Misplaced Pages

Hatfield Swamp

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Hatfield Swamp is a fresh water wetland area in the U.S. state of New Jersey , forming what might be considered the "second bank" of the Passaic River between Morris and Essex counties.

#53946

131-637: During the late Triassic and early Jurassic periods, when the North American plate separated from the African plate, an aborted rift system was created. The resulting rift valley, known as the Newark Basin , was filled with alternating layers of red bed sediment and flood basalts . Over millions of years, the rift valley was faulted, tilted, and eroded, until the edges of the hard flood basalt layers formed ridges. Prior to 20,000 years before

262-630: A bolide impact, for which an impact crater containing Manicouagan Reservoir in Quebec , Canada , has been singled out. However, the Manicouagan impact melt has been dated to 214±1 Mya. The date of the Triassic-Jurassic boundary has also been more accurately fixed recently, at 201.4 Mya. Both dates are gaining accuracy by using more accurate forms of radiometric dating, in particular the decay of uranium to lead in zircons formed at time of

393-626: A cosmopolitan distribution . Coelacanths show their highest post- Devonian diversity in the Early Triassic . Ray-finned fishes (actinopterygians) went through a remarkable diversification in the beginning of the Triassic, leading to peak diversity during the Middle Triassic; however, the pattern of this diversification is still not well understood due to a taphonomic megabias . The first stem-group teleosts appeared during

524-555: A chain of mountain ranges stretching from Turkey to Malaysia . Pangaea was fractured by widespread faulting and rift basins during the Triassic—especially late in that period—but had not yet separated. The first nonmarine sediments in the rift that marks the initial break-up of Pangaea, which separated eastern North America from Morocco , are of Late Triassic age; in the United States , these thick sediments comprise

655-644: A constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precisely define global chronostratigraphic units of the International Chronostratigraphic Chart (ICC) that are used to define divisions of geologic time. The chronostratigraphic divisions are in turn used to define geochronologic units. The geologic time scale is a way of representing deep time based on events that have occurred throughout Earth's history ,

786-474: A few exposures in the west. During the Triassic peneplains are thought to have formed in what is now Norway and southern Sweden. Remnants of this peneplain can be traced as a tilted summit accordance in the Swedish West Coast . In northern Norway Triassic peneplains may have been buried in sediments to be then re-exposed as coastal plains called strandflats . Dating of illite clay from

917-597: A formal proposal to the ICS for the establishment of the Anthropocene Series/Epoch. Nevertheless, the definition of the Anthropocene as a geologic time period rather than a geologic event remains controversial and difficult. An international working group of the ICS on pre-Cryogenian chronostratigraphic subdivision have outlined a template to improve the pre-Cryogenian geologic time scale based on

1048-471: A long beak-like snout), and Shringasaurus (a horned herbivore which reached a body length of 3–4 metres (9.8–13.1 ft)). One group of archosauromorphs, the archosauriforms , were distinguished by their active predatory lifestyle, with serrated teeth and upright limb postures. Archosauriforms were diverse in the Triassic, including various terrestrial and semiaquatic predators of all shapes and sizes. The large-headed and robust erythrosuchids were among

1179-635: A machine-readable Resource Description Framework / Web Ontology Language representation of the time scale, which is available through the Commission for the Management and Application of Geoscience Information GeoSciML project as a service and at a SPARQL end-point. Some other planets and satellites in the Solar System have sufficiently rigid structures to have preserved records of their own histories, for example, Venus , Mars and

1310-796: A number of trails open for public hiking . Both the Essex County Chapter of the Sierra Club and the New Jersey Audubon Society lead trips within the swamp throughout the year, while the Essex County Environmental Center provides information regarding such trips. 40°50′27″N 74°19′42″W  /  40.8408°N 74.3283°W  / 40.8408; -74.3283 Triassic The Triassic ( / t r aɪ ˈ æ s ɪ k / try- ASS -ik ; sometimes symbolized 🝈 )

1441-617: A pseudosuchian. Pseudosuchians were far more ecologically dominant in the Triassic, including large herbivores (such as aetosaurs ), large carnivores (" rauisuchians "), and the first crocodylomorphs (" sphenosuchians "). Aetosaurs were heavily-armored reptiles that were common during the last 30 million years of the Late Triassic until they died out at the Triassic-Jurassic extinction. Most aetosaurs were herbivorous and fed on low-growing plants, but some may have eaten meat. " rauisuchians " (formally known as paracrocodylomorphs ) were

SECTION 10

#1732776049054

1572-529: A rock that cuts across another rock must be younger than the rock it cuts across. The law of included fragments that states small fragments of one type of rock that are embedded in a second type of rock must have formed first, and were included when the second rock was forming. The relationships of unconformities which are geologic features representing a gap in the geologic record. Unconformities are formed during periods of erosion or non-deposition, indicating non-continuous sediment deposition. Observing

1703-458: A short period of time, becoming extinct about 220 million years ago. They were exceptionally abundant in the middle of the Triassic, as the primary large herbivores in many Carnian-age ecosystems. They sheared plants with premaxillary beaks and plates along the upper jaw with multiple rows of teeth. Allokotosaurs were iguana-like reptiles, including Trilophosaurus (a common Late Triassic reptile with three-crowned teeth), Teraterpeton (which had

1834-567: A specialized subgroup of cynodonts, appeared during the Triassic and would survive the extinction event, allowing them to radiate during the Jurassic. Amphibians were primarily represented by the temnospondyls , giant aquatic predators that had survived the end-Permian extinction and saw a new burst of diversification in the Triassic, before going extinct by the end; however, early crown-group lissamphibians (including stem-group frogs , salamanders and caecilians ) also became more common during

1965-419: A specific interval of geologic time, and only this time span. Eonothem, erathem, system, series, subseries, stage, and substage are the hierarchical chronostratigraphic units. A geochronologic unit is a subdivision of geologic time. It is a numeric representation of an intangible property (time). These units are arranged in a hierarchy: eon, era, period, epoch, subepoch, age, and subage. Geochronology

2096-449: A strandflat of Bømlo , southern Norway, have shown that landscape there became weathered in Late Triassic times ( c. 210 million years ago) with the landscape likely also being shaped during that time. Eustatic sea level in the Triassic was consistently low compared to the other geological periods. The beginning of the Triassic was around present sea level, rising to about 10–20 metres (33–66 ft) above present-day sea level during

2227-585: A supercontinent has less shoreline compared to a series of smaller continents, Triassic marine deposits are relatively uncommon on a global scale. A major exception is in Western Europe , where the Triassic was first studied. The northeastern margin of Gondwana was a stable passive margin along the Neo-Tethys Ocean, and marine sediments have been preserved in parts of northern India and Arabia . In North America , marine deposits are limited to

2358-547: A system/series (early/middle/late); however, the International Commission on Stratigraphy advocates for all new series and subseries to be named for a geographic feature in the vicinity of its stratotype or type locality . The name of stages should also be derived from a geographic feature in the locality of its stratotype or type locality. Informally, the time before the Cambrian is often referred to as

2489-659: A time span of about 4.54 ± 0.05 Ga (4.54 billion years). It chronologically organises strata, and subsequently time, by observing fundamental changes in stratigraphy that correspond to major geological or paleontological events. For example, the Cretaceous–Paleogene extinction event , marks the lower boundary of the Paleogene System/Period and thus the boundary between the Cretaceous and Paleogene systems/periods. For divisions prior to

2620-458: A wider sense, correlating strata across national and continental boundaries based on their similarity to each other. Many of the names below erathem/era rank in use on the modern ICC/GTS were determined during the early to mid-19th century. During the 19th century, the debate regarding Earth's age was renewed, with geologists estimating ages based on denudation rates and sedimentary thicknesses or ocean chemistry, and physicists determining ages for

2751-400: A year, from heavy rain, snow melt in spring, or the remnants of storms that originated in the tropics. The area is the joining point of three rivers. The frequent flooding makes the swamp a difficult place to live for mammals, such as deer, raccoons, possums, skunks and fox. Most of these animals live on the fringes of the swamp, where the ground is higher. Muskrats are low in population in

SECTION 20

#1732776049054

2882-659: Is a geologic period and system which spans 50.5 million years from the end of the Permian Period 251.902 million years ago ( Mya ), to the beginning of the Jurassic Period 201.4 Mya. The Triassic is the first and shortest period of the Mesozoic Era and the seventh period of the Phanerozoic Eon . Both the start and end of the period are marked by major extinction events . The Triassic Period

3013-468: Is a recent study of North American faunas. In the Petrified Forest of northeast Arizona there is a unique sequence of late Carnian-early Norian terrestrial sediments. An analysis in 2002 found no significant change in the paleoenvironment. Phytosaurs , the most common fossils there, experienced a change-over only at the genus level, and the number of species remained the same. Some aetosaurs ,

3144-549: Is an internationally agreed-upon reference point on a stratigraphic section that defines the lower boundaries of stages on the geologic time scale. (Recently this has been used to define the base of a system) A Global Standard Stratigraphic Age (GSSA) is a numeric-only, chronologic reference point used to define the base of geochronologic units prior to the Cryogenian. These points are arbitrarily defined. They are used where GSSPs have not yet been established. Research

3275-439: Is divided into chronostratigraphic units and their corresponding geochronologic units. The subdivisions Early and Late are used as the geochronologic equivalents of the chronostratigraphic Lower and Upper , e.g., Early Triassic Period (geochronologic unit) is used in place of Lower Triassic System (chronostratigraphic unit). Rocks representing a given chronostratigraphic unit are that chronostratigraphic unit, and

3406-566: Is less frequent) remains unchanged. For example, in early 2022, the boundary between the Ediacaran and Cambrian periods (geochronologic units) was revised from 541 Ma to 538.8 Ma but the rock definition of the boundary (GSSP) at the base of the Cambrian, and thus the boundary between the Ediacaran and Cambrian systems (chronostratigraphic units) has not been changed; rather, the absolute age has merely been refined. Chronostratigraphy

3537-508: Is likely a paraphyletic group rather than a true clade. Tanystropheids were a family of protorosaurs which elevated their neck size to extremes, with the largest genus Tanystropheus having a neck longer than its body. The protorosaur family Sharovipterygidae used their elongated hindlimbs for gliding. Other archosauromorphs, such as rhynchosaurs and allokotosaurs , were mostly stocky-bodied herbivores with specialized jaw structures. Rhynchosaurs, barrel-gutted herbivores, thrived for only

3668-628: Is named for Cornelius Hetfield who owned and operated a mill sometime before the American Revolution . During the struggle, the properties of Hetfield, an acknowledged Loyalist , were confiscated and sold to Cyrus Crane, who operated a mill on the edge of the swamp in what is now West Caldwell. After the death of family member Herbert Crane in the 1960s, the mill was dismantled and moved to Allaire State Park in Monmouth County, New Jersey. The Hatfield Swamp floods several times

3799-469: Is no evidence of glaciation at or near either pole; in fact, the polar regions were apparently moist and temperate , providing a climate suitable for forests and vertebrates, including reptiles. Pangaea's large size limited the moderating effect of the global ocean; its continental climate was highly seasonal, with very hot summers and cold winters. The strong contrast between the Pangea supercontinent and

3930-499: Is ongoing to define GSSPs for the base of all units that are currently defined by GSSAs. The standard international units of the geologic time scale are published by the International Commission on Stratigraphy on the International Chronostratigraphic Chart; however, regional terms are still in use in some areas. The numeric values on the International Chronostratigrahpic Chart are represented by

4061-457: Is still a useful concept. The principle of lateral continuity that states layers of sediments extend laterally in all directions until either thinning out or being cut off by a different rock layer, i.e. they are laterally continuous. Layers do not extend indefinitely; their limits are controlled by the amount and type of sediment in a sedimentary basin , and the geometry of that basin. The principle of cross-cutting relationships that states

Hatfield Swamp - Misplaced Pages Continue

4192-605: Is subdivided into three epochs: Early Triassic , Middle Triassic and Late Triassic . The Triassic began in the wake of the Permian–Triassic extinction event , which left the Earth's biosphere impoverished; it was well into the middle of the Triassic before life recovered its former diversity. Three categories of organisms can be distinguished in the Triassic record: survivors from the extinction event, new groups that flourished briefly, and other new groups that went on to dominate

4323-460: Is superimposed by 22 sea level drop events widespread in the geologic record, mostly of minor (less than 25-metre (82 ft)) and medium (25–75-metre (82–246 ft)) magnitudes. A lack of evidence for Triassic continental ice sheets suggest that glacial eustasy is unlikely to be the cause of these changes. The Triassic continental interior climate was generally hot and dry, so that typical deposits are red bed sandstones and evaporites . There

4454-502: Is the element of stratigraphy that deals with the relation between rock bodies and the relative measurement of geological time. It is the process where distinct strata between defined stratigraphic horizons are assigned to represent a relative interval of geologic time. A chronostratigraphic unit is a body of rock, layered or unlayered, that is defined between specified stratigraphic horizons which represent specified intervals of geologic time. They include all rocks representative of

4585-405: Is the scientific branch of geology that aims to determine the age of rocks, fossils, and sediments either through absolute (e.g., radiometric dating ) or relative means (e.g., stratigraphic position , paleomagnetism , stable isotope ratios ). Geochronometry is the field of geochronology that numerically quantifies geologic time. A Global Boundary Stratotype Section and Point (GSSP)

4716-411: Is usually divided into Early , Middle , and Late Triassic Epochs , and the corresponding rocks are referred to as Lower, Middle, or Upper Triassic. The faunal stages from the youngest to oldest are: During the Triassic, almost all the Earth's land mass was concentrated into a single supercontinent , Pangaea ( lit.   ' entire land ' ). This supercontinent was more-or-less centered on

4847-618: The Anthropocene is a proposed epoch/series for the most recent time in Earth's history. While still informal, it is a widely used term to denote the present geologic time interval, in which many conditions and processes on Earth are profoundly altered by human impact. As of April 2022 the Anthropocene has not been ratified by the ICS; however, in May 2019 the Anthropocene Working Group voted in favour of submitting

4978-539: The Brothers of Purity , who wrote on the processes of stratification over the passage of time in their treatises . Their work likely inspired that of the 11th-century Persian polymath Avicenna (Ibn Sînâ, 980–1037) who wrote in The Book of Healing (1027) on the concept of stratification and superposition, pre-dating Nicolas Steno by more than six centuries. Avicenna also recognised fossils as "petrifications of

5109-578: The Carnian (early part of the Late Triassic), some advanced cynodonts gave rise to the first mammals . During the Triassic, archosaurs displaced therapsids as the largest and most ecologically prolific terrestrial amniotes. This "Triassic Takeover" may have contributed to the evolution of mammals by forcing the surviving therapsids and their mammaliaform successors to live as small, mainly nocturnal insectivores . Nocturnal life may have forced

5240-598: The Cryogenian , arbitrary numeric boundary definitions ( Global Standard Stratigraphic Ages , GSSAs) are used to divide geologic time. Proposals have been made to better reconcile these divisions with the rock record. Historically, regional geologic time scales were used due to the litho- and biostratigraphic differences around the world in time equivalent rocks. The ICS has long worked to reconcile conflicting terminology by standardising globally significant and identifiable stratigraphic horizons that can be used to define

5371-614: The Jurassic , when the temnospondyls had become very rare. Most of the Reptiliomorpha , stem-amniotes that gave rise to the amniotes, disappeared in the Triassic, but two water-dwelling groups survived: Embolomeri that only survived into the early part of the period, and the Chroniosuchia , which survived until the end of the Triassic. The Permian–Triassic extinction devastated terrestrial life. Biodiversity rebounded as

Hatfield Swamp - Misplaced Pages Continue

5502-568: The Lake Lugano region of northern Italy and southern Switzerland , was in Middle Triassic times a lagoon behind reefs with an anoxic bottom layer, so there were no scavengers and little turbulence to disturb fossilization, a situation that can be compared to the better-known Jurassic Solnhofen Limestone lagerstätte . The remains of fish and various marine reptiles (including the common pachypleurosaur Neusticosaurus , and

5633-509: The Mesozoic Era. Reptiles , especially archosaurs , were the chief terrestrial vertebrates during this time. A specialized group of archosaurs, called dinosaurs , first appeared in the Late Triassic but did not become dominant until the succeeding Jurassic Period. Archosaurs that became dominant in this period were primarily pseudosuchians , relatives and ancestors of modern crocodilians , while some archosaurs specialized in flight,

5764-658: The Newark Supergroup . Rift basins are also common in South America, Europe, and Africa. Terrestrial environments are particularly well-represented in the South Africa, Russia, central Europe, and the southwest United States. Terrestrial Triassic biostratigraphy is mostly based on terrestrial and freshwater tetrapods, as well as conchostracans ("clam shrimps"), a type of fast-breeding crustacean which lived in lakes and hypersaline environments. Because

5895-474: The Olenekian and Anisian of Gondwana . Both kannemeyeriiform dicynodonts and gomphodont cynodonts remained important herbivores during much of the period. Therocephalians included both large predators ( Moschorhinus ) and herbivorous forms ( bauriids ) until their extinction midway through the period. Ecteniniid cynodonts played a role as large-sized, cursorial predators in the Late Triassic. During

6026-536: The Precambrian or pre-Cambrian (Supereon). While a modern geological time scale was not formulated until 1911 by Arthur Holmes , the broader concept that rocks and time are related can be traced back to (at least) the philosophers of Ancient Greece . Xenophanes of Colophon (c. 570–487  BCE ) observed rock beds with fossils of shells located above the sea-level, viewed them as once living organisms, and used this to imply an unstable relationship in which

6157-735: The surviving species repopulated empty terrain, but these were short-lived. Diverse communities with complex food-web structures took 30 million years to reestablish. Archosauromorph reptiles, which had already appeared and diversified to an extent in the Permian Period, exploded in diversity as an adaptive radiation in response to the Permian-Triassic mass extinction. By the Early Triassic, several major archosauromorph groups had appeared. Long-necked, lizard-like early archosauromorphs were known as protorosaurs , which

6288-468: The thecodonts ) disappeared, as did most of the large labyrinthodont amphibians, groups of small reptiles, and most synapsids. Some of the early, primitive dinosaurs also became extinct, but more adaptive ones survived to evolve into the Jurassic. Surviving plants that went on to dominate the Mesozoic world included modern conifers and cycadeoids. The cause of the Late Triassic extinction is uncertain. It

6419-437: The traversodont cynodonts—were much reduced in the northern half of Pangaea ( Laurasia ). These extinctions within the Triassic and at its end allowed the dinosaurs to expand into many niches that had become unoccupied. Dinosaurs became increasingly dominant, abundant and diverse, and remained that way for the next 150 million years. The true "Age of Dinosaurs" is during the following Jurassic and Cretaceous periods, rather than

6550-832: The Anisian to Ladinian of the Tethysian domain, and from the Carnian and Rhaetian of a larger area that includes also the Boreal domain (e.g., Svalbard Islands), the North American continent, the South China block and Argentina . The best-studied of such episodes of humid climate, and probably the most intense and widespread, was the Carnian Pluvial Event . The Early Triassic was the hottest portion of

6681-405: The Carnian and include early sauropodomorphs and theropods. Most Triassic dinosaurs were small predators and only a few were common, such as Coelophysis , which was 1 to 2 metres (3.3 to 6.6 ft) long. Triassic sauropodomorphs primarily inhabited cooler regions of the world. The large predator Smok was most likely also an archosaur, but it is uncertain if it was a primitive dinosaur or

SECTION 50

#1732776049054

6812-691: The Commission on Stratigraphy (applied in 1965) to become a member commission of IUGS led to the founding of the ICS. One of the primary objectives of the ICS is "the establishment, publication and revision of the ICS International Chronostratigraphic Chart which is the standard, reference global Geological Time Scale to include the ratified Commission decisions". Following on from Holmes, several A Geological Time Scale books were published in 1982, 1989, 2004, 2008, 2012, 2016, and 2020. However, since 2013,

6943-563: The Early Triassic, forming small patches of reefs of modest extent compared to the great reef systems of Devonian or modern times. At the end of the Carnian, a reef crisis occurred in South China. Serpulids appeared in the Middle Triassic. Microconchids were abundant. The shelled cephalopods called ammonites recovered, diversifying from a single line that survived the Permian extinction. Bivalves began to rapidly diversify during

7074-402: The Early Triassic, while others (e.g. capitosaurs ) remained successful throughout the whole period, or only came to prominence in the Late Triassic (e.g. Plagiosaurus , metoposaurs ). The first Lissamphibians (modern amphibians) appear in the Triassic, with the progenitors of the first frogs already present by the Early Triassic. However, the group as a whole did not become common until

7205-562: The Early and Middle Triassic. Sea level rise accelerated in the Ladinian, culminating with a sea level up to 50 metres (164 ft) above present-day levels during the Carnian. Sea level began to decline in the Norian, reaching a low of 50 metres (164 ft) below present sea level during the mid-Rhaetian. Low global sea levels persisted into the earliest Jurassic. The long-term sea level trend

7336-474: The Earth's Moon . Dominantly fluid planets, such as the giant planets , do not comparably preserve their history. Apart from the Late Heavy Bombardment , events on other planets probably had little direct influence on the Earth, and events on Earth had correspondingly little effect on those planets. Construction of a time scale that links the planets is, therefore, of only limited relevance to

7467-529: The Earth's time scale, except in a Solar System context. The existence, timing, and terrestrial effects of the Late Heavy Bombardment are still a matter of debate. The geologic history of Earth's Moon has been divided into a time scale based on geomorphological markers, namely impact cratering , volcanism , and erosion . This process of dividing the Moon's history in this manner means that

7598-450: The ICS has taken responsibility for producing and distributing the ICC citing the commercial nature, independent creation, and lack of oversight by the ICS on the prior published GTS versions (GTS books prior to 2013) although these versions were published in close association with the ICS. Subsequent Geologic Time Scale books (2016 and 2020 ) are commercial publications with no oversight from

7729-404: The ICS, and do not entirely conform to the chart produced by the ICS. The ICS produced GTS charts are versioned (year/month) beginning at v2013/01. At least one new version is published each year incorporating any changes ratified by the ICS since the prior version. The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to

7860-415: The ICS. While some regional terms are still in use, the table of geologic time conforms to the nomenclature , ages, and colour codes set forth by the International Commission on Stratigraphy in the official International Chronostratigraphic Chart. The International Commission on Stratigraphy also provide an online interactive version of this chart. The interactive version is based on a service delivering

7991-403: The Jurassic. The Triassic was named in 1834 by Friedrich August von Alberti , after a succession of three distinct rock layers (Greek triás meaning 'triad') that are widespread in southern Germany : the lower Buntsandstein (colourful sandstone ) , the middle Muschelkalk (shell-bearing limestone ) and the upper Keuper (coloured clay ). On the geologic time scale , the Triassic

SECTION 60

#1732776049054

8122-613: The Jurassic. There were many types of marine reptiles. These included the Sauropterygia , which featured pachypleurosaurus and nothosaurs (both common during the Middle Triassic, especially in the Tethys region), placodonts , the earliest known herbivorous marine reptile Atopodentatus , and the first plesiosaurs . The first of the lizardlike Thalattosauria ( askeptosaurs ) and the highly successful ichthyopterygians , which appeared in Early Triassic seas, soon diversified. By

8253-600: The Latest Olenekian Cooling (LOC), from 248 to 247 Ma, temperatures cooled by about 6 °C. The Middle Triassic was cooler than the Early Triassic, with temperatures falling over most of the Anisian, with the exception of a warming spike in the latter portion of the stage. From 242 to 233 Ma, the Ladinian-Carnian Cooling (LCC) ensued. At the beginning of the Carnian, global temperatures continued to be relatively cool. The eruption of

8384-486: The Middle Triassic, becoming highly abundant in the oceans. Aquatic insects rapidly diversified during the Middle Triassic, with this time interval representing a crucial diversification for Holometabola , the clade containing the majority of modern insect species. In the wake of the Permian-Triassic mass extinction event , the fish fauna was remarkably uniform, with many families and genera exhibiting

8515-618: The Middle Triassic, some ichthyopterygians were achieving very large body masses. Among other reptiles, the earliest turtles , like Proganochelys and Proterochersis , appeared during the Norian Age (Stage) of the Late Triassic Period. The Lepidosauromorpha , specifically the Sphenodontia , are first found in the fossil record of the earlier Carnian Age, though the earliest lepidosauromorphs likely occurred in

8646-638: The Passaic River drainage is three hundred forty nine square miles. This includes the Rockaway River drainage of one hundred twenty five square miles and the Whippany River drainage of sixty nine square miles. The area is from 180 feet (55 m) above sea level to 160 feet (49 m). Latitude 40.85 N and Longitude 74.32 W The area of Hatfield Swamp is approximately 2,500 acres (10 km), located in northern New Jersey. The swamp

8777-450: The Permian extinction, Archaeplastida (red and green algae) had been the major marine phytoplanktons since about 659–645 million years ago, when they replaced marine planktonic cyanobacteria , which first appeared about 800 million years ago, as the dominant phytoplankton in the oceans. In the Triassic, secondary endosymbiotic algae became the most important plankton. In marine environments , new modern types of corals appeared in

8908-475: The Permian. The Procolophonidae , the last surviving parareptiles , were an important group of small lizard-like herbivores. The drepanosaurs were a clade of unusual, chameleon-like arboreal reptiles with birdlike heads and specialised claws. Three therapsid groups survived into the Triassic: dicynodonts , therocephalians , and cynodonts . The cynodont Cynognathus was a characteristic top predator in

9039-439: The Rockaway River and Whippany River are carp and catfish. The area has a northern deciduous forest consisting of various oaks, maples, sweet gum, and elm. Most trees are from six to ten inches (254 mm), with some going to twenty inches. Due to the constant flooding makes it difficult for hardwood trees to grow. The wetlands, which help facilitate hiking through their flatness, are a part of West Essex Park , and there are

9170-408: The Triassic (teleosts are by far the most diverse group of fish today). Predatory actinopterygians such as saurichthyids and birgeriids , some of which grew over 1.2 m (3.9 ft) in length, appeared in the Early Triassic and became widespread and successful during the period as a whole. Lakes and rivers were populated by lungfish (Dipnoi), such as Ceratodus , which are mainly known from

9301-497: The Triassic and survived the extinction event. The earliest known neopterygian fish, including early holosteans and teleosts , appeared near the beginning of the Triassic, and quickly diversified to become among the dominant groups of fish in both freshwater and marine habitats. The vast supercontinent of Pangaea dominated the globe during the Triassic, but in the latest Triassic ( Rhaetian ) and Early Jurassic it began to gradually rift into two separate landmasses: Laurasia to

9432-609: The Triassic, enlarging the Neo-Tethys Ocean which formed in their wake. At the same time, they forced the Paleo-Tethys Ocean to shrink as it was being subducted under Asia. By the end of the Triassic, the Paleo-Tethys Ocean occupied a small area and the Cimmerian terranes began to collide with southern Asia. This collision, known as the Cimmerian Orogeny , continued into the Jurassic and Cretaceous to produce

9563-542: The Triassic. Geologic period The geologic time scale or geological time scale ( GTS ) is a representation of time based on the rock record of Earth . It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (a scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists , paleontologists , geophysicists , geochemists , and paleoclimatologists ) to describe

9694-839: The Wrangellia Large Igneous Province around 234 Ma caused abrupt global warming, terminating the cooling trend of the LCC. This warming was responsible for the Carnian Pluvial Event and resulted in an episode of widespread global humidity. The CPE ushered in the Mid-Carnian Warm Interval (MCWI), which lasted from 234 to 227 Ma. At the Carnian-Norian boundary occurred a positive δ C excursion believed to signify an increase in organic carbon burial. From 227 to 217 Ma, there

9825-455: The bizarre long-necked archosauromorph Tanystropheus ), along with some terrestrial forms like Ticinosuchus and Macrocnemus , have been recovered from this locality. All these fossils date from the Anisian and Ladinian ages (about 242 Ma ago). The Triassic Period ended with a mass extinction, which was particularly severe in the oceans; the conodonts disappeared, as did all

9956-529: The bodies of plants and animals", with the 13th-century Dominican bishop Albertus Magnus (c. 1200–1280) extending this into a theory of a petrifying fluid. These works appeared to have little influence on scholars in Medieval Europe who looked to the Bible to explain the origins of fossils and sea-level changes, often attributing these to the ' Deluge ', including Ristoro d'Arezzo in 1282. It

10087-569: The cooling of the Earth or the Sun using basic thermodynamics or orbital physics. These estimations varied from 15,000 million years to 0.075 million years depending on method and author, but the estimations of Lord Kelvin and Clarence King were held in high regard at the time due to their pre-eminence in physics and geology. All of these early geochronometric determinations would later prove to be incorrect. The discovery of radioactive decay by Henri Becquerel , Marie Curie , and Pierre Curie laid

10218-775: The corresponding geochronologic unit sharing the same name with a change to the suffix (e.g. Phanerozoic Eonothem becomes the Phanerozoic Eon). Names of erathems in the Phanerozoic were chosen to reflect major changes in the history of life on Earth: Paleozoic (old life), Mesozoic (middle life), and Cenozoic (new life). Names of systems are diverse in origin, with some indicating chronologic position (e.g., Paleogene), while others are named for lithology (e.g., Cretaceous), geography (e.g., Permian ), or are tribal (e.g., Ordovician ) in origin. Most currently recognised series and subseries are named for their position within

10349-506: The dental plates, abundant in the fossils record. Hybodonts , a group of shark-like cartilaginous fish , were dominant in both freshwater and marine environments throughout the Triassic. Last survivors of the mainly Palaeozoic Eugeneodontida are known from the Early Triassic. Temnospondyl amphibians were among those groups that survived the Permian–Triassic extinction. Once abundant in both terrestrial and aquatic environments,

10480-457: The developments in mass spectrometry pioneered by Francis William Aston , Arthur Jeffrey Dempster , and Alfred O. C. Nier during the early to mid- 20th century would finally allow for the accurate determination of radiometric ages, with Holmes publishing several revisions to his geological time-scale with his final version in 1960. The establishment of the IUGS in 1961 and acceptance of

10611-404: The different layers of stone unless they had been upon the shore and had been covered over by earth newly thrown up by the sea which then became petrified? And if the above-mentioned Deluge had carried them to these places from the sea, you would find the shells at the edge of one layer of rock only, not at the edge of many where may be counted the winters of the years during which the sea multiplied

10742-428: The dominant carnivores in the early Triassic. Phytosaurs were a particularly common group which prospered during the Late Triassic. These long-snouted and semiaquatic predators resemble living crocodiles and probably had a similar lifestyle, hunting for fish and small reptiles around the water's edge. However, this resemblance is only superficial and is a prime-case of convergent evolution. True archosaurs appeared in

10873-405: The early Triassic, splitting into two branches: Avemetatarsalia (the ancestors to birds) and Pseudosuchia (the ancestors to crocodilians). Avemetatarsalians were a minor component of their ecosystems, but eventually produced the earliest pterosaurs and dinosaurs in the Late Triassic. Early long-tailed pterosaurs appeared in the Norian and quickly spread worldwide. Triassic dinosaurs evolved in

11004-640: The entire Phanerozoic, seeing as it occurred during and immediately after the discharge of titanic volumes of greenhouse gases from the Siberian Traps. The Early Triassic began with the Permian-Triassic Thermal Maximum (PTTM) and was followed by the brief Dienerian Cooling (DC) from 251 to 249 Ma, which was in turn followed by the Latest Smithian Thermal Maximum (LSTT) around 249 to 248 Ma. During

11135-467: The equator and extended between the poles, though it did drift northwards as the period progressed. Southern Pangea, also known as Gondwana , was made up by closely-appressed cratons corresponding to modern South America , Africa , Madagascar , India , Antarctica , and Australia . North Pangea, also known as Laurussia or Laurasia , corresponds to modern-day North America and the fragmented predecessors of Eurasia . The western edge of Pangea lay at

11266-480: The extinct family Cheirolepidiaceae , which first appeared in the Late Triassic, and would be prominent throughout most of the rest of the Mesozoic. No known coal deposits date from the start of the Triassic Period. This is known as the Early Triassic "coal gap" and can be seen as part of the Permian–Triassic extinction event . Possible explanations for the coal gap include sharp drops in sea level at

11397-406: The first time among vertebrates, becoming the pterosaurs . Therapsids , the dominant vertebrates of the preceding Permian period, saw a brief surge in diversification in the Triassic, with dicynodonts and cynodonts quickly becoming dominant, but they declined throughout the period with the majority becoming extinct by the end. However, the first stem-group mammals ( mammaliamorphs ), themselves

11528-414: The foundational principles of determining the correlation of strata relative to geologic time. Over the course of the 18th-century geologists realised that: The apparent, earliest formal division of the geologic record with respect to time was introduced during the era of Biblical models by Thomas Burnet who applied a two-fold terminology to mountains by identifying " montes primarii " for rock formed at

11659-465: The geologic time scale of Earth. This table is arranged with the most recent geologic periods at the top, and the oldest at the bottom. The height of each table entry does not correspond to the duration of each subdivision of time. As such, this table is not to scale and does not accurately represent the relative time-spans of each geochronologic unit. While the Phanerozoic Eon looks longer than

11790-521: The global ocean triggered intense cross-equatorial monsoons , sometimes referred to as the Pangean megamonsoons . The Triassic may have mostly been a dry period, but evidence exists that it was punctuated by several episodes of increased rainfall in tropical and subtropical latitudes of the Tethys Sea and its surrounding land. Sediments and fossils suggestive of a more humid climate are known from

11921-492: The ground work for radiometric dating, but the knowledge and tools required for accurate determination of radiometric ages would not be in place until the mid-1950s. Early attempts at determining ages of uranium minerals and rocks by Ernest Rutherford , Bertram Boltwood , Robert Strutt , and Arthur Holmes, would culminate in what are considered the first international geological time scales by Holmes in 1911 and 1913. The discovery of isotopes in 1913 by Frederick Soddy , and

12052-420: The impact. So, the evidence suggests the Manicouagan impact preceded the end of the Triassic by approximately 10±2 Ma. It could not therefore be the immediate cause of the observed mass extinction. The number of Late Triassic extinctions is disputed. Some studies suggest that there are at least two periods of extinction towards the end of the Triassic, separated by 12 to 17 million years. But arguing against this

12183-401: The keystone predators of most Triassic terrestrial ecosystems. Over 25 species have been found, including giant quadrupedal hunters, sleek bipedal omnivores, and lumbering beasts with deep sails on their backs. They probably occupied the large-predator niche later filled by theropods. "Rauisuchians" were ancestral to small, lightly-built crocodylomorphs, the only pseudosuchians which survived into

12314-498: The lake drained leaving behind many swamps with various hardwood trees struggling to take hold, including the Hatfield Swamp. The Whippany River flows into the Rockaway River, at the western end of the swamp. The Rockaway River travels a short distance and then flows into the Passaic River near the center of the swamp. The USGS gaging station is 1.3 miles (2.1 km) downstream of the Rockaway River confluence. At this point

12445-561: The layers of sand and mud brought down by the neighboring rivers and spread them over its shores. And if you wish to say that there must have been many deluges in order to produce these layers and the shells among them it would then become necessary for you to affirm that such a deluge took place every year. These views of da Vinci remained unpublished, and thus lacked influence at the time; however, questions of fossils and their significance were pursued and, while views against Genesis were not readily accepted and dissent from religious doctrine

12576-453: The lower boundaries of chronostratigraphic units. Defining chronostratigraphic units in such a manner allows for the use of global, standardised nomenclature. The International Chronostratigraphic Chart represents this ongoing effort. Several key principles are used to determine the relative relationships of rocks and thus their chronostratigraphic position. The law of superposition that states that in undeformed stratigraphic sequences

12707-545: The mammaliaforms to develop fur and a higher metabolic rate . Two Early Triassic lagerstätten (high-quality fossil beds), the Dienerian aged Guiyang biota and the earliest Spathian aged Paris biota stand out due to their exceptional preservation and diversity . They represent the earliest lagerstätten of the Mesozoic era and provide insight into the biotic recovery from the Permian-Triassic mass extinction event. The Monte San Giorgio lagerstätte, now in

12838-573: The margin of an enormous ocean, Panthalassa ( lit.   ' entire sea ' ), which roughly corresponds to the modern Pacific Ocean . Practically all deep-ocean crust present during the Triassic has been recycled through the subduction of oceanic plates, so very little is known about the open ocean from this time period. Most information on Panthalassan geology and marine life is derived from island arcs and rare seafloor sediments accreted onto surrounding land masses, such as present-day Japan and western North America. The eastern edge of Pangea

12969-453: The marine reptiles except ichthyosaurs and plesiosaurs . Invertebrates like brachiopods and molluscs (such as gastropods ) were severely affected. In the oceans, 22% of marine families and possibly about half of marine genera went missing. Though the end-Triassic extinction event was not equally devastating in all terrestrial ecosystems, several important clades of crurotarsans (large archosaurian reptiles previously grouped together as

13100-430: The next most common tetrapods, and early dinosaurs, passed through unchanged. However, both phytosaurs and aetosaurs were among the groups of archosaur reptiles completely wiped out by the end-Triassic extinction event. It seems likely then that there was some sort of end-Carnian extinction, when several herbivorous archosauromorph groups died out, while the large herbivorous therapsids —the kannemeyeriid dicynodonts and

13231-512: The north and Gondwana to the south. The global climate during the Triassic was mostly hot and dry, with deserts spanning much of Pangaea's interior. However, the climate shifted and became more humid as Pangaea began to drift apart. The end of the period was marked by yet another major mass extinction, the Triassic–Jurassic extinction event , that wiped out many groups, including most pseudosuchians, and allowed dinosaurs to assume dominance in

13362-489: The oldest strata will lie at the bottom of the sequence, while newer material stacks upon the surface. In practice, this means a younger rock will lie on top of an older rock unless there is evidence to suggest otherwise. The principle of original horizontality that states layers of sediments will originally be deposited horizontally under the action of gravity. However, it is now known that not all sedimentary layers are deposited purely horizontally, but this principle

13493-402: The order Isoetales (which contains living quillworts ), rose to prominence due to the environmental instability following the Permian-Triassic extinction, with one particularly notable example being the genus Pleuromeia , which grew in columnar like fashion, sometimes reaching a height of 2 metres (6.6 ft). The relevance of lycophytes declined from the Middle Triassic onwards, following

13624-408: The pertinent time span. As of April 2022 these proposed changes have not been accepted by the ICS. The proposed changes (changes from the current scale [v2023/09]) are italicised: Proposed pre-Cambrian timeline (GTS2012), shown to scale: Current ICC pre-Cambrian timeline (v2023/09), shown to scale: The following table summarises the major events and characteristics of the divisions making up

13755-579: The present, an ancestral Passaic River flowed through a gap in these ridges. This changed when the Wisconsin Glacier , a massive continental ice sheet which formed during the last ice age, advanced on the region and permanently plugged the gap with glacial rubble . As the glacier eventually melted back, water pooled behind the ridges (known today as the Watchung Mountains ), forming Glacial Lake Passaic . After thousands of years,

13886-452: The present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in the third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline. Horizontal scale is Millions of years (above timelines) / Thousands of years (below timeline) First suggested in 2000,

14017-489: The principles of superposition, original horizontality, lateral continuity, and cross-cutting relationships. From this Steno reasoned that strata were laid down in succession and inferred relative time (in Steno's belief, time from Creation ). While Steno's principles were simple and attracted much attention, applying them proved challenging. These basic principles, albeit with improved and more nuanced interpretations, still form

14148-473: The rest, it merely spans ~539 million years (~12% of Earth's history), whilst the previous three eons collectively span ~3,461 million years (~76% of Earth's history). This bias toward the most recent eon is in part due to the relative lack of information about events that occurred during the first three eons compared to the current eon (the Phanerozoic). The use of subseries/subepochs has been ratified by

14279-487: The return of more stable environmental conditions. While having first appeared during the Permian, the extinct seed plant group Bennettitales first became a prominent element in global floras during the Late Triassic, a position they would hold for much of the Mesozoic. In the Southern Hemisphere landmasses of Gondwana, the tree Dicroidium , an extinct " seed fern " belong to the order Corystospermales

14410-630: The rock record to bring it in line with the post-Tonian geologic time scale. This work assessed the geologic history of the currently defined eons and eras of the pre-Cambrian, and the proposals in the "Geological Time Scale" books 2004, 2012, and 2020. Their recommend revisions of the pre-Cryogenian geologic time scale were (changes from the current scale [v2023/09] are italicised): Proposed pre-Cambrian timeline (Shield et al. 2021, ICS working group on pre-Cryogenian chronostratigraphy), shown to scale: Current ICC pre-Cambrian timeline (v2023/09), shown to scale: The book, Geologic Time Scale 2012,

14541-474: The sea had at times transgressed over the land and at other times had regressed . This view was shared by a few of Xenophanes's contemporaries and those that followed, including Aristotle (384–322 BCE) who (with additional observations) reasoned that the positions of land and sea had changed over long periods of time. The concept of deep time was also recognised by Chinese naturalist Shen Kuo (1031–1095) and Islamic scientist -philosophers, notably

14672-445: The swamp due to several factors. The first is the flooding of the area, which fills bank dens with water. The second is the lack of plant foods that the muskrats eat. The third is water pollution. While efforts to clean the rivers of pollution have proven successful so far, pollutants remain in the soil and water. Waterfowl that pass through the area in the autumn stop and rest in the swamp before proceeding south. Fish that inhabit

14803-676: The terminus of the Triassic, there was an extreme warming event referred to as the End-Triassic Thermal Event (ETTE), which was responsible for the Triassic-Jurassic mass extinction. Bubbles of carbon dioxide in basaltic rocks dating back to the end of the Triassic indicate that volcanic activity from the Central Atlantic Magmatic Province helped trigger climate change in the ETTE. During the Early Triassic, lycophytes , particularly those of

14934-595: The terrestrial species had mostly died out during the extinction event. The Triassic survivors were aquatic or semi-aquatic, and were represented by Tupilakosaurus , Thabanchuia , Branchiosauridae and Micropholis , all of which died out in Early Triassic, and the successful Stereospondyli , with survivors into the Cretaceous Period. The largest Triassic stereospondyls, such as Mastodonsaurus , were up to 4 to 6 metres (13 to 20 ft) in length. Some lineages (e.g. trematosaurs ) flourished briefly in

15065-548: The time during which the rocks were laid down, and the collection of rocks themselves (i.e., it was correct to say Tertiary rocks, and Tertiary Period). Only the Quaternary division is retained in the modern geologic time scale, while the Tertiary division was in use until the early 21st century. The Neptunism and Plutonism theories would compete into the early 19th century with a key driver for resolution of this debate being

15196-735: The time of the 'Deluge', and younger " monticulos secundarios" formed later from the debris of the " primarii" . Anton Moro (1687–1784) also used primary and secondary divisions for rock units but his mechanism was volcanic. In this early version of the Plutonism theory, the interior of Earth was seen as hot, and this drove the creation of primary igneous and metamorphic rocks and secondary rocks formed contorted and fossiliferous sediments. These primary and secondary divisions were expanded on by Giovanni Targioni Tozzetti (1712–1783) and Giovanni Arduino (1713–1795) to include tertiary and quaternary divisions. These divisions were used to describe both

15327-577: The time of the Permo-Triassic boundary; acid rain from the Siberian Traps eruptions or from an impact event that overwhelmed acidic swamps; climate shift to a greenhouse climate that was too hot and dry for peat accumulation; evolution of fungi or herbivores that were more destructive of wetlands; the extinction of all plants adapted to peat swamps, with a hiatus of several million years before new plant species evolved that were adapted to peat swamps; or soil anoxia as oxygen levels plummeted. Before

15458-573: The time scale boundaries do not imply fundamental changes in geological processes, unlike Earth's geologic time scale. Five geologic systems/periods ( Pre-Nectarian , Nectarian , Imbrian , Eratosthenian , Copernican ), with the Imbrian divided into two series/epochs (Early and Late) were defined in the latest Lunar geologic time scale. The Moon is unique in the Solar System in that it is the only other body from which humans have rock samples with

15589-606: The time they were laid down in is the geochronologic unit, e.g., the rocks that represent the Silurian System are the Silurian System and they were deposited during the Silurian Period. This definition means the numeric age of a geochronologic unit can be changed (and is more often subject to change) when refined by geochronometry while the equivalent chronostratigraphic unit (the revision of which

15720-483: The timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies , paleomagnetic properties, and fossils . The definition of standardised international units of geologic time is the responsibility of the International Commission on Stratigraphy (ICS),

15851-426: The type and relationships of unconformities in strata allows geologist to understand the relative timing the strata. The principle of faunal succession (where applicable) that states rock strata contain distinctive sets of fossils that succeed each other vertically in a specific and reliable order. This allows for a correlation of strata even when the horizon between them is not continuous. The geologic time scale

15982-491: The unit Ma (megaannum, for 'million years '). For example, 201.4 ± 0.2 Ma, the lower boundary of the Jurassic Period, is defined as 201,400,000 years old with an uncertainty of 200,000 years. Other SI prefix units commonly used by geologists are Ga (gigaannum, billion years), and ka (kiloannum, thousand years), with the latter often represented in calibrated units ( before present ). The names of geologic time units are defined for chronostratigraphic units with

16113-533: The work of James Hutton (1726–1797), in particular his Theory of the Earth , first presented before the Royal Society of Edinburgh in 1785. Hutton's theory would later become known as uniformitarianism , popularised by John Playfair (1748–1819) and later Charles Lyell (1797–1875) in his Principles of Geology . Their theories strongly contested the 6,000 year age of the Earth as suggested determined by James Ussher via Biblical chronology that

16244-615: Was a dominant element in forest habitats across the region during the Middle-Late Triassic. During the Late Triassic, the Ginkgoales (which today are represented by only a single species, Ginkgo biloba ) underwent considerable diversification. Conifers were abundant during the Triassic, and included the Voltziales (which contains various lineages, probably including those ancestral to modern conifers), as well as

16375-673: Was a relatively cool period known as the Early Norian Cool Interval (ENCI), after which occurred the Mid-Norian Warm Interval (MNWI) from 217 to 209 Ma. The MNWI was briefly interrupted around 214 Ma by a cooling possibly related to the Manicouagan impact . Around 212 Ma, a 10 Myr eccentricity maximum caused a paludification of Pangaea and a reduction in the size of arid climatic zones. The Rhaetian Cool Interval (RCI) lasted from 209 to 201 Ma. At

16506-429: Was accepted at the time by western religion. Instead, using geological evidence, they contested Earth to be much older, cementing the concept of deep time. During the early 19th century William Smith , Georges Cuvier , Jean d'Omalius d'Halloy , and Alexandre Brongniart pioneered the systematic division of rocks by stratigraphy and fossil assemblages. These geologists began to use the local names given to rock units in

16637-505: Was accompanied by huge volcanic eruptions that occurred as the supercontinent Pangaea began to break apart about 202 to 191 million years ago (40Ar/39Ar dates), forming the Central Atlantic Magmatic Province (CAMP), one of the largest known inland volcanic events since the planet had first cooled and stabilized. Other possible but less likely causes for the extinction events include global cooling or even

16768-484: Was encroached upon by a pair of extensive oceanic basins: The Neo-Tethys (or simply Tethys) and Paleo-Tethys Oceans . These extended from China to Iberia, hosting abundant marine life along their shallow tropical peripheries. They were divided from each other by a long string of microcontinents known as the Cimmerian terranes . Cimmerian crust had detached from Gondwana in the early Permian and drifted northwards during

16899-415: Was in some places unwise, scholars such as Girolamo Fracastoro shared da Vinci's views, and found the attribution of fossils to the 'Deluge' absurd. Niels Stensen, more commonly known as Nicolas Steno (1638–1686), is credited with establishing four of the guiding principles of stratigraphy. In De solido intra solidum naturaliter contento dissertationis prodromus Steno states: Respectively, these are

17030-548: Was not until the Italian Renaissance when Leonardo da Vinci (1452–1519) would reinvigorate the relationships between stratification, relative sea-level change, and time, denouncing attribution of fossils to the 'Deluge': Of the stupidity and ignorance of those who imagine that these creatures were carried to such places distant from the sea by the Deluge...Why do we find so many fragments and whole shells between

17161-485: Was the last commercial publication of an international chronostratigraphic chart that was closely associated with the ICS. It included a proposal to substantially revise the pre-Cryogenian time scale to reflect important events such as the formation of the Solar System and the Great Oxidation Event , among others, while at the same time maintaining most of the previous chronostratigraphic nomenclature for

#53946