is The hertz is named after Heinrich Hertz . As with every SI unit named for a person, its symbol starts with an upper case letter (Hz), but when written in full, it follows
5256-490: Was adopted by the General Conference on Weights and Measures (CGPM) ( Conférence générale des poids et mesures ) in 1960, replacing the previous name for the unit, "cycles per second" (cps), along with its related multiples, primarily "kilocycles per second" (kc/s) and "megacycles per second" (Mc/s), and occasionally "kilomegacycles per second" (kMc/s). The term "cycles per second" was largely replaced by "hertz" by
5329-481: Was greater than 90 beats per minute. For endurance athletes at the elite level, it is not unusual to have a resting heart rate between 33 and 50 bpm. The maximum heart rate (HR max ) is the age-related highest number of beats per minute of the heart when reaching a point of exhaustion without severe problems through exercise stress. In general it is loosely estimated as 220 minus one's age. It generally decreases with age. Since HR max varies by individual,
#652347