Misplaced Pages

BMW VI

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The BMW VI was a water-cooled V-12 aircraft engine built in Germany in the 1920s. It was one of the most important German aero engines in the years leading up to World War II , with thousands built. It was further developed as the BMW VII and BMW IX , although these saw considerably less use. It was also produced in the Soviet Union as the M-17 and Japan as the Kawasaki Ha-9 .

#245754

23-512: The BMW VI was the first twelve-cylinder engine built by the BMW. It essentially consisted of two cylinder banks from the six-cylinder BMW IV bolted to a common cast aluminium crankcase at a 60-degree included angle between the cylinder banks. Series production commenced in 1926 after type approval had been granted. From 1930 on, after 1000 engines of the BMW VI type had already been delivered, Germany

46-434: A V engine layout. However, there are various exceptions to this, such as the straight-eight engines used by various luxury cars from 1919-1954, V4 engines used by some marine outboard motors, V-twin and flat-twin engines used by motorcycles and flat-four engines used by various cars. Straight engines (also known as "inline engines") have all cylinders aligned in one row along the crankshaft with no offset. When

69-434: A V engine has a shorter length but is wider. This effect increases with the number of cylinders in the engine; the length difference between V-twin and straight-twin engines might be insignificant, however V8 engines have a significantly smaller length than straight engines. Compared with the less common flat engine , a V engine is narrower, taller and has a higher center of mass . The "V-angle" (or "included angle") between

92-511: A V12 engine is that of perfect primary and secondary balance. For V engines with fewer cylinders, the engine balance will depend on factors such as the firing interval, crankshaft counterweights and whether balance shafts are present. The crankpins on a V engine are usually shared by two cylinders from opposing banks, with an offset between the two cylinders. Alternative configurations are separate crankpins per cylinder (such as several V-twin engines) or articulated connecting rods (for example,

115-593: A propeller reduction gear (7.3u), z denotes Zenith carburetor (7.3z), zu denotes Zenith carburetor and propeller reduction gear (7.3zu). Data from Flugzeug-Typenbuch. Handbuch der deutschen Luftfahrt- und Zubehör-Industrie 1944 Related development Comparable engines Related lists Cylinder bank The engine configuration describes the fundamental operating principles by which internal combustion engines are categorized. Piston engines are often categorized by their cylinder layout, valves and camshafts. Wankel engines are often categorized by

138-415: A single cylinder block and cylinder head . These engines use a single cylinder head so are technically a straight engine with the name "VR" coming from the combination of German words “Verkürzt” and “Reihenmotor” meaning “shortened inline engine”. Flat engines (also known as "horizontally-opposed" engines) have the cylinders arranged in two banks on either side of a single crankshaft. Boxer engines are

161-988: A straight bank with the name "VR" coming from the combination of German words “Verkürzt” and “Reihenmotor” meaning “shortened inline engine”. Radial engines have cylinders mounted radially around a central crankcase. Rotary engines have a similar configuration, except that the crankshaft is fixed and the cylinders rotate around it. (This is different from the Wankel engine configuration described below.) Radial and rotary engine designs were widely used in early aircraft engines . U engines consist of two separate straight engines (complete with separate crankshafts) joined by gears or chains. Most U engines have four cylinders (i.e. two straight-two engines combined), such as square four engines and tandem twin engines . Similar to U engines, H engines consist of two separate flat engines joined by gears or chains. H engines have been produced with between 4 and 24 cylinders. An opposed-piston engine

184-419: A straight engine is mounted at an angle, it is sometimes called a "slant engine". Types of straight engines include: V engines (also known as "Vee engines") have the cylinders aligned in two separate planes or 'banks', so that they appear to be in a "V" when viewed along the axis of the crankshaft. Types of V engines include: VR5 and VR6 engines are very compact and light, having a narrow V angle which allows

207-431: A subtype of flat engines where opposing pistons move in and out in tandem. Types of flat engines include: W engines have the cylinders in a configuration in which the cylinder banks resemble the letter W, in the same way those of a V engine resemble the letter V. Types of W engines include: W engines using twin "VR" engine banks are technically a V8 engine. These engine banks use a single cylinder head so are technically

230-707: A Δ when viewed along the axis of the main-shaft. An example of this type of layout is the Napier Deltic . Wankel engines (sometimes called 'rotary engines') can be classified based on the number of rotors present. Most production Wankel engines have two rotors, however engines with one, three and four rotors have also been produced. Wankel engines can also be classified based on whether they are naturally aspirated or turbocharged . Most Wankel engines are fueled by petrol, however prototype engines running on diesel and hydrogen have been trialed. Gas turbine engines— mostly used for aircraft— are usually separated into

253-504: Is essentially two V engines joined by a common crankshaft. A majority of these were existing V-12 engines converted into an X-24 configuration. The Swashplate engine with the K-Cycle engine is where pairs of pistons are in an opposed configuration sharing a cylinder and combustion chamber. A Delta engine has three (or its multiple) cylinders having opposing pistons, aligned in three separate planes or 'banks', so that they appear to be in

SECTION 10

#1732790228246

276-449: Is referred to as a 'cylinder bank'. The angle between cylinder banks is called the 'bank angle'. Engines with multiple banks are shorter than straight engines of the same size, and will often have better engine balance characteristics, resulting in reduced engine vibration and potentially higher maximum engine speeds. Most engines with four or less cylinders use a straight engine layout, and most engines with eight cylinders or more use

299-400: Is similar to a flat engine in that pairs of pistons are co-axial but rather than sharing a crankshaft, instead share a single combustion chamber per pair of pistons. The crankshaft configuration varies amongst opposed-engine designs. One layout has a flat/boxer engine at its center and adds an additional opposed-piston to each end so there are two pistons per cylinder on each side. An X engine

322-421: The cylinder banks varies significantly between engines. Some engines have used a V-angle of 180 degrees (the same angle as a flat engine ), such as several Ferrari V12 engines. At the other end of the scale, the 1922-1976 Lancia V4 engine and the 1991–present Volkswagen VR6 engine use V-angles as small as 10 degrees, along with a single cylinder head used by both banks of cylinders. The engine balance of

345-410: The engine. V engines typically have a shorter length than equivalent inline engines , however the trade-off is a larger width. V6 , V8 and V12 engines are the most common layout for automobile engines with 6, 8 or 12 cylinders respectively. The first V engine, a two-cylinder V-twin, was designed by Wilhelm Maybach and used in the 1889 Daimler Stahlradwagen automobile. The first V8 engine

368-408: The following categories: V engine A V engine , sometimes called a Vee engine , is a common configuration for internal combustion engines . It consists of two cylinder banks —usually with the same number of cylinders in each bank—connected to a common crankshaft . These cylinder banks are arranged at an angle to each other, so that the banks form a "V" shape when viewed from the front of

391-453: The number of rotors present. Gas turbine engines are often categorized into turbojets, turbofans, turboprops and turboshafts. Piston engines are usually designed with the cylinders in lines parallel to the crankshaft . It is called a straight engine (or 'inline engine') when the cylinders are arranged in a single line. Where the cylinders are arranged in two or more lines (such as in V engines or flat engines ), each line of cylinders

414-486: The such as the Rolls-Royce Merlin aero engine). Some airplanes of the 1920s and 1930s used inverted engines , whereby the crankshaft is located at the top of the engine and the cylinder heads are at the bottom. Advantages include better visibility in a single-engined airplane, a higher thrust line, and resultant increased ground clearance for the propeller. Examples include the 1928 Argus As 10 V8 engine and

437-583: Was again permitted to construct military aircraft. The sudden additional demand resulted in the production figures increasing rapidly. In 1933 the BMW VI was used for BMW's first experiments with direct fuel injection. The BMW VI was the chosen source of power for numerous record-breaking and long-distance flights, including an east-to-west crossing of the Atlantic in 1930 and a round-the world flight in 1932, both by Wolfgang von Gronau in an open Dornier Wal flying boat powered by two BMW VI engines. The BMW VI

460-649: Was license-built in the Soviet Union under the supervision of Mikulin , who then further developed it as the M-17 . More license built engines were produced by Kawasaki Heavy Industries in Japan as the Kawasaki Ha9 (long designation:- Army Type 98 850hp Liquid Cooled In-line ). 5.5 , 6 or 7.3 denotes compression ratio. No additional letter denotes BMW carburetor and direct-drive propeller (7.3), u denotes

483-529: Was not until 1950 that the V6 engine was used in series production automobiles, with the first example being the Lancia V6 engine . This V6 engine used a 60-degree V angle and separate crankpins for each cylinder, to reduce the vibration issues experienced by earlier attempts at production V6 engines. Compared with an equivalent inline engine (the most common configuration for engines with less than six cylinders),

SECTION 20

#1732790228246

506-684: Was produced in 1903, in the form of the Antoinette engine designed by Léon Levavasseur for racing boats and airplanes . The first V12 engine was produced the following year by Putney Motor Works in London , again for use in racing boats. The first V6 engine to reach production appeared soon after in 1908, by the Deutz Gasmotoren Fabrik in Germany for use as a generator for gasoline-electric railway engines . However, it

529-464: Was put to unusual use as a power unit for the " Rail Zeppelin " high-speed railcar. Many versions of the BMW VI engine were developed, and it was built under license in Japan and the Soviet Union. This was further evidence of the reliability of an engine with which BMW made a fundamental contribution to the build-up of German air transport. At least 9,200 were built between 1926 and 1938. The engine

#245754