Misplaced Pages

GC-content

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In molecular biology and genetics , GC-content (or guanine-cytosine content ) is the percentage of nitrogenous bases in a DNA or RNA molecule that are either guanine (G) or cytosine (C). This measure indicates the proportion of G and C bases out of an implied four total bases, also including adenine and thymine in DNA and adenine and uracil in RNA.

#553446

81-696: GC-content may be given for a certain fragment of DNA or RNA or for an entire genome . When it refers to a fragment, it may denote the GC-content of an individual gene or section of a gene (domain), a group of genes or gene clusters, a non-coding region , or a synthetic oligonucleotide such as a primer . Qualitatively, guanine (G) and cytosine (C) undergo a specific hydrogen bonding with each other, whereas adenine (A) bonds specifically with thymine (T) in DNA and with uracil (U) in RNA. Quantitatively, each GC base pair

162-408: A mouse , the plant Arabidopsis thaliana , the puffer fish , and the bacteria E. coli . In December 2013, scientists first sequenced the entire genome of a Neanderthal , an extinct species of humans . The genome was extracted from the toe bone of a 130,000-year-old Neanderthal found in a Siberian cave . New sequencing technologies, such as massive parallel sequencing have also opened up

243-429: A regulatory sequence found before the open reading frame begins in a strand of DNA. The regulatory sequence will then determine the location and time that expression will occur for a protein coding region. RNA splicing ultimately determines what part of the sequence becomes translated and expressed, and this process involves cutting out introns and putting together exons. Where the RNA spliceosome cuts, however,

324-740: A DNA sequence is straightforward, identifying coding sequences is not, because the cell translates only a subset of all open reading frames to proteins. Currently CDS prediction uses sampling and sequencing of mRNA from cells, although there is still the problem of determining which parts of a given mRNA are actually translated to protein. CDS prediction is a subset of gene prediction , the latter also including prediction of DNA sequences that code not only for protein but also for other functional elements such as RNA genes and regulatory sequences. In both prokaryotes and eukaryotes , gene overlapping occurs relatively often in both DNA and RNA viruses as an evolutionary advantage to reduce genome size while retaining

405-430: A big potential to modify the genetic control in a host organism. The movement of TEs is a driving force of genome evolution in eukaryotes because their insertion can disrupt gene functions, homologous recombination between TEs can produce duplications, and TE can shuffle exons and regulatory sequences to new locations. Retrotransposons are found mostly in eukaryotes but not found in prokaryotes. Retrotransposons form

486-506: A defined structure that are able to change their location in the genome. TEs are categorized as either as a mechanism that replicates by copy-and-paste or as a mechanism that can be excised from the genome and inserted at a new location. In the human genome, there are three important classes of TEs that make up more than 45% of the human DNA; these classes are The long interspersed nuclear elements (LINEs), The interspersed nuclear elements (SINEs), and endogenous retroviruses. These elements have

567-618: A genome sequence and aids in navigating around the genome. The Human Genome Project was organized to map and to sequence the human genome . A fundamental step in the project was the release of a detailed genomic map by Jean Weissenbach and his team at the Genoscope in Paris. Reference genome sequences and maps continue to be updated, removing errors and clarifying regions of high allelic complexity. The decreasing cost of genomic mapping has permitted genealogical sites to offer it as

648-485: A large portion of the genomes of many eukaryotes. A retrotransposon is a transposable element that transposes through an RNA intermediate. Retrotransposons are composed of DNA , but are transcribed into RNA for transposition, then the RNA transcript is copied back to DNA formation with the help of a specific enzyme called reverse transcriptase. A retrotransposon that carries reverse transcriptase in its sequence can trigger its own transposition but retrotransposons that lack

729-405: A main driving role to generate genetic novelty and natural genome editing. Works of science fiction illustrate concerns about the availability of genome sequences. Michael Crichton's 1990 novel Jurassic Park and the subsequent film tell the story of a billionaire who creates a theme park of cloned dinosaurs on a remote island, with disastrous outcomes. A geneticist extracts dinosaur DNA from

810-413: A major role in shaping the genome. Duplication may range from extension of short tandem repeats , to duplication of a cluster of genes, and all the way to duplication of entire chromosomes or even entire genomes . Such duplications are probably fundamental to the creation of genetic novelty. Horizontal gene transfer is invoked to explain how there is often an extreme similarity between small portions of

891-467: A major theme of the book. The 1997 film Gattaca is set in a futurist society where genomes of children are engineered to contain the most ideal combination of their parents' traits, and metrics such as risk of heart disease and predicted life expectancy are documented for each person based on their genome. People conceived outside of the eugenics program, known as "In-Valids" suffer discrimination and are relegated to menial occupations. The protagonist of

SECTION 10

#1732801530554

972-428: A mean of 41%. The GC-content of Yeast ( Saccharomyces cerevisiae ) is 38%, and that of another common model organism , thale cress ( Arabidopsis thaliana ), is 36%. Because of the nature of the genetic code , it is virtually impossible for an organism to have a genome with a GC-content approaching either 0% or 100%. However, a species with an extremely low GC-content is Plasmodium falciparum (GC% = ~20%), and it

1053-401: A mutation present in the offspring's DNA while being absent in both the sperm and egg cells. There exist multiple transcription and translation mechanisms to prevent lethality due to deleterious mutations in the coding region. Such measures include proofreading by some DNA Polymerases during replication, mismatch repair following replication, and the ' Wobble Hypothesis ' which describes

1134-428: A new site. This cut-and-paste mechanism typically reinserts transposons near their original location (within 100 kb). DNA transposons are found in bacteria and make up 3% of the human genome and 12% of the genome of the roundworm C. elegans . Genome size is the total number of the DNA base pairs in one copy of a haploid genome. Genome size varies widely across species. Invertebrates have small genomes, this

1215-501: A precise definition of "genome." It usually refers to the DNA (or sometimes RNA) molecules that carry the genetic information in an organism but sometimes it is difficult to decide which molecules to include in the definition; for example, bacteria usually have one or two large DNA molecules ( chromosomes ) that contain all of the essential genetic material but they also contain smaller extrachromosomal plasmid molecules that carry important genetic information. The definition of 'genome' that

1296-415: A reference, whereas analyses of coverage depth and mapping topology can provide details regarding structural variations such as chromosomal translocations and segmental duplications. DNA sequences that carry the instructions to make proteins are referred to as coding sequences. The proportion of the genome occupied by coding sequences varies widely. A larger genome does not necessarily contain more genes, and

1377-487: A reverse transcriptase must use reverse transcriptase synthesized by another retrotransposon. Retrotransposons can be transcribed into RNA, which are then duplicated at another site into the genome. Retrotransposons can be divided into long terminal repeats (LTRs) and non-long terminal repeats (Non-LTRs). Long terminal repeats (LTRs) are derived from ancient retroviral infections, so they encode proteins related to retroviral proteins including gag (structural proteins of

1458-651: A service, to the extent that one may submit one's genome to crowdsourced scientific endeavours such as DNA.LAND at the New York Genome Center , an example both of the economies of scale and of citizen science . Viral genomes can be composed of either RNA or DNA. The genomes of RNA viruses can be either single-stranded RNA or double-stranded RNA , and may contain one or more separate RNA molecules (segments: monopartit or multipartit genome). DNA viruses can have either single-stranded or double-stranded genomes. Most DNA virus genomes are composed of

1539-449: A shorter final protein. Point mutations , or single base pair changes in the coding region, that code for different amino acids during translation, are called missense mutations . Other types of mutations include frameshift mutations such as insertions or deletions . Some forms of mutations are hereditary ( germline mutations ), or passed on from a parent to its offspring. Such mutated coding regions are present in all cells within

1620-404: A single, linear molecule of DNA, but some are made up of a circular DNA molecule. Prokaryotes and eukaryotes have DNA genomes. Archaea and most bacteria have a single circular chromosome , however, some bacterial species have linear or multiple chromosomes. If the DNA is replicated faster than the bacterial cells divide, multiple copies of the chromosome can be present in a single cell, and if

1701-518: A small mitochondrial genome . Algae and plants also contain chloroplasts with a chloroplast genome. The study of the genome is called genomics . The genomes of many organisms have been sequenced and various regions have been annotated. The Human Genome Project was started in October 1990, and then reported the sequence of the human genome in April 2003, although the initial "finished" sequence

SECTION 20

#1732801530554

1782-560: A species. Within a species, the vast majority of nucleotides are identical between individuals, but sequencing multiple individuals is necessary to understand the genetic diversity. In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome ( Bacteriophage MS2 ). The next year, Fred Sanger completed the first DNA-genome sequence: Phage Φ-X174 , of 5386 base pairs. The first bacterial genome to be sequenced

1863-610: A variety of publicly available software tools, such as the free online GC calculator . The GC-ratio within a genome is found to be markedly variable. These variations in GC-ratio within the genomes of more complex organisms result in a mosaic-like formation with islet regions called isochores . This results in the variations in staining intensity in chromosomes . GC-rich isochores typically include many protein-coding genes within them, and thus determination of GC-ratios of these specific regions contributes to mapping gene-rich regions of

1944-448: Is a mosaic—that each full nucleic acid strand is not coded continuously but is interrupted by "silent" non-coding regions. This was the first indication that there needed to be a distinction between the parts of the genome that code for protein, now called coding regions, and those that do not. The evidence suggests that there is a general interdependence between base composition patterns and coding region availability. The coding region

2025-485: Is also correlated to a small number of transposable elements. Fish and Amphibians have intermediate-size genomes, and birds have relatively small genomes but it has been suggested that birds lost a substantial portion of their genomes during the phase of transition to flight.  Before this loss, DNA methylation allows the adequate expansion of the genome. In humans, the nuclear genome comprises approximately 3.1 billion nucleotides of DNA, divided into 24 linear molecules,

2106-432: Is another DIRS-like elements belong to Non-LTRs. Non-LTRs are widely spread in eukaryotic genomes. Long interspersed elements (LINEs) encode genes for reverse transcriptase and endonuclease, making them autonomous transposable elements. The human genome has around 500,000 LINEs, taking around 17% of the genome. Short interspersed elements (SINEs) are usually less than 500 base pairs and are non-autonomous, so they rely on

2187-656: Is approximately 1 protein-altering mutation every 7 coding bases, but some CCRs can have over 100 bases in sequence with no observed protein-altering mutations, some without even synonymous mutations. These patterns of constraint between genomes may provide clues to the sources of rare developmental diseases or potentially even embryonic lethality. Clinically validated variants and de novo mutations in CCRs have been previously linked to disorders such as infantile epileptic encephalopathy , developmental delay and severe heart disease. While identification of open reading frames within

2268-444: Is carried in plasmids . For this, the word genome should not be used as a synonym of chromosome . Eukaryotic genomes are composed of one or more linear DNA chromosomes. The number of chromosomes varies widely from Jack jumper ants and an asexual nemotode , which each have only one pair, to a fern species that has 720 pairs. It is surprising the amount of DNA that eukaryotic genomes contain compared to other genomes. The amount

2349-408: Is commonly used in the scientific literature is usually restricted to the large chromosomal DNA molecules in bacteria. Eukaryotic genomes are even more difficult to define because almost all eukaryotic species contain nuclear chromosomes plus extra DNA molecules in the mitochondria . In addition, algae and plants have chloroplast DNA. Most textbooks make a distinction between the nuclear genome and

2430-564: Is even more than what is necessary for DNA protein-coding and noncoding genes due to the fact that eukaryotic genomes show as much as 64,000-fold variation in their sizes. However, this special characteristic is caused by the presence of repetitive DNA, and transposable elements (TEs). A typical human cell has two copies of each of 22 autosomes , one inherited from each parent, plus two sex chromosomes , making it diploid. Gametes , such as ova, sperm, spores, and pollen, are haploid, meaning they carry only one copy of each chromosome. In addition to

2511-492: Is facilitated by active DNA demethylation , a process that entails the DNA base excision repair pathway. This pathway is employed in the erasure of CpG methylation (5mC) in primordial germ cells. The erasure of 5mC occurs via its conversion to 5-hydroxymethylcytosine (5hmC) driven by high levels of the ten-eleven dioxygenase enzymes TET1 and TET2 . Genomes are more than the sum of an organism's genes and have traits that may be measured and studied without reference to

GC-content - Misplaced Pages Continue

2592-510: Is flanked by the 5' untranslated region (5'-UTR) and 3' untranslated region (3'-UTR), the 5' cap , and Poly-A tail . During translation , the ribosome facilitates the attachment of the tRNAs to the coding region, 3 nucleotides at a time ( codons ). The tRNAs transfer their associated amino acids to the growing polypeptide chain, eventually forming the protein defined in the initial DNA coding region. The coding region can be modified in order to regulate gene expression. Alkylation

2673-545: Is guided by the recognition of splice sites , in particular the 5' splicing site, which is one of the substrates for the first step in splicing. The coding regions are within the exons, which become covalently joined together to form the mature messenger RNA . Mutations in the coding region can have very diverse effects on the phenotype of the organism. While some mutations in this region of DNA/RNA can result in advantageous changes, others can be harmful and sometimes even lethal to an organism's survival. In contrast, changes in

2754-479: Is held together by three hydrogen bonds, while AT and AU base pairs are held together by two hydrogen bonds. To emphasize this difference, the base pairings are often represented as "G≡C" versus "A=T" or "A=U". DNA with low GC-content is less stable than DNA with high GC-content; however, the hydrogen bonds themselves do not have a particularly significant impact on molecular stability, which is instead caused mainly by molecular interactions of base stacking. In spite of

2835-456: Is often confusion between coding regions and exomes and there is a clear distinction between these terms. While the exome refers to all exons within a genome, the coding region refers to a singular section of the DNA or RNA which specifically codes for a certain kind of protein.   In 1978, Walter Gilbert published "Why Genes in Pieces" which first began to explore the idea that the gene

2916-400: Is one form of regulation of the coding region. The gene that would have been transcribed can be silenced by targeting a specific sequence. The bases in this sequence would be blocked using alkyl groups , which create the silencing effect. While the regulation of gene expression manages the abundance of RNA or protein made in a cell, the regulation of these mechanisms can be controlled by

2997-401: Is rather exceptional, eukaryotes generally have these features in their genes and their genomes contain variable amounts of repetitive DNA. In mammals and plants, the majority of the genome is composed of repetitive DNA. High-throughput technology makes sequencing to assemble new genomes accessible to everyone. Sequence polymorphisms are typically discovered by comparing resequenced isolates to

3078-420: Is still unclear whether this came about through neutral and random mutation or through a pattern of selection . There is also debate on whether the methods used, such as gene windows, to ascertain the relationship between GC-content and coding region are accurate and unbiased. In DNA , the coding region is flanked by the promoter sequence on the 5' end of the template strand and the termination sequence on

3159-412: Is the portion of a gene's DNA or RNA that codes for a protein . Studying the length, composition, regulation, splicing, structures, and functions of coding regions compared to non-coding regions over different species and time periods can provide a significant amount of important information regarding gene organization and evolution of prokaryotes and eukaryotes . This can further assist in mapping

3240-656: Is thought to contain a higher GC-content than non-coding regions. There is further research that discovered that the longer the coding strand, the higher the GC-content. Short coding strands are comparatively still GC-poor, similar to the low GC-content of the base composition translational stop codons like TAG, TAA, and TGA. GC-rich areas are also where the ratio point mutation type is altered slightly: there are more transitions , which are changes from purine to purine or pyrimidine to pyrimidine, compared to transversions , which are changes from purine to pyrimidine or pyrimidine to purine. The transitions are less likely to change

3321-421: Is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multi-cellular organisms (see developmental biology ). The work is both in vivo and in silico . There are many enormous differences in size in genomes, specially mentioned before in

GC-content - Misplaced Pages Continue

3402-416: Is usually common to refer to such examples as being AT-rich instead of GC-poor. Several mammalian species (e.g., shrew , microbat , tenrec , rabbit ) have independently undergone a marked increase in the GC-content of their genes. These GC-content changes are correlated with species life-history traits (e.g., body mass or longevity) and genome size , and might be linked to a molecular phenomenon called

3483-509: The Actinomycetota are characterised as "high GC-content bacteria ". In Streptomyces coelicolor A3(2), GC-content is 72%. With the use of more reliable, modern methods of molecular systematics, the GC-content definition of Actinomycetota has been abolished and low-GC bacteria of this clade have been found. GCSpeciesSorter and TopSort are software tools for classifying species based on their GC-contents. Genome In

3564-498: The University of Hamburg , Germany. The website Oxford Dictionaries and the Online Etymology Dictionary suggest the name is a blend of the words gene and chromosome . However, see omics for a more thorough discussion. A few related -ome words already existed, such as biome and rhizome , forming a vocabulary into which genome fits systematically. It is very difficult to come up with

3645-612: The degeneracy of the third base within an mRNA codon. While it is well known that the genome of one individual can have extensive differences when compared to the genome of another, recent research has found that some coding regions are highly constrained, or resistant to mutation, between individuals of the same species. This is similar to the concept of interspecies constraint in conserved sequences . Researchers termed these highly constrained sequences constrained coding regions (CCRs), and have also discovered that such regions may be involved in high purifying selection . On average, there

3726-486: The human genome and developing gene therapy. Although this term is also sometimes used interchangeably with exon , it is not the exact same thing: the exon is composed of the coding region as well as the 3' and 5' untranslated regions of the RNA, and so therefore, an exon would be partially made up of coding regions. The 3' and 5' untranslated regions of the RNA, which do not code for protein, are termed non-coding regions and are not discussed on this page. There

3807-549: The melting temperature of the DNA double helix using spectrophotometry . The absorbance of DNA at a wavelength of 260 nm increases fairly sharply when the double-stranded DNA molecule separates into two single strands when sufficiently heated. The most commonly used protocol for determining GC-ratios uses flow cytometry for large numbers of samples. In an alternative manner, if the DNA or RNA molecule under investigation has been reliably sequenced , then GC-content can be accurately calculated by simple arithmetic or by using

3888-648: The 3' end. During transcription , the RNA Polymerase (RNAP) binds to the promoter sequence and moves along the template strand to the coding region. RNAP then adds RNA nucleotides complementary to the coding region in order to form the mRNA , substituting uracil in place of thymine . This continues until the RNAP reaches the termination sequence. After transcription and maturation, the mature mRNA formed encompasses multiple parts important for its eventual translation into protein . The coding region in an mRNA

3969-523: The GC-biased gene conversion . In polymerase chain reaction (PCR) experiments, the GC-content of short oligonucleotides known as primers is often used to predict their annealing temperature to the template DNA. A higher GC-content level indicates a relatively higher melting temperature. Many sequencing technologies, such as Illumina sequencing , have trouble reading high-GC-content sequences. Bird genomes are known to have many such parts, causing

4050-426: The X and Y chromosomes of mammals, so the technical definition of the genome must include both copies of the sex chromosomes. For example, the standard reference genome of humans consists of one copy of each of the 22 autosomes plus one X chromosome and one Y chromosome. A genome sequence is the complete list of the nucleotides (A, C, G, and T for DNA genomes) that make up all the chromosomes of an individual or

4131-452: The bases stack and the thermal stability of the molecule as a whole. GC-content is usually expressed as a percentage value, but sometimes as a ratio (called G+C ratio or GC-ratio ). GC-content percentage is calculated as whereas the AT/GC ratio is calculated as The GC-content percentages as well as GC-ratio can be measured by several means, but one of the simplest methods is to measure

SECTION 50

#1732801530554

4212-412: The blood of ancient mosquitoes and fills in the gaps with DNA from modern species to create several species of dinosaurs. A chaos theorist is asked to give his expert opinion on the safety of engineering an ecosystem with the dinosaurs, and he repeatedly warns that the outcomes of the project will be unpredictable and ultimately uncontrollable. These warnings about the perils of using genomic information are

4293-549: The cells divide faster than the DNA can be replicated, multiple replication of the chromosome is initiated before the division occurs, allowing daughter cells to inherit complete genomes and already partially replicated chromosomes. Most prokaryotes have very little repetitive DNA in their genomes. However, some symbiotic bacteria (e.g. Serratia symbiotica ) have reduced genomes and a high fraction of pseudogenes: only ~40% of their DNA encodes proteins. Some bacteria have auxiliary genetic material, also part of their genome, which

4374-478: The chromosomes in the nucleus, organelles such as the chloroplasts and mitochondria have their own DNA. Mitochondria are sometimes said to have their own genome often referred to as the " mitochondrial genome ". The DNA found within the chloroplast may be referred to as the " plastome ". Like the bacteria they originated from, mitochondria and chloroplasts have a circular chromosome. Unlike prokaryotes where exon-intron organization of protein coding genes exists but

4455-445: The details of any particular genes and their products. Researchers compare traits such as karyotype (chromosome number), genome size , gene order, codon usage bias , and GC-content to determine what mechanisms could have produced the great variety of genomes that exist today (for recent overviews, see Brown 2002; Saccone and Pesole 2003; Benfey and Protopapas 2004; Gibson and Muse 2004; Reese 2004; Gregory 2005). Duplications play

4536-406: The encoded amino acid and remain a silent mutation (especially if they occur in the third nucleotide of a codon) which is usually beneficial to the organism during translation and protein formation. This indicates that essential coding regions (gene-rich) are higher in GC-content and more stable and resistant to mutation compared to accessory and non-essential regions (gene-poor). However, it

4617-518: The fields of molecular biology and genetics , a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses ). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as regulatory sequences (see non-coding DNA ), and often a substantial fraction of junk DNA with no evident function. Almost all eukaryotes have mitochondria and

4698-407: The film is an In-Valid who works to defy the supposed genetic odds and achieve his dream of working as a space navigator. The film warns against a future where genomic information fuels prejudice and extreme class differences between those who can and cannot afford genetically engineered children. Coding region The coding region of a gene , also known as the coding DNA sequence ( CDS ),

4779-403: The genome. Within a long region of genomic sequence, genes are often characterised by having a higher GC-content in contrast to the background GC-content for the entire genome. There is evidence that the length of the coding region of a gene is directly proportional to higher G+C content. This has been pointed to the fact that the stop codon has a bias towards A and T nucleotides, and, thus,

4860-406: The genomes of two organisms that are otherwise very distantly related. Horizontal gene transfer seems to be common among many microbes . Also, eukaryotic cells seem to have experienced a transfer of some genetic material from their chloroplast and mitochondrial genomes to their nuclear chromosomes. Recent empirical data suggest an important role of viruses and sub-viral RNA-networks to represent

4941-412: The higher thermostability conferred to a nucleic acid with high GC-content, it has been observed that at least some species of bacteria with DNA of high GC-content undergo autolysis more readily, thereby reducing the longevity of the cell per se . Because of the thermostability of GC pairs, it was once presumed that high GC-content was a necessary adaptation to high temperatures, but this hypothesis

SECTION 60

#1732801530554

5022-455: The human genome All the cells of an organism originate from a single cell, so they are expected to have identical genomes; however, in some cases, differences arise. Both the process of copying DNA during cell division and exposure to environmental mutagens can result in mutations in somatic cells. In some cases, such mutations lead to cancer because they cause cells to divide more quickly and invade surrounding tissues. In certain lymphocytes in

5103-425: The human genome and 9% of the fruit fly genome. Tandem repeats can be functional. For example, telomeres are composed of the tandem repeat TTAGGG in mammals, and they play an important role in protecting the ends of the chromosome. In other cases, expansions in the number of tandem repeats in exons or introns can cause disease . For example, the human gene huntingtin (Htt) typically contains 6–29 tandem repeats of

5184-517: The human immune system, V(D)J recombination generates different genomic sequences such that each cell produces a unique antibody or T cell receptors. During meiosis , diploid cells divide twice to produce haploid germ cells. During this process, recombination results in a reshuffling of the genetic material from homologous chromosomes so each gamete has a unique genome. Genome-wide reprogramming in mouse primordial germ cells involves epigenetic imprint erasure leading to totipotency . Reprogramming

5265-408: The most important factor contributing to the thermal stability of double-stranded nucleic acids is actually due to the base stackings of adjacent bases rather than the number of hydrogen bonds between the bases. There is more favorable stacking energy for GC pairs than for AT or AU pairs because of the relative positions of exocyclic groups. Additionally, there is a correlation between the order in which

5346-476: The multicellular eukaryotic genomes. Much of this is due to the differing abundances of transposable elements, which evolve by creating new copies of themselves in the chromosomes. Eukaryote genomes often contain many thousands of copies of these elements, most of which have acquired mutations that make them defective. Here is a table of some significant or representative genomes. See #See also for lists of sequenced genomes. Initial sequencing and analysis of

5427-425: The non-coding region may not always result in detectable changes in phenotype. There are various forms of mutations that can occur in coding regions. One form is silent mutations , in which a change in nucleotides does not result in any change in amino acid after transcription and translation. There also exist nonsense mutations , where base alterations in the coding region code for a premature stop codon, producing

5508-795: The nucleotides CAG (encoding a polyglutamine tract). An expansion to over 36 repeats results in Huntington's disease , a neurodegenerative disease. Twenty human disorders are known to result from similar tandem repeat expansions in various genes. The mechanism by which proteins with expanded polygulatamine tracts cause death of neurons is not fully understood. One possibility is that the proteins fail to fold properly and avoid degradation, instead accumulating in aggregates that also sequester important transcription factors, thereby altering gene expression. Tandem repeats are usually caused by slippage during replication, unequal crossing-over and gene conversion. Transposable elements (TEs) are sequences of DNA with

5589-447: The organelle (mitochondria and chloroplast) genomes so when they speak of, say, the human genome, they are only referring to the genetic material in the nucleus. This is the most common use of 'genome' in the scientific literature. Most eukaryotes are diploid , meaning that there are two of each chromosome in the nucleus but the 'genome' refers to only one copy of each chromosome. Some eukaryotes have distinctive sex chromosomes, such as

5670-497: The organism. Other forms of mutations are acquired ( somatic mutations ) during an organism's lifetime, and may not be constant cell-to-cell. These changes can be caused by mutagens , carcinogens , or other environmental agents (ex. UV ). Acquired mutations can also be a result of copy-errors during DNA replication and are not passed down to offspring. Changes in the coding region can also be de novo (new); such changes are thought to occur shortly after fertilization , resulting in

5751-428: The problem of "missing genes" expected to be present from evolution and phenotype but never sequenced — until improved methods were used. The species problem in non-eukaryotic taxonomy has led to various suggestions in classifying bacteria, and the ad hoc committee on reconciliation of approaches to bacterial systematics of 1987 has recommended use of GC-ratios in higher-level hierarchical classification. For example,

5832-590: The proportion of non-repetitive DNA decreases along with increasing genome size in complex eukaryotes. Noncoding sequences include introns , sequences for non-coding RNAs, regulatory regions, and repetitive DNA. Noncoding sequences make up 98% of the human genome. There are two categories of repetitive DNA in the genome: tandem repeats and interspersed repeats. Short, non-coding sequences that are repeated head-to-tail are called tandem repeats . Microsatellites consisting of 2–5 basepair repeats, while minisatellite repeats are 30–35 bp. Tandem repeats make up about 4% of

5913-412: The prospect of personal genome sequencing as a diagnostic tool, as pioneered by Manteia Predictive Medicine . A major step toward that goal was the completion in 2007 of the full genome of James D. Watson , one of the co-discoverers of the structure of DNA. Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than

5994-439: The proteins encoded by LINEs for transposition. The Alu element is the most common SINE found in primates. It is about 350 base pairs and occupies about 11% of the human genome with around 1,500,000 copies. DNA transposons encode a transposase enzyme between inverted terminal repeats. When expressed, the transposase recognizes the terminal inverted repeats that flank the transposon and catalyzes its excision and reinsertion in

6075-599: The shorter the sequence the higher the AT bias. Comparison of more than 1,000 orthologous genes in mammals showed marked within-genome variations of the third-codon position GC content, with a range from less than 30% to more than 80%. GC content is found to be variable with different organisms, the process of which is envisaged to be contributed to by variation in selection , mutational bias, and biased recombination-associated DNA repair . The average GC-content in human genomes ranges from 35% to 60% across 100-Kb fragments, with

6156-423: The shortest 45 000 000 nucleotides in length and the longest 248 000 000 nucleotides, each contained in a different chromosome. There is no clear and consistent correlation between morphological complexity and genome size in either prokaryotes or lower eukaryotes . Genome size is largely a function of the expansion and contraction of repetitive DNA elements. Since genomes are very complex, one research strategy

6237-541: The virus), pol (reverse transcriptase and integrase), pro (protease), and in some cases env (envelope) genes. These genes are flanked by long repeats at both 5' and 3' ends. It has been reported that LTRs consist of the largest fraction in most plant genome and might account for the huge variation in genome size. Non-long terminal repeats (Non-LTRs) are classified as long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and Penelope-like elements (PLEs). In Dictyostelium discoideum , there

6318-429: Was completed in 1996, again by The Institute for Genomic Research. The development of new technologies has made genome sequencing dramatically cheaper and easier, and the number of complete genome sequences is growing rapidly. The US National Institutes of Health maintains one of several comprehensive databases of genomic information. Among the thousands of completed genome sequencing projects include those for rice ,

6399-477: Was missing 8% of the genome consisting mostly of repetitive sequences. With advancements in technology that could handle sequencing of the many repetitive sequences found in human DNA that were not fully uncovered by the original Human Genome Project study, scientists reported the first end-to-end human genome sequence in March 2022. The term genome was created in 1920 by Hans Winkler , professor of botany at

6480-505: Was refuted in 2001. Even so, it has been shown that there is a strong correlation between the optimal growth of prokaryotes at higher temperatures and the GC-content of structural RNAs such as ribosomal RNA , transfer RNA , and many other non-coding RNAs . The AU base pairs are less stable than the GC base pairs, making high-GC-content RNA structures more resistant to the effects of high temperatures. More recently, it has been demonstrated that

6561-400: Was that of Haemophilus influenzae , completed by a team at The Institute for Genomic Research in 1995. A few months later, the first eukaryotic genome was completed, with sequences of the 16 chromosomes of budding yeast Saccharomyces cerevisiae published as the result of a European-led effort begun in the mid-1980s. The first genome sequence for an archaeon , Methanococcus jannaschii ,

#553446