Misplaced Pages

Kristiansund Mainland Connection

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Kristiansund Mainland Connection ( Norwegian : Kristiansund fastlandsforbindelse or abbreviated Krifast ) is a road system consisting of the European route E39 highway and Norwegian National Road 70 that connects Kristiansund Municipality to the neighboring islands of Frei , Bergsøya , and Aspøya and then to the mainland of Norway . Krifast opened in 1992 and consists of 25 kilometres (16 mi) of road and 6 kilometres (3.7 mi) of bicycle paths. The three main structures are the undersea Freifjord Tunnel , the Gjemnessund Bridge , and the Bergsøysund Bridge .

#86913

88-537: A total of seven bridges are part of the Krifast system, the most famous one being the suspension bridge Gjemnessund Bridge from the island of Bergsøya to the mainland of Gjemnes Municipality , with 108-metre (354 ft) high towers and a span between them of 623 metres (2,044 ft). There is also the 933-metre (3,061 ft) long pontoon bridge called the Bergsøysund Bridge which goes between

176-410: A cable-stayed bridge in which the deck is in compression. Cable-stayed bridges and suspension bridges may appear to be similar, but are quite different in principle and in their construction. In suspension bridges, large main cables (normally two) hang between the towers and are anchored at each end to the ground. The main cables, which are free to move on bearings in the towers, bear the load of

264-460: A 200 feet span (also termed Beose Bridge) was constructed near Sagar, India during 1828–1830 by Duncan Presgrave, Mint and Assay Master. The Clifton Suspension Bridge (designed in 1831, completed in 1864 with a 214 m central span), is similar to the Sagar bridge. It is one of the longest of the parabolic arc chain type. The current Marlow suspension bridge was designed by William Tierney Clark and

352-524: A bar, expelling slag in the process. During the Middle Ages , water-power was applied to the process, probably initially for powering bellows, and only later to hammers for forging the blooms. However, while it is certain that water-power was used, the details remain uncertain. That was the culmination of the direct process of ironmaking. It survived in Spain and southern France as Catalan Forges to

440-492: A bridge has a tendency to collapse simply because of the gravitational forces acting on the materials of which the bridge is made. Live load refers to traffic that moves across the bridge as well as normal environmental factors such as changes in temperature, precipitation, and winds. Dynamic load refers to environmental factors that go beyond normal weather conditions, factors such as sudden gusts of wind and earthquakes. All three factors must be taken into consideration when building

528-468: A bridge. Silver Bridge (USA) was an eyebar chain highway bridge, built in 1928, that collapsed in late 1967, killing forty-six people. The bridge had a low-redundancy design that was difficult to inspect. The collapse inspired legislation to ensure that older bridges were regularly inspected and maintained. Following the collapse a bridge of similar design was immediately closed and eventually demolished. A second similarly-designed bridge had been built with

616-788: A bridge. The principles of suspension used on a large scale also appear in contexts less dramatic than road or rail bridges. Light cable suspension may prove less expensive and seem more elegant for a cycle or footbridge than strong girder supports. An example of this is the Nescio Bridge in the Netherlands, and the Roebling designed 1904 Riegelsville suspension pedestrian bridge across the Delaware River in Pennsylvania. The longest pedestrian suspension bridge, which spans

704-582: A carbon content of less than 0.008 wt% . Bar iron is a generic term sometimes used to distinguish it from cast iron. It is the equivalent of an ingot of cast metal, in a convenient form for handling, storage, shipping and further working into a finished product. The bars were the usual product of the finery forge , but not necessarily made by that process: Wrought iron is a form of commercial iron containing less than 0.10% of carbon, less than 0.25% of impurities total of sulfur, phosphorus, silicon and manganese, and less than 2% slag by weight. Wrought iron

792-470: A final product. Sometimes European ironworks would skip the shingling process completely and roll the puddle balls. The only drawback to that is that the edges of the rough bars were not as well compressed. When the rough bar was reheated, the edges might separate and be lost into the furnace. The bloom was passed through rollers and to produce bars. The bars of wrought iron were of poor quality, called muck bars or puddle bars. To improve their quality,

880-463: A high silky luster and fibrous appearance. Wrought iron lacks the carbon content necessary for hardening through heat treatment , but in areas where steel was uncommon or unknown, tools were sometimes cold-worked (hence cold iron ) to harden them. An advantage of its low carbon content is its excellent weldability. Furthermore, sheet wrought iron cannot bend as much as steel sheet metal when cold worked. Wrought iron can be melted and cast; however,

968-403: A higher margin of safety and remained in service until 1991. The Tacoma Narrows Bridge , (USA), 1940, was vulnerable to structural vibration in sustained and moderately strong winds due to its plate-girder deck structure. Wind caused a phenomenon called aeroelastic fluttering that led to its collapse only months after completion. The collapse was captured on film. There were no human deaths in

SECTION 10

#1732801562087

1056-434: A low scale to supply the steel to the artisan swordmakers. Osmond iron consisted of balls of wrought iron, produced by melting pig iron and catching the droplets on a staff, which was spun in front of a blast of air so as to expose as much of it as possible to the air and oxidise its carbon content. The resultant ball was often forged into bar iron in a hammer mill. In the 15th century, the blast furnace spread into what

1144-449: A lower melting point than iron or steel. Cast and especially pig iron have excess slag which must be at least partially removed to produce quality wrought iron. At foundries it was common to blend scrap wrought iron with cast iron to improve the physical properties of castings. For several years after the introduction of Bessemer and open hearth steel, there were different opinions as to what differentiated iron from steel; some believed it

1232-603: A number of patented processes for that, which are referred to today as potting and stamping . The earliest were developed by John Wood of Wednesbury and his brother Charles Wood of Low Mill at Egremont , patented in 1763. Another was developed for the Coalbrookdale Company by the Cranage brothers . Another important one was that of John Wright and Joseph Jesson of West Bromwich . A number of processes for making wrought iron without charcoal were devised as

1320-476: A pedestrian suspension bridge over the Machchhu River in the city of Morbi, Gujarat, India collapsed, leading to the deaths of at least 141 people. Wrought iron Wrought iron is an iron alloy with a very low carbon content (less than 0.05%) in contrast to that of cast iron (2.1% to 4.5%). It is a semi-fused mass of iron with fibrous slag inclusions (up to 2% by weight), which give it

1408-410: A process for manufacturing wrought iron quickly and economically. It involved taking molten steel from a Bessemer converter and pouring it into cooler liquid slag. The temperature of the steel is about 1500 °C and the liquid slag is maintained at approximately 1200 °C. The molten steel contains a large amount of dissolved gases so when the liquid steel hit the cooler surfaces of the liquid slag

1496-647: A proposal by Robert Stevenson for a bridge over the River Almond near Edinburgh . Roebling's Delaware Aqueduct (begun 1847) consists of three sections supported by cables. The timber structure essentially hides the cables; and from a quick view, it is not immediately apparent that it is even a suspension bridge. The main suspension cables in older bridges were often made from a chain or linked bars, but modern bridge cables are made from multiple strands of wire. This not only adds strength but improves reliability (often called redundancy in engineering terms) because

1584-410: A refinery where raw coal was used to remove silicon and convert carbon within the raw material, found in the form of graphite, to a combination with iron called cementite. In the fully developed process (of Hall), this metal was placed into the hearth of the puddling furnace where it was melted. The hearth was lined with oxidizing agents such as haematite and iron oxide. The mixture was subjected to

1672-541: A sequence generally described as follows. Depending on length and size, construction may take anywhere between a year and a half (construction on the original Tacoma Narrows Bridge took only 19 months) up to as long as a decade (the Akashi-Kaikyō Bridge's construction began in May 1986 and was opened in May 1998 – a total of twelve years). Suspension bridges are typically ranked by the length of their main span. These are

1760-481: A single hearth for all stages. The introduction of coke for use in the blast furnace by Abraham Darby in 1709 (or perhaps others a little earlier) initially had little effect on wrought iron production. Only in the 1750s was coke pig iron used on any significant scale as the feedstock of finery forges. However, charcoal continued to be the fuel for the finery. From the late 1750s, ironmasters began to develop processes for making bar iron without charcoal. There were

1848-412: A strong current of air and stirred with long bars, called puddling bars or rabbles, through working doors. The air, the stirring, and the "boiling" action of the metal helped the oxidizing agents to oxidize the impurities and carbon out of the pig iron. As the impurities oxidize, they formed a molten slag or drifted off as gas, while the remaining iron solidified into spongy wrought iron that floated to

SECTION 20

#1732801562087

1936-499: A temporary walkway. Poured sockets are used to make a high strength, permanent cable termination. They are created by inserting the suspender wire rope (at the bridge deck supports) into the narrow end of a conical cavity which is oriented in-line with the intended direction of strain. The individual wires are splayed out inside the cone or 'capel', and the cone is then filled with molten lead-antimony-tin (Pb80Sb15Sn5) solder. Most suspension bridges have open truss structures to support

2024-399: A wood-like "grain" that is visible when it is etched, rusted, or bent to failure . Wrought iron is tough, malleable, ductile , corrosion resistant, and easily forge welded , but is more difficult to weld electrically. Before the development of effective methods of steelmaking and the availability of large quantities of steel, wrought iron was the most common form of malleable iron. It

2112-424: Is redshort or hot short if it contains sulfur in excess quantity. It has sufficient tenacity when cold, but cracks when bent or finished at a red heat. Hot short iron was considered unmarketable. Cold short iron, also known as coldshear , colshire , contains excessive phosphorus. It is very brittle when cold and cracks if bent. It may, however, be worked at high temperature. Historically, coldshort iron

2200-414: Is a more important measure of the quality of wrought iron. In tensile testing, the best irons are able to undergo considerable elongation before failure. Higher tensile wrought iron is brittle. Because of the large number of boiler explosions on steamboats in the early 1800s, the U.S. Congress passed legislation in 1830 which approved funds for correcting the problem. The treasury awarded a $ 1500 contract to

2288-550: Is a type of bridge in which the deck is hung below suspension cables on vertical suspenders. The first modern examples of this type of bridge were built in the early 1800s. Simple suspension bridges , which lack vertical suspenders, have a long history in many mountainous parts of the world. Besides the bridge type most commonly called suspension bridges, covered in this article, there are other types of suspension bridges . The type covered here has cables suspended between towers , with vertical suspender cables that transfer

2376-520: Is an archaic past participle of the verb "to work", and so "wrought iron" literally means "worked iron". Wrought iron is a general term for the commodity, but is also used more specifically for finished iron goods, as manufactured by a blacksmith . It was used in that narrower sense in British Customs records, such manufactured iron was subject to a higher rate of duty than what might be called "unwrought" iron. Cast iron , unlike wrought iron,

2464-435: Is brittle and cannot be worked either hot or cold. In the 17th, 18th, and 19th centuries, wrought iron went by a wide variety of terms according to its form, origin, or quality. While the bloomery process produced wrought iron directly from ore, cast iron or pig iron were the starting materials used in the finery forge and puddling furnace . Pig iron and cast iron have higher carbon content than wrought iron, but have

2552-645: Is considered the last remaining Inca rope bridge and is rebuilt annually. The first iron chain suspension bridge in the Western world was the Jacob's Creek Bridge (1801) in Westmoreland County, Pennsylvania , designed by inventor James Finley . Finley's bridge was the first to incorporate all of the necessary components of a modern suspension bridge, including a suspended deck which hung by trusses. Finley patented his design in 1808, and published it in

2640-491: Is deceptive. Most of the manganese, sulfur, phosphorus, and silicon in the wrought iron are incorporated into the slag fibers, making wrought iron purer than plain carbon steel. Amongst its other properties, wrought iron becomes soft at red heat and can be easily forged and forge welded . It can be used to form temporary magnets , but it cannot be magnetized permanently, and is ductile , malleable , and tough . For most purposes, ductility rather than tensile strength

2728-407: Is no longer manufactured commercially. Wrought iron was originally produced by a variety of smelting processes, all described today as "bloomeries". Different forms of bloomery were used at different places and times. The bloomery was charged with charcoal and iron ore and then lit. Air was blown in through a tuyere to heat the bloomery to a temperature somewhat below the melting point of iron. In

Kristiansund Mainland Connection - Misplaced Pages Continue

2816-450: Is no longer produced on a commercial scale. Many products described as wrought iron, such as guard rails , garden furniture , and gates are made of mild steel. They are described as "wrought iron" only because they have been made to resemble objects which in the past were wrought (worked) by hand by a blacksmith (although many decorative iron objects, including fences and gates, were often cast rather than wrought). The word "wrought"

2904-628: Is now Belgium where it was improved. From there, it spread via the Pays de Bray on the boundary of Normandy and then to the Weald in England. With it, the finery forge spread. Those remelted the pig iron and (in effect) burnt out the carbon, producing a bloom, which was then forged into bar iron. If rod iron was required, a slitting mill was used. The finery process existed in two slightly different forms. In Great Britain, France, and parts of Sweden, only

2992-481: The Industrial Revolution began during the latter half of the 18th century. The most successful of those was puddling, using a puddling furnace (a variety of the reverberatory furnace ), which was invented by Henry Cort in 1784. It was later improved by others including Joseph Hall , who was the first to add iron oxide to the charge. In that type of furnace, the metal does not come into contact with

3080-836: The Mahakam River , located in Kutai Kartanegara Regency , East Kalimantan district on the Indonesia island of Borneo , was built in 1995, completed in 2001 and collapsed in 2011. Dozens of vehicles on the bridge fell into the Mahakam River . As a result of this incident, 24 people died and dozens of others were injured and were treated at the Aji Muhammad Parikesit Regional Hospital. Meanwhile, 12 people were reported missing, 31 people were seriously injured, and 8 people had minor injuries. Research findings indicate that

3168-609: The Walloon process was used. That employed two different hearths, a finery hearth for finishing the iron and a chafery hearth for reheating it in the course of drawing the bloom out into a bar. The finery always burnt charcoal, but the chafery could be fired with mineral coal , since its impurities would not harm the iron when it was in the solid state. On the other hand, the German process, used in Germany, Russia, and most of Sweden used

3256-524: The bloomery ever being used in China. The fining process involved liquifying cast iron in a fining hearth and removing carbon from the molten cast iron through oxidation . Wagner writes that in addition to the Han dynasty hearths believed to be fining hearths, there is also pictorial evidence of the fining hearth from a Shandong tomb mural dated 1st to 2nd century AD, as well as a hint of written evidence in

3344-413: The finery forge at least by the 2nd century BC, the earliest specimens of cast and pig iron fined into wrought iron and steel found at the early Han dynasty site at Tieshengguo. Pigott speculates that the finery forge existed in the previous Warring States period (403–221 BC), due to the fact that there are wrought iron items from China dating to that period and there is no documented evidence of

3432-448: The live and dead loads of the deck below, upon which traffic crosses. This arrangement allows the deck to be level or to arc upward for additional clearance. Like other suspension bridge types, this type often is constructed without the use of falsework . The suspension cables must be anchored at each end of the bridge, since any load applied to the bridge is transformed into tension in these main cables. The main cables continue beyond

3520-783: The 1860s, being in high demand for ironclad warships and railway use. However, as properties such as brittleness of mild steel improved with better ferrous metallurgy and as steel became less costly to make thanks to the Bessemer process and the Siemens–Martin process , the use of wrought iron declined. Many items, before they came to be made of mild steel , were produced from wrought iron, including rivets , nails , wire , chains , rails , railway couplings , water and steam pipes , nuts , bolts , horseshoes , handrails , wagon tires, straps for timber roof trusses , and ornamental ironwork , among many other things. Wrought iron

3608-701: The 1960s, the price of steel production was dropping due to recycling, and even using the Aston process, wrought iron production was labor-intensive. It has been estimated that the production of wrought iron is approximately twice as expensive as that of low-carbon steel. In the United States, the last plant closed in 1969. The last in the world was the Atlas Forge of Thomas Walmsley and Sons in Bolton , Great Britain, which closed in 1973. Its 1860s-era equipment

Kristiansund Mainland Connection - Misplaced Pages Continue

3696-418: The 4th century AD Daoist text Taiping Jing . Wrought iron has been used for many centuries, and is the "iron" that is referred to throughout Western history. The other form of iron, cast iron , was in use in China since ancient times but was not introduced into Western Europe until the 15th century; even then, due to its brittleness, it could be used for only a limited number of purposes. Throughout much of

3784-575: The Franklin Institute to conduct a study. As part of the study, Walter R. Johnson and Benjamin Reeves conducted strength tests on boiler iron using a tester they had built in 1832 based on a design by Lagerhjelm in Sweden. Because of misunderstandings about tensile strength and ductility, their work did little to reduce failures. The importance of ductility was recognized by some very early in

3872-542: The Middle Ages, iron was produced by the direct reduction of ore in manually operated bloomeries , although water power had begun to be employed by 1104. The raw material produced by all indirect processes is pig iron. It has a high carbon content and as a consequence, it is brittle and cannot be used to make hardware. The osmond process was the first of the indirect processes, developed by 1203, but bloomery production continued in many places. The process depended on

3960-724: The Philadelphia journal, The Port Folio , in 1810. Early British chain bridges included the Dryburgh Abbey Bridge (1817) and 137 m Union Bridge (1820), with spans rapidly increasing to 176 m with the Menai Bridge (1826), "the first important modern suspension bridge". The first chain bridge on the German speaking territories was the Chain Bridge in Nuremberg . The Sagar Iron Suspension Bridge with

4048-552: The River Paiva, Arouca Geopark , Portugal, opened in April 2021. The 516 metres bridge hangs 175 meters above the river. Where such a bridge spans a gap between two buildings, there is no need to construct towers, as the buildings can anchor the cables. Cable suspension may also be augmented by the inherent stiffness of a structure that has much in common with a tubular bridge . Typical suspension bridges are constructed using

4136-451: The bars were cut up, piled and tied together by wires, a process known as faggoting or piling. They were then reheated to a welding state, forge welded, and rolled again into bars. The process could be repeated several times to produce wrought iron of desired quality. Wrought iron that has been rolled multiple times is called merchant bar or merchant iron. The advantage of puddling was that it used coal, not charcoal as fuel. However, that

4224-573: The bottom 35 metres (115 ft) of the tunnel is in solid rock. A drive through the tunnel takes about 5 minutes. Because of the relatively steep climb, there are three lanes at each end, but only two at the bottom. Krifast was authorized by the Norwegian Parliament and construction began in October 1988. The government pledged to finance 39% of the expenses, the rest were to be taken in as toll on road traffic and car ferry fares (on

4312-432: The bridge deck. Before the deck is installed, the cables are under tension from their own weight. Along the main cables smaller cables or rods connect to the bridge deck, which is lifted in sections. As this is done, the tension in the cables increases, as it does with the live load of traffic crossing the bridge. The tension on the main cables is transferred to the ground at the anchorages and by downwards compression on

4400-491: The chains are not attached to abutments as is usual, but instead are attached to the main girders, which are thus in compression. Here, the chains are made from flat wrought iron plates, eight inches (203 mm) wide by an inch and a half (38 mm) thick, rivetted together. The first wire-cable suspension bridge was the Spider Bridge at Falls of Schuylkill (1816), a modest and temporary footbridge built following

4488-631: The collapse of James Finley's nearby Chain Bridge at Falls of Schuylkill (1808). The footbridge's span was 124 m, although its deck was only 0.45 m wide. Development of wire-cable suspension bridges dates to the temporary simple suspension bridge at Annonay built by Marc Seguin and his brothers in 1822. It spanned only 18 m. The first permanent wire cable suspension bridge was Guillaume Henri Dufour 's Saint Antoine Bridge in Geneva of 1823, with two 40 m spans. The first with cables assembled in mid-air in

SECTION 50

#1732801562087

4576-529: The collapse was largely caused by the construction failure of the vertical hanging clamp. It was also found that poor maintenance, fatigue in the cable hanger construction materials, material quality, and bridge loads that exceed vehicle capacity, can also have an impact on bridge collapse. In 2013 the Kutai Kartanegara Bridge rebuilt the same location and completed in 2015 with a Through arch bridge design. On 30 October 2022, Jhulto Pul ,

4664-467: The collapse; several drivers escaped their cars on foot and reached the anchorages before the span dropped. Yarmouth suspension bridge (England) was built in 1829 and collapsed in 1845, killing 79 people. Peace River Suspension Bridge (Canada), which was completed in 1943, collapsed when the north anchor's soil support for the suspension bridge failed in October 1957. The entire bridge subsequently collapsed. Kutai Kartanegara Bridge (Indonesia) over

4752-413: The course of the smelt, slag would melt and run out, and carbon monoxide from the charcoal would reduce the ore to iron, which formed a spongy mass (called a "bloom") containing iron and also molten silicate minerals (slag) from the ore. The iron remained in the solid state. If the bloomery were allowed to become hot enough to melt the iron, carbon would dissolve into it and form pig or cast iron, but that

4840-593: The development of the blast furnace, of which medieval examples have been discovered at Lapphyttan , Sweden and in Germany . The bloomery and osmond processes were gradually replaced from the 15th century by finery processes, of which there were two versions, the German and Walloon. They were in turn replaced from the late 18th century by puddling , with certain variants such as the Swedish Lancashire process . Those, too, are now obsolete, and wrought iron

4928-584: The failure of a few flawed strands in the hundreds used pose very little threat of failure, whereas a single bad link or eyebar can cause failure of an entire bridge. (The failure of a single eyebar was found to be the cause of the collapse of the Silver Bridge over the Ohio River .) Another reason is that as spans increased, engineers were unable to lift larger chains into position, whereas wire strand cables can be formulated one by one in mid-air from

5016-480: The ferries to be discontinued due to the new tunnel and bridges). As of July 1991, the project employed 427 people, and spent 2 million  kr daily on construction. Four years and NOK 1.1 billion later, in August 1992, Krifast was opened for regular traffic. 62°58′28″N 7°46′40″E  /  62.97444°N 7.77778°E  / 62.97444; 7.77778 Suspension bridge A suspension bridge

5104-432: The fuel, and so is not contaminated by its impurities. The heat of the combustion products passes over the surface of the puddle and the roof of the furnace reverberates (reflects) the heat onto the metal puddle on the fire bridge of the furnace. Unless the raw material used is white cast iron, the pig iron or other raw product of the puddling first had to be refined into refined iron , or finers metal. That would be done in

5192-401: The gases were liberated. The molten steel then froze to yield a spongy mass having a temperature of about 1370 °C. The spongy mass would then be finished by being shingled and rolled as described under puddling (above). Three to four tons could be converted per batch with the method. Steel began to replace iron for railroad rails as soon as the Bessemer process for its manufacture

5280-432: The highway, which may be supported by suspender cables or their own trusswork . In cases where trusswork supports the spans, there will be very little arc in the outboard main cables. The earliest suspension bridges were ropes slung across a chasm, with a deck possibly at the same level or hung below the ropes such that the rope had a catenary shape. The Tibetan siddha and bridge-builder Thangtong Gyalpo originated

5368-430: The iron. The included slag in wrought iron also imparts corrosion resistance. Antique music wire , manufactured at a time when mass-produced carbon-steels were available, was found to have low carbon and high phosphorus; iron with high phosphorus content, normally causing brittleness when worked cold, was easily drawn into music wires. Although at the time phosphorus was not an easily identified component of iron, it

SECTION 60

#1732801562087

5456-477: The islands of Bergsøya and Aspøya , which is the only bridge of its kind where nothing but the ends are anchored to solid rock. The bridge is supported by 7 pontoons, floating on a 320-metre (1,050 ft) deep fjord . The 5.1-kilometre (3.2 mi) long underwater Freifjord Tunnel goes under the Freifjorden . It is reaches a depth of 134 metres (440 ft) below sea level at its deepest point, though

5544-534: The live loads. In an underspanned suspension bridge, also called under-deck cable-stayed bridge, the main cables hang entirely below the bridge deck, but are still anchored into the ground in a similar way to the conventional type. Very few bridges of this nature have been built, as the deck is inherently less stable than when suspended below the cables. Examples include the Pont des Bergues of 1834 designed by Guillaume Henri Dufour ; James Smith's Micklewood Bridge; and

5632-514: The mid 19th century, in Austria as the stuckofen to 1775, and near Garstang in England until about 1770; it was still in use with hot blast in New York in the 1880s. In Japan the last of the old tatara bloomeries used in production of traditional tamahagane steel, mainly used in swordmaking, was extinguished only in 1925, though in the late 20th century the production resumed on

5720-639: The modern method was Joseph Chaley 's Grand Pont Suspendu in Fribourg , in 1834. In the United States, the first major wire-cable suspension bridge was the Wire Bridge at Fairmount in Philadelphia, Pennsylvania. Designed by Charles Ellet Jr. and completed in 1842, it had a span of 109 m. Ellet's Niagara Falls suspension bridge (1847–48) was abandoned before completion. It was used as scaffolding for John A. Roebling 's double decker railroad and carriage bridge (1855). The Otto Beit Bridge (1938–1939)

5808-406: The pillars to deck-level supports, and further continue to connections with anchors in the ground. The roadway is supported by vertical suspender cables or rods, called hangers. In some circumstances, the towers may sit on a bluff or canyon edge where the road may proceed directly to the main span. Otherwise, the bridge will typically have two smaller spans, running between either pair of pillars and

5896-666: The product is no longer wrought iron, since the slag stringers characteristic of wrought iron disappear on melting, so the product resembles impure, cast, Bessemer steel. There is no engineering advantage to melting and casting wrought iron, as compared to using cast iron or steel, both of which are cheaper. Due to the variations in iron ore origin and iron manufacture, wrought iron can be inferior or superior in corrosion resistance, compared to other iron alloys. There are many mechanisms behind its corrosion resistance. Chilton and Evans found that nickel enrichment bands reduce corrosion. They also found that in puddled, forged, and piled iron,

5984-413: The railing and the walking layer of Gyalpo's bridges used wires. The stress points that carried the screed were reinforced by the iron chains. Before the use of iron chains it is thought that Gyalpo used ropes from twisted willows or yak skins. He may have also used tightly bound cloth. The Inca used rope bridges , documented as early as 1615. It is not known when they were first made. Queshuachaca

6072-612: The roadbed, particularly owing to the unfavorable effects of using plate girders, discovered from the Tacoma Narrows Bridge (1940) bridge collapse. In the 1960s, developments in bridge aerodynamics allowed the re-introduction of plate structures as shallow box girders , first seen on the Severn bridge , built 1961–1966. In the picture of the Yichang Bridge , note the very sharp entry edge and sloping undergirders in

6160-531: The same manner as mild steel, but the presence of oxide or inclusions will give defective results. The material has a rough surface, so it can hold platings and coatings better than smooth steel. For instance, a galvanic zinc finish applied to wrought iron is approximately 25–40% thicker than the same finish on steel. In Table 1, the chemical composition of wrought iron is compared to that of pig iron and carbon steel . Although it appears that wrought iron and plain carbon steel have similar chemical compositions, that

6248-480: The silicate inclusions act as a flux and give the material its unique, fibrous structure. The silicate filaments in the slag also protect the iron from corrosion and diminish the effect of fatigue caused by shock and vibration. Historically, a modest amount of wrought iron was refined into steel , which was used mainly to produce swords , cutlery , chisels , axes , and other edged tools, as well as springs and files. The demand for wrought iron reached its peak in

6336-401: The suspension bridge shown. This enables this type of construction to be used without the danger of vortex shedding and consequent aeroelastic effects, such as those that destroyed the original Tacoma Narrows bridge. Three kinds of forces operate on any bridge: the dead load, the live load, and the dynamic load. Dead load refers to the weight of the bridge itself. Like any other structure,

6424-514: The ten bridges with the longest spans, followed by the length of the span and the year the bridge opened for traffic: (Chronological) Broughton Suspension Bridge (England) was an iron chain bridge built in 1826. One of Europe's first suspension bridges, it collapsed in 1831 due to mechanical resonance induced by troops marching in step. As a result of the incident, the British Army issued an order that troops should "break step" when crossing

6512-465: The top of the puddle and was fished out of the melt as puddle balls, using puddle bars. There was still some slag left in the puddle balls, so while they were still hot they would be shingled to remove the remaining slag and cinder. That was achieved by forging the balls under a hammer, or by squeezing the bloom in a machine. The material obtained at the end of shingling is known as bloom. The blooms are not useful in that form, so they were rolled into

6600-489: The towers. In cable-stayed bridges, the towers are the primary load-bearing structures that transmit the bridge loads to the ground. A cantilever approach is often used to support the bridge deck near the towers, but lengths further from them are supported by cables running directly to the towers. By design, all static horizontal forces of the cable-stayed bridge are balanced so that the supporting towers do not tend to tilt or slide and so must only resist horizontal forces from

6688-568: The use of iron chains in his version of simple suspension bridges . In 1433, Gyalpo built eight bridges in eastern Bhutan . The last surviving chain-linked bridge of Gyalpo's was the Thangtong Gyalpo Bridge in Duksum en route to Trashi Yangtse , which was finally washed away in 2004. Gyalpo's iron chain bridges did not include a suspended-deck bridge , which is the standard on all modern suspension bridges today. Instead, both

6776-423: The weight of the cables is small compared to the weight of the deck. One can see the shape from the constant increase of the gradient of the cable with linear (deck) distance, this increase in gradient at each connection with the deck providing a net upward support force. Combined with the relatively simple constraints placed upon the actual deck, that makes the suspension bridge much simpler to design and analyze than

6864-560: The working-over of the metal spread out copper, nickel, and tin impurities that produce electrochemical conditions that slow down corrosion. The slag inclusions have been shown to disperse corrosion to an even film, enabling the iron to resist pitting. Another study has shown that slag inclusions are pathways to corrosion. Other studies show that sulfur in the wrought iron decreases corrosion resistance, while phosphorus increases corrosion resistance. Chloride ions also decrease wrought iron's corrosion resistance. Wrought iron may be welded in

6952-479: Was adopted (1865 on). Iron remained dominant for structural applications until the 1880s, because of problems with brittle steel, caused by introduced nitrogen, high carbon, excess phosphorus, or excessive temperature during or too-rapid rolling. By 1890 steel had largely replaced iron for structural applications. Sheet iron (Armco 99.97% pure iron) had good properties for use in appliances, being well-suited for enamelling and welding, and being rust-resistant. In

7040-661: Was built between 1829 and 1832, replacing a wooden bridge further downstream which collapsed in 1828. It is the only suspension bridge across the non-tidal Thames. The Széchenyi Chain Bridge , (designed in 1840, opened in 1849), spanning the River Danube in Budapest, was also designed by William Clark and it is a larger-scale version of Marlow Bridge. An interesting variation is Thornewill and Warham 's Ferry Bridge in Burton-on-Trent , Staffordshire (1889), where

7128-490: Was considered sufficient for nails . Phosphorus is not necessarily detrimental to iron. Ancient Near Eastern smiths did not add lime to their furnaces. The absence of calcium oxide in the slag, and the deliberate use of wood with high phosphorus content during the smelting, induces a higher phosphorus content (typically <0.3%) than in modern iron (<0.02–0.03%). Analysis of the Iron Pillar of Delhi gives 0.11% in

7216-552: Was given the name wrought because it was hammered, rolled, or otherwise worked while hot enough to expel molten slag. The modern functional equivalent of wrought iron is mild steel , also called low-carbon steel. Neither wrought iron nor mild steel contain enough carbon to be hardened by heating and quenching. Wrought iron is highly refined, with a small amount of silicate slag forged out into fibers. It comprises around 99.4% iron by mass. The presence of slag can be beneficial for blacksmithing operations, such as forge welding, since

7304-515: Was hypothesized that the type of iron had been rejected for conversion to steel but excelled when tested for drawing ability. During the Han dynasty (202 BC – 220 AD), new iron smelting processes led to the manufacture of new wrought iron implements for use in agriculture, such as the multi-tube seed drill and iron plough . In addition to accidental lumps of low-carbon wrought iron produced by excessive injected air in ancient Chinese cupola furnaces . The ancient Chinese created wrought iron by using

7392-477: Was moved to the Blists Hill site of Ironbridge Gorge Museum for preservation. Some wrought iron is still being produced for heritage restoration purposes, but only by recycling scrap. The slag inclusions, or stringers , in wrought iron give it properties not found in other forms of ferrous metal. There are approximately 250,000 inclusions per square inch. A fresh fracture shows a clear bluish color with

7480-445: Was not the intention. However, the design of a bloomery made it difficult to reach the melting point of iron and also prevented the concentration of carbon monoxide from becoming high. After smelting was complete, the bloom was removed, and the process could then be started again. It was thus a batch process, rather than a continuous one such as a blast furnace. The bloom had to be forged mechanically to consolidate it and shape it into

7568-541: Was of little advantage in Sweden, which lacked coal. Gustaf Ekman observed charcoal fineries at Ulverston , which were quite different from any in Sweden. After his return to Sweden in the 1830s, he experimented and developed a process similar to puddling but used firewood and charcoal, which was widely adopted in the Bergslagen in the following decades. In 1925, James Aston of the United States developed

7656-473: Was the chemical composition and others that it was whether the iron heated sufficiently to melt and "fuse". Fusion eventually became generally accepted as relatively more important than composition below a given low carbon concentration. Another difference is that steel can be hardened by heat treating . Historically, wrought iron was known as "commercially pure iron"; however, it no longer qualifies because current standards for commercially pure iron require

7744-404: Was the first modern suspension bridge outside the United States built with parallel wire cables. Two towers/pillars, two suspension cables, four suspension cable anchors, multiple suspender cables, the bridge deck. The main cables of a suspension bridge will form a catenary when hanging under their own weight only. When supporting the deck, the cables will instead form a parabola , assuming

#86913