Hydraulic engineering as a sub-discipline of civil engineering is concerned with the flow and conveyance of fluids , principally water and sewage. One feature of these systems is the extensive use of gravity as the motive force to cause the movement of the fluids. This area of civil engineering is intimately related to the design of bridges , dams , channels , canals , and levees , and to both sanitary and environmental engineering .
119-430: Hydraulic engineering is the application of the principles of fluid mechanics to problems dealing with the collection, storage, control, transport, regulation, measurement, and use of water. Before beginning a hydraulic engineering project, one must figure out how much water is involved. The hydraulic engineer is concerned with the transport of sediment by the river, the interaction of the water with its alluvial boundary, and
238-451: A steam drum , and the furnace with its steam generating tubes and superheater coils. Necessary safety valves are located at suitable points to protect against excessive boiler pressure. The air and flue gas path equipment include: forced draft (FD) fan , air preheater (AP), boiler furnace, induced draft (ID) fan, fly ash collectors ( electrostatic precipitator or baghouse ), and the flue-gas stack . The boiler feed water used in
357-435: A vacuum of about −95 kPa (−28 inHg) relative to atmospheric pressure. The large decrease in volume that occurs when water vapor condenses to liquid creates the vacuum that generally increases the efficiency of the turbines. The limiting factor is the temperature of the cooling water and that, in turn, is limited by the prevailing average climatic conditions at the power station's location (it may be possible to lower
476-485: A white noise contribution obtained from the fluctuation-dissipation theorem of statistical mechanics is added to the viscous stress tensor and heat flux . The concept of pressure is central to the study of both fluid statics and fluid dynamics. A pressure can be identified for every point in a body of fluid, regardless of whether the fluid is in motion or not. Pressure can be measured using an aneroid, Bourdon tube, mercury column, or various other methods. Some of
595-455: A continuum, do not contain ionized species, and have flow velocities that are small in relation to the speed of light, the momentum equations for Newtonian fluids are the Navier–Stokes equations —which is a non-linear set of differential equations that describes the flow of a fluid whose stress depends linearly on flow velocity gradients and pressure. The unsimplified equations do not have
714-493: A fluid dynamics problem typically involves the calculation of various properties of the fluid, such as flow velocity , pressure , density , and temperature , as functions of space and time. Before the twentieth century, "hydrodynamics" was synonymous with fluid dynamics. This is still reflected in names of some fluid dynamics topics, like magnetohydrodynamics and hydrodynamic stability , both of which can also be applied to gases. The foundational axioms of fluid dynamics are
833-440: A function of the fluid velocity and have different values in frames of reference with different motion. To avoid potential ambiguity when referring to the properties of the fluid associated with the state of the fluid rather than its motion, the prefix "static" is commonly used (such as static temperature and static enthalpy). Where there is no prefix, the fluid property is the static condition (so "density" and "static density" mean
952-660: A gas turbine, in the form of hot exhaust gas, can be used to raise steam by passing this gas through a heat recovery steam generator (HRSG). The steam is then used to drive a steam turbine in a combined cycle plant that improves overall efficiency. Power stations burning coal, fuel oil , or natural gas are often called fossil fuel power stations . Some biomass -fueled thermal power stations have appeared also. Non-nuclear thermal power stations, particularly fossil-fueled plants, which do not use cogeneration are sometimes referred to as conventional power stations . Commercial electric utility power stations are usually constructed on
1071-442: A gas turbine. The steam generating boiler has to produce steam at the high purity, pressure and temperature required for the steam turbine that drives the electrical generator. Geothermal plants do not need boilers because they use naturally occurring steam sources. Heat exchangers may be used where the geothermal steam is very corrosive or contains excessive suspended solids. A fossil fuel steam generator includes an economizer ,
1190-405: A general closed-form solution , so they are primarily of use in computational fluid dynamics . The equations can be simplified in several ways, all of which make them easier to solve. Some of the simplifications allow some simple fluid dynamics problems to be solved in closed form. In addition to the mass, momentum, and energy conservation equations, a thermodynamic equation of state that gives
1309-410: A generator on a common shaft. There is usually a high-pressure turbine at one end, followed by an intermediate-pressure turbine, and finally one, two, or three low-pressure turbines, and the shaft that connects to the generator. As steam moves through the system and loses pressure and thermal energy, it expands in volume, requiring increasing diameter and longer blades at each succeeding stage to extract
SECTION 10
#17327975233801428-480: A large scale and designed for continuous operation. Virtually all electric power stations use three-phase electrical generators to produce alternating current (AC) electric power at a frequency of 50 Hz or 60 Hz . Large companies or institutions may have their own power stations to supply heating or electricity to their facilities, especially if steam is created anyway for other purposes. Steam-driven power stations have been used to drive most ships in most of
1547-536: A model of the effects of the turbulent flow. Such a modelling mainly provides the additional momentum transfer by the Reynolds stresses , although the turbulence also enhances the heat and mass transfer . Another promising methodology is large eddy simulation (LES), especially in the form of detached eddy simulation (DES) — a combination of LES and RANS turbulence modelling. There are a large number of other possible approximations to fluid dynamic problems. Some of
1666-443: A point in a flow. All fluids are compressible to an extent; that is, changes in pressure or temperature cause changes in density. However, in many situations the changes in pressure and temperature are sufficiently small that the changes in density are negligible. In this case the flow can be modelled as an incompressible flow . Otherwise the more general compressible flow equations must be used. Mathematically, incompressibility
1785-419: A region of the flow called a control volume . A control volume is a discrete volume in space through which fluid is assumed to flow. The integral formulations of the conservation laws are used to describe the change of mass, momentum, or energy within the control volume. Differential formulations of the conservation laws apply Stokes' theorem to yield an expression that may be interpreted as the integral form of
1904-753: A respectable position in China. In the Archaic epoch of the Philippines , hydraulic engineering also developed specially in the Island of Luzon , the Ifugaos of the mountainous region of the Cordilleras built irrigations, dams and hydraulic works and the famous Banaue Rice Terraces as a way for assisting in growing crops around 1000 BC. These Rice Terraces are 2,000-year-old terraces that were carved into
2023-559: A set of tubes in the furnace. Here the steam picks up more energy from hot flue gases outside the tubing, and its temperature is now superheated above the saturation temperature. The superheated steam is then piped through the main steam lines to the valves before the high-pressure turbine. Nuclear-powered steam plants do not have such sections but produce steam at essentially saturated conditions. Experimental nuclear plants were equipped with fossil-fired superheaters in an attempt to improve overall plant operating cost. The condenser condenses
2142-663: A somewhat parallel way to what happened in California, the creation of the Tennessee Valley Authority (TVA) brought work and prosperity to the South by building dams to generate cheap electricity and control flooding in the region, making rivers navigable and generally modernizing life in the region. Leonardo da Vinci (1452–1519) performed experiments, investigated and speculated on waves and jets, eddies and streamlining. Isaac Newton (1642–1727) by formulating
2261-523: A specific type of large heat exchanger used in a pressurized water reactor (PWR) to thermally connect the primary (reactor plant) and secondary (steam plant) systems, which generates steam. In a boiling water reactor (BWR), no separate steam generator is used and water boils in the reactor core. In some industrial settings, there can also be steam-producing heat exchangers called heat recovery steam generators (HRSG) which utilize heat from some industrial process, most commonly utilizing hot exhaust from
2380-423: A stationary stator and a spinning rotor , each containing miles of heavy copper conductor. There is generally no permanent magnet , thus preventing black starts . In operation it generates up to 21,000 amperes at 24,000 volts AC (504 MWe) as it spins at either 3,000 or 3,600 rpm , synchronized to the power grid . The rotor spins in a sealed chamber cooled with hydrogen gas, selected because it has
2499-648: A technique known as hushing , and applied the methods to other ores such as those of tin and lead . In the 15th century, the Somali Ajuran Empire was the only hydraulic empire in Africa. As a hydraulic empire, the Ajuran State monopolized the water resources of the Jubba and Shebelle Rivers . Through hydraulic engineering, it also constructed many of the limestone wells and cisterns of
SECTION 20
#17327975233802618-406: A trip-out are avoided by flushing out such gases from the combustion zone before igniting the coal. The steam drum (as well as the superheater coils and headers) have air vents and drains needed for initial start up. Fossil fuel power stations often have a superheater section in the steam generating furnace. The steam passes through drying equipment inside the steam drum on to the superheater,
2737-414: A turbine, where it rotates the turbine's blades. The rotating turbine is mechanically connected to an electric generator which converts rotary motion into electricity. Fuels such as natural gas or oil can also be burnt directly in gas turbines ( internal combustion ), skipping the steam generation step. These plants can be of the open cycle or the more efficient combined cycle type. The majority of
2856-478: A typical late 20th-century power station, superheated steam from the boiler is delivered through 14–16-inch-diameter (360–410 mm) piping at 2,400 psi (17 MPa; 160 atm) and 1,000 °F (540 °C) to the high-pressure turbine, where it falls in pressure to 600 psi (4.1 MPa; 41 atm) and to 600 °F (320 °C) in temperature through the stage. It exits via 24–26-inch-diameter (610–660 mm) cold reheat lines and passes back into
2975-507: A wide range of applications, including calculating forces and moments on aircraft , determining the mass flow rate of petroleum through pipelines , predicting weather patterns , understanding nebulae in interstellar space and modelling fission weapon detonation . Fluid dynamics offers a systematic structure—which underlies these practical disciplines —that embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems. The solution to
3094-548: Is a critical one in supplying it. For example, without the efforts of people like William Mulholland the Los Angeles area would not have been able to grow as it has because it simply does not have enough local water to support its population. The same is true for many of our world's largest cities. In much the same way, the central valley of California could not have become such an important agricultural region without effective water management and distribution for irrigation. In
3213-429: Is also dosed with pH control agents such as ammonia or morpholine to keep the residual acidity low and thus non-corrosive. The boiler is a rectangular furnace about 50 feet (15 m) on a side and 130 feet (40 m) tall. Its walls are made of a web of high pressure steel tubes about 2.3 inches (58 mm) in diameter. Fuel such as pulverized coal is air-blown into the furnace through burners located at
3332-399: Is converted to electrical energy . The heat from the source is converted into mechanical energy using a thermodynamic power cycle (such as a Diesel cycle , Rankine cycle , Brayton cycle , etc.). The most common cycle involves a working fluid (often water) heated and boiled under high pressure in a pressure vessel to produce high-pressure steam. This high pressure-steam is then directed to
3451-473: Is expensive and has seldom been implemented. Government regulations and international agreements are being enforced to reduce harmful emissions and promote cleaner power generation. Almost all coal-fired power stations , petroleum, nuclear , geothermal , solar thermal electric , and waste incineration plants , as well as all natural gas power stations are thermal. Natural gas is frequently burned in gas turbines as well as boilers . The waste heat from
3570-466: Is expressed by saying that the density ρ of a fluid parcel does not change as it moves in the flow field, that is, where D / D t is the material derivative , which is the sum of local and convective derivatives . This additional constraint simplifies the governing equations, especially in the case when the fluid has a uniform density. For flow of gases, to determine whether to use compressible or incompressible fluid dynamics,
3689-543: Is given a special name—a stagnation point . The static pressure at the stagnation point is of special significance and is given its own name— stagnation pressure . In incompressible flows, the stagnation pressure at a stagnation point is equal to the total pressure throughout the flow field. In a compressible fluid, it is convenient to define the total conditions (also called stagnation conditions) for all thermodynamic state properties (such as total temperature, total enthalpy, total speed of sound). These total flow conditions are
Hydraulic engineering - Misplaced Pages Continue
3808-442: Is incompressible and has no viscosity. Real fluid has viscosity. Ideal fluid is only an imaginary fluid as all fluids that exist have some viscosity. A viscous fluid will deform continuously under a shear force by the pascles law, whereas an ideal fluid does not deform. The various effects of disturbance on a viscous flow are a stable, transition and unstable. For an ideal fluid, Bernoulli's equation holds along streamlines. As
3927-517: Is known as unsteady (also called transient ). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference. For instance, laminar flow over a sphere is steady in the frame of reference that is stationary with respect to the sphere. In a frame of reference that is stationary with respect to a background flow, the flow is unsteady. Turbulent flows are unsteady by definition. A turbulent flow can, however, be statistically stationary . The random velocity field U ( x , t )
4046-474: Is limited, and governed by the laws of thermodynamics . The Carnot efficiency dictates that higher efficiencies can be attained by increasing the temperature of the steam. Sub-critical pressure fossil fuel power stations can achieve 36–40% efficiency. Supercritical designs have efficiencies in the low to mid 40% range, with new "ultra critical" designs using pressures above 4,400 psi (30 MPa) and multiple stage reheat reaching 45–48% efficiency. Above
4165-494: Is often represented via a Reynolds decomposition , in which the flow is broken down into the sum of an average component and a perturbation component. It is believed that turbulent flows can be described well through the use of the Navier–Stokes equations . Direct numerical simulation (DNS), based on the Navier–Stokes equations, makes it possible to simulate turbulent flows at moderate Reynolds numbers. Restrictions depend on
4284-476: Is returned to the downcomers and the steam is passed through a series of steam separators and dryers that remove water droplets from the steam. The dry steam then flows into the superheater coils. The boiler furnace auxiliary equipment includes coal feed nozzles and igniter guns, soot blowers , water lancing, and observation ports (in the furnace walls) for observation of the furnace interior. Furnace explosions due to any accumulation of combustible gases after
4403-464: Is separated from the water inside a drum at the top of the furnace. The saturated steam is introduced into superheat pendant tubes that hang in the hottest part of the combustion gases as they exit the furnace. Here the steam is superheated to 1,000 °F (540 °C) to prepare it for the turbine. Plants that use gas turbines to heat the water for conversion into steam use boilers known as heat recovery steam generators (HRSG). The exhaust heat from
4522-429: Is statistically stationary if all statistics are invariant under a shift in time. This roughly means that all statistical properties are constant in time. Often, the mean field is the object of interest, and this is constant too in a statistically stationary flow. Steady flows are often more tractable than otherwise similar unsteady flows. The governing equations of a steady problem have one dimension fewer (time) than
4641-465: Is the air-cooled condenser . The process is similar to that of a radiator and fan. Exhaust heat from the low-pressure section of a steam turbine runs through the condensing tubes, the tubes are usually finned and ambient air is pushed through the fins with the help of a large fan. The steam condenses to water to be reused in the water-steam cycle. Air-cooled condensers typically operate at a higher temperature than water-cooled versions. While saving water,
4760-492: Is to use two flow models: the Euler equations away from the body, and boundary layer equations in a region close to the body. The two solutions can then be matched with each other, using the method of matched asymptotic expansions . A flow that is not a function of time is called steady flow . Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow
4879-462: Is treated separately. Reactive flows are flows that are chemically reactive, which finds its applications in many areas, including combustion ( IC engine ), propulsion devices ( rockets , jet engines , and so on), detonations , fire and safety hazards, and astrophysics. In addition to conservation of mass, momentum and energy, conservation of individual species (for example, mass fraction of methane in methane combustion) need to be derived, where
Hydraulic engineering - Misplaced Pages Continue
4998-401: Is well beyond the limit of DNS simulation ( Re = 4 million). Transport aircraft wings (such as on an Airbus A300 or Boeing 747 ) have Reynolds numbers of 40 million (based on the wing chord dimension). Solving these real-life flow problems requires turbulence models for the foreseeable future. Reynolds-averaged Navier–Stokes equations (RANS) combined with turbulence modelling provides
5117-589: The Mach number of the flow is evaluated. As a rough guide, compressible effects can be ignored at Mach numbers below approximately 0.3. For liquids, whether the incompressible assumption is valid depends on the fluid properties (specifically the critical pressure and temperature of the fluid) and the flow conditions (how close to the critical pressure the actual flow pressure becomes). Acoustic problems always require allowing compressibility, since sound waves are compression waves involving changes in pressure and density of
5236-549: The Mach numbers , which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density , viscosity , speed of sound , and flow speed . The concepts of total pressure and dynamic pressure arise from Bernoulli's equation and are significant in the study of all fluid flows. (These two pressures are not pressures in the usual sense—they cannot be measured using an aneroid, Bourdon tube or mercury column.) To avoid potential ambiguity when referring to pressure in fluid dynamics, many authors use
5355-797: The Manhattan Elevated Railway . Each of seventeen units weighed about 500 tons and was rated 6000 kilowatts; a contemporary turbine set of similar rating would have weighed about 20% as much. The energy efficiency of a conventional thermal power station is defined as saleable energy produced as a percent of the heating value of the fuel consumed. A simple cycle gas turbine achieves energy conversion efficiencies from 20 to 35%. Typical coal-based power plants operating at steam pressures of 170 bar and 570 °C run at efficiency of 35 to 38%, with state-of-the-art fossil fuel plants at 46% efficiency. Combined-cycle systems can reach higher values. As with all heat engines, their efficiency
5474-593: The conservation laws , specifically, conservation of mass , conservation of linear momentum , and conservation of energy (also known as the First Law of Thermodynamics ). These are based on classical mechanics and are modified in quantum mechanics and general relativity . They are expressed using the Reynolds transport theorem . In addition to the above, fluids are assumed to obey the continuum assumption . At small scale, all fluids are composed of molecules that collide with one another and solid objects. However,
5593-403: The critical point for water of 705 °F (374 °C) and 3,212 psi (22.15 MPa), there is no phase transition from water to steam, but only a gradual decrease in density . Currently most nuclear power stations must operate below the temperatures and pressures that coal-fired plants do, in order to provide more conservative safety margins within the systems that remove heat from
5712-421: The geared and hydropowered water supply system from Syria . In many respects, the fundamentals of hydraulic engineering have not changed since ancient times. Liquids are still moved for the most part by gravity through systems of canals and aqueducts, though the supply reservoirs may now be filled using pumps. The need for water has steadily increased from ancient times and the role of the hydraulic engineer
5831-441: The no-slip condition generates a thin region of large strain rate, the boundary layer , in which viscosity effects dominate and which thus generates vorticity . Therefore, to calculate net forces on bodies (such as wings), viscous flow equations must be used: inviscid flow theory fails to predict drag forces , a limitation known as the d'Alembert's paradox . A commonly used model, especially in computational fluid dynamics ,
5950-462: The pressure head p ρ g = y {\displaystyle {\frac {p}{\rho g}}=y} . Four basic devices for pressure measurement are a piezometer , manometer , differential manometer, Bourdon gauge , as well as an inclined manometer. As Prasuhn states: The main difference between an ideal fluid and a real fluid is that for ideal flow p 1 = p 2 and for real flow p 1 > p 2 . Ideal fluid
6069-552: The steam boiler is a means of transferring heat energy from the burning fuel to the mechanical energy of the spinning steam turbine . The total feed water consists of recirculated condensate water and purified makeup water . Because the metallic materials it contacts are subject to corrosion at high temperatures and pressures, the makeup water is highly purified before use. A system of water softeners and ion exchange demineralizes produces water so pure that it coincidentally becomes an electrical insulator , with conductivity in
SECTION 50
#17327975233806188-405: The stress due to these viscous forces is linearly related to the strain rate. Such fluids are called Newtonian fluids . The coefficient of proportionality is called the fluid's viscosity; for Newtonian fluids, it is a fluid property that is independent of the strain rate. Non-Newtonian fluids have a more complicated, non-linear stress-strain behaviour. The sub-discipline of rheology describes
6307-409: The vapor pressure of water is much less than atmospheric pressure, the condenser generally works under vacuum . Thus leaks of non-condensible air into the closed loop must be prevented. Typically the cooling water causes the steam to condense at a temperature of about 25 °C (77 °F) and that creates an absolute pressure in the condenser of about 2–7 kPa (0.59–2.07 inHg ), i.e.
6426-540: The 18th century, with notable improvements being made by James Watt . When the first commercially developed central electrical power stations were established in 1882 at Pearl Street Station in New York and Holborn Viaduct power station in London, reciprocating steam engines were used. The development of the steam turbine in 1884 provided larger and more efficient machine designs for central generating stations. By 1892
6545-743: The 20th century . Shipboard power stations usually directly couple the turbine to the ship's propellers through gearboxes. Power stations in such ships also provide steam to smaller turbines driving electric generators to supply electricity. Nuclear marine propulsion is, with few exceptions, used only in naval vessels. There have been many turbo-electric ships in which a steam-driven turbine drives an electric generator which powers an electric motor for propulsion . Cogeneration plants, often called combined heat and power (CHP) facilities, produce both electric power and heat for process heat or space heating, such as steam and hot water. The reciprocating steam engine has been used to produce mechanical power since
6664-635: The Middle East and Africa . Controlling the movement and supply of water for growing food has been used for many thousands of years. One of the earliest hydraulic machines, the water clock was used in the early 2nd millennium BC. Other early examples of using gravity to move water include the Qanat system in ancient Persia and the very similar Turpan water system in ancient China as well as irrigation canals in Peru. In ancient China , hydraulic engineering
6783-998: The Otto or Diesel cycles. In the Rankine cycle, the low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate even more high pressure steam. The design of thermal power stations depends on the intended energy source. In addition to fossil and nuclear fuel , some stations use geothermal power , solar energy , biofuels , and waste incineration . Certain thermal power stations are also designed to produce heat for industrial purposes, provide district heating , or desalinate water , in addition to generating electrical power. Emerging technologies such as supercritical and ultra-supercritical thermal power stations operate at higher temperatures and pressures for increased efficiency and reduced emissions. Cogeneration or CHP (Combined Heat and Power) technology,
6902-561: The United States are about 90 percent efficient in converting the energy of falling water into electricity while the efficiency of a wind turbine is limited by Betz's law , to about 59.3%, and actual wind turbines show lower efficiency. The direct cost of electric energy produced by a thermal power station is the result of cost of fuel, capital cost for the plant, operator labour, maintenance, and such factors as ash handling and disposal. Indirect social or environmental costs, such as
7021-489: The air in the air preheater for better economy. Secondary air is mixed with the coal/primary air flow in the burners. The induced draft fan assists the FD fan by drawing out combustible gases from the furnace, maintaining slightly below atmospheric pressure in the furnace to avoid leakage of combustion products from the boiler casing. A steam turbine generator consists of a series of steam turbines interconnected to each other and
7140-400: The atmosphere, or once-through cooling (OTC) water from a river, lake or ocean. In the United States, about two-thirds of power plants use OTC systems, which often have significant adverse environmental impacts. The impacts include thermal pollution and killing large numbers of fish and other aquatic species at cooling water intakes . The heat absorbed by the circulating cooling water in
7259-433: The boiler, where the steam is reheated in special reheat pendant tubes back to 1,000 °F (540 °C). The hot reheat steam is conducted to the intermediate-pressure turbine, where it falls in both temperature and pressure and exits directly to the long-bladed low-pressure turbines and finally exits to the condenser. The generator, typically about 30 feet (9 m) long and 12 feet (3.7 m) in diameter, contains
SECTION 60
#17327975233807378-517: The boundaries. This concept explained many former paradoxes and enabled subsequent engineers to analyze far more complex flows. However, we still have no complete theory for the nature of turbulence, and so modern fluid mechanics continues to be combination of experimental results and theory. The modern hydraulic engineer uses the same kinds of computer-aided design (CAD) tools as many of the other engineering disciplines while also making use of technologies like computational fluid dynamics to perform
7497-456: The calculations to accurately predict flow characteristics, GPS mapping to assist in locating the best paths for installing a system and laser-based surveying tools to aid in the actual construction of a system. Thermal power plant A thermal power station , also known as a thermal power plant , is a type of power station in which the heat energy generated from various fuel sources (e.g., coal , natural gas , nuclear fuel , etc.)
7616-443: The condenser tubes must also be removed to maintain the ability of the water to cool as it circulates. This is done by pumping the warm water from the condenser through either natural draft, forced draft or induced draft cooling towers (as seen in the adjacent image) that reduce the temperature of the water by evaporation, by about 11 to 17 °C (52 to 63 °F)—expelling waste heat to the atmosphere. The circulation flow rate of
7735-409: The continuum assumption assumes that fluids are continuous, rather than discrete. Consequently, it is assumed that properties such as density, pressure, temperature, and flow velocity are well-defined at infinitesimally small points in space and vary continuously from one point to another. The fact that the fluid is made up of discrete molecules is ignored. For fluids that are sufficiently dense to be
7854-519: The cooling water in a 500 MW unit is about 14.2 m /s (500 ft /s or 225,000 US gal/min) at full load. The condenser tubes are typically made stainless steel or other alloys to resist corrosion from either side. Nevertheless, they may become internally fouled during operation by bacteria or algae in the cooling water or by mineral scaling, all of which inhibit heat transfer and reduce thermodynamic efficiency . Many plants include an automatic cleaning system that circulates sponge rubber balls through
7973-607: The design of large turbines, since they are highly optimized for one particular speed. The electricity flows to a distribution yard where transformers increase the voltage for transmission to its destination. Fluid dynamics In physics , physical chemistry and engineering , fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases . It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion). Fluid dynamics has
8092-411: The economic value of environmental impacts, or environmental and health effects of the complete fuel cycle and plant decommissioning, are not usually assigned to generation costs for thermal stations in utility practice, but may form part of an environmental impact assessment. Those indirect costs belong to the broader concept of externalities . In the nuclear plant field, steam generator refers to
8211-472: The efficiency of the cycle is reduced (resulting in more carbon dioxide per megawatt-hour of electricity). From the bottom of the condenser, powerful condensate pumps recycle the condensed steam (water) back to the water/steam cycle. Power station furnaces may have a reheater section containing tubes heated by hot flue gases outside the tubes. Exhaust steam from the high-pressure turbine is passed through these heated tubes to collect more energy before driving
8330-428: The flow comes into contact with the plate, the layer of fluid actually "adheres" to a solid surface. There is then a considerable shearing action between the layer of fluid on the plate surface and the second layer of fluid. The second layer is therefore forced to decelerate (though it is not quite brought to rest), creating a shearing action with the third layer of fluid, and so on. As the fluid passes further along with
8449-527: The flow is irrotational everywhere, Bernoulli's equation can completely describe the flow everywhere. Such flows are called potential flows , because the velocity field may be expressed as the gradient of a potential energy expression. This idea can work fairly well when the Reynolds number is high. However, problems such as those involving solid boundaries may require that the viscosity be included. Viscosity cannot be neglected near solid boundaries because
8568-421: The four corners, or along one wall, or two opposite walls, and it is ignited to rapidly burn, forming a large fireball at the center. The thermal radiation of the fireball heats the water that circulates through the boiler tubes near the boiler perimeter. The water circulation rate in the boiler is three to four times the throughput. As the water in the boiler circulates it absorbs heat and changes into steam. It
8687-403: The gas turbines is used to make superheated steam that is then used in a conventional water-steam generation cycle, as described in the gas turbine combined-cycle plants section. The water enters the boiler through a section in the convection pass called the economizer . From the economizer it passes to the steam drum and from there it goes through downcomers to inlet headers at the bottom of
8806-436: The governing equations of the same problem without taking advantage of the steadiness of the flow field. Turbulence is flow characterized by recirculation, eddies , and apparent randomness . Flow in which turbulence is not exhibited is called laminar . The presence of eddies or recirculation alone does not necessarily indicate turbulent flow—these phenomena may be present in laminar flow as well. Mathematically, turbulent flow
8925-615: The highest known heat transfer coefficient of any gas and for its low viscosity , which reduces windage losses. This system requires special handling during startup, with air in the chamber first displaced by carbon dioxide before filling with hydrogen. This ensures that a highly explosive hydrogen– oxygen environment is not created. The power grid frequency is 60 Hz across North America and 50 Hz in Europe , Oceania , Asia ( Korea and parts of Japan are notable exceptions), and parts of Africa . The desired frequency affects
9044-428: The intermediate and then low-pressure turbines. External fans are provided to give sufficient air for combustion. The Primary air fan takes air from the atmosphere and, first warms the air in the air preheater for better economy. Primary air then passes through the coal pulverizers, and carries the coal dust to the burners for injection into the furnace. The Secondary air fan takes air from the atmosphere and, first warms
9163-403: The law applied to an infinitesimally small volume (at a point) within the flow. In the above integral formulation of this equation, the term on the left is the net change of momentum within the volume. The first term on the right is the net rate at which momentum is convected into the volume. The second term on the right is the force due to pressure on the volume's surfaces. The first two terms on
9282-494: The laws of motion and his law of viscosity, in addition to developing the calculus, paved the way for many great developments in fluid mechanics. Using Newton's laws of motion, numerous 18th-century mathematicians solved many frictionless (zero-viscosity) flow problems. However, most flows are dominated by viscous effects, so engineers of the 17th and 18th centuries found the inviscid flow solutions unsuitable, and by experimentation they developed empirical equations, thus establishing
9401-450: The local economy by creating jobs in construction, maintenance, and fuel extraction industries. On the other hand, burning of fossil fuels releases greenhouse gases (contributing to climate change) and air pollutants such as sulfur oxides and nitrogen oxides (leading to acid rain and respiratory diseases). Carbon capture and storage (CCS) technology can reduce the greenhouse gas emissions of fossil-fuel-based thermal power stations, however it
9520-580: The macroscopic and microscopic fluid motion at large velocities comparable to the velocity of light . This branch of fluid dynamics accounts for the relativistic effects both from the special theory of relativity and the general theory of relativity . The governing equations are derived in Riemannian geometry for Minkowski spacetime . This branch of fluid dynamics augments the standard hydrodynamic equations with stochastic fluxes that model thermal fluctuations. As formulated by Landau and Lifshitz ,
9639-404: The magnitude of inertial effects compared to the magnitude of viscous effects. A low Reynolds number ( Re ≪ 1 ) indicates that viscous forces are very strong compared to inertial forces. In such cases, inertial forces are sometimes neglected; this flow regime is called Stokes or creeping flow . In contrast, high Reynolds numbers ( Re ≫ 1 ) indicate that the inertial effects have more effect on
9758-403: The medium through which they propagate. All fluids, except superfluids , are viscous, meaning that they exert some resistance to deformation: neighbouring parcels of fluid moving at different velocities exert viscous forces on each other. The velocity gradient is referred to as a strain rate ; it has dimensions T . Isaac Newton showed that for many familiar fluids such as water and air ,
9877-417: The middle of this series of feedwater heaters, and before the second stage of pressurization, the condensate plus the makeup water flows through a deaerator that removes dissolved air from the water, further purifying and reducing its corrosiveness. The water may be dosed following this point with hydrazine , a chemical that removes the remaining oxygen in the water to below 5 parts per billion (ppb). It
9996-566: The more commonly used are listed below. While many flows (such as flow of water through a pipe) occur at low Mach numbers ( subsonic flows), many flows of practical interest in aerodynamics or in turbomachines occur at high fractions of M = 1 ( transonic flows ) or in excess of it ( supersonic or even hypersonic flows ). New phenomena occur at these regimes such as instabilities in transonic flow, shock waves for supersonic flow, or non-equilibrium chemical behaviour due to ionization in hypersonic flows. In practice, each of those flow regimes
10115-528: The mountains of Ifugao in the Philippines by ancestors of the indigenous people . The Rice Terraces are commonly referred to as the " Eighth Wonder of the World ". It is commonly thought that the terraces were built with minimal equipment, largely by hand. The terraces are located approximately 1500 metres (5000 ft) above sea level. They are fed by an ancient irrigation system from the rainforests above
10234-444: The nuclear fuel. This, in turn, limits their thermodynamic efficiency to 30–32%. Some advanced reactor designs being studied, such as the very-high-temperature reactor , Advanced Gas-cooled Reactor , and supercritical water reactor , would operate at temperatures and pressures similar to current coal plants, producing comparable thermodynamic efficiency. The energy of a thermal power station not utilized in power production must leave
10353-687: The occurrence of scour and deposition. "The hydraulic engineer actually develops conceptual designs for the various features which interact with water such as spillways and outlet works for dams, culverts for highways, canals and related structures for irrigation projects, and cooling-water facilities for thermal power plants ." A few examples of the fundamental principles of hydraulic engineering include fluid mechanics , fluid flow, behavior of real fluids, hydrology , pipelines, open channel hydraulics, mechanics of sediment transport, physical modeling, hydraulic machines, and drainage hydraulics. Fundamentals of Hydraulic Engineering defines hydrostatics as
10472-630: The plant in the form of heat to the environment. This waste heat can go through a condenser and be disposed of with cooling water or in cooling towers . If the waste heat is instead used for district heating , it is called cogeneration . An important class of thermal power station is that associated with desalination facilities; these are typically found in desert countries with large supplies of natural gas , and in these plants freshwater production and electricity are equally important co-products. Other types of power stations are subject to different efficiency limitations. Most hydropower stations in
10591-443: The plate, the zone in which shearing action occurs tends to spread further outwards. This zone is known as the "boundary layer". The flow outside the boundary layer is free of shear and viscous-related forces so it is assumed to act as an ideal fluid. The intermolecular cohesive forces in a fluid are not great enough to hold fluid together. Hence a fluid will flow under the action of the slightest stress and flow will continue as long as
10710-453: The power of the computer used and the efficiency of the solution algorithm. The results of DNS have been found to agree well with experimental data for some flows. Most flows of interest have Reynolds numbers much too high for DNS to be a viable option, given the state of computational power for the next few decades. Any flight vehicle large enough to carry a human ( L > 3 m), moving faster than 20 m/s (72 km/h; 45 mph)
10829-551: The pressure as a function of other thermodynamic variables is required to completely describe the problem. An example of this would be the perfect gas equation of state : where p is pressure , ρ is density , and T is the absolute temperature , while R u is the gas constant and M is molar mass for a particular gas. A constitutive relation may also be useful. Three conservation laws are used to solve fluid dynamics problems, and may be written in integral or differential form. The conservation laws may be applied to
10948-503: The principles of fluid dynamics and fluid mechanics are widely utilized by other engineering disciplines such as mechanical, aeronautical and even traffic engineers. Related branches include hydrology and rheology while related applications include hydraulic modeling, flood mapping, catchment flood management plans, shoreline management plans, estuarine strategies, coastal protection, and flood alleviation. Earliest uses of hydraulic engineering were to irrigate crops and dates back to
11067-467: The production/depletion rate of any species are obtained by simultaneously solving the equations of chemical kinetics . Magnetohydrodynamics is the multidisciplinary study of the flow of electrically conducting fluids in electromagnetic fields. Examples of such fluids include plasmas , liquid metals, and salt water . The fluid flow equations are solved simultaneously with Maxwell's equations of electromagnetism. Relativistic fluid dynamics studies
11186-405: The range of 0.3–1.0 microsiemens per centimeter. The makeup water in a 500 MWe plant amounts to perhaps 120 US gallons per minute (7.6 L/s) to replace water drawn off from the boiler drums for water purity management, and to also offset the small losses from steam leaks in the system. The feed water cycle begins with condensate water being pumped out of the condenser after traveling through
11305-507: The remaining energy. The entire rotating mass may be over 200 metric tons and 100 feet (30 m) long. It is so heavy that it must be kept turning slowly even when shut down (at 3 rpm ) so that the shaft will not bow even slightly and become unbalanced. This is so important that it is one of only six functions of blackout emergency power batteries on site. (The other five being emergency lighting , communication , station alarms, generator hydrogen seal system, and turbogenerator lube oil.) For
11424-432: The right are negated since momentum entering the system is accounted as positive, and the normal is opposite the direction of the velocity u and pressure forces. The third term on the right is the net acceleration of the mass within the volume due to any body forces (here represented by f body ). Surface forces , such as viscous forces, are represented by F surf , the net force due to shear forces acting on
11543-431: The science of hydraulics. Late in the 19th century, the importance of dimensionless numbers and their relationship to turbulence was recognized, and dimensional analysis was born. In 1904 Ludwig Prandtl published a key paper, proposing that the flow fields of low-viscosity fluids be divided into two zones, namely a thin, viscosity-dominated boundary layer near solid surfaces, and an effectively inviscid outer zone away from
11662-686: The simultaneous production of electricity and useful heat from the same fuel source, improves the overall efficiency by using waste heat for heating purposes. Older, less efficient thermal power stations are being decommissioned or adapted to use cleaner and renewable energy sources. Thermal power stations produce 70% of the world's electricity. They often provide reliable, stable, and continuous baseload power supply essential for economic growth. They ensure energy security by maintaining grid stability, especially in regions where they complement intermittent renewable energy sources dependent on weather conditions. The operation of thermal power stations contributes to
11781-621: The state that are still operative and in use today. The rulers developed new systems for agriculture and taxation , which continued to be used in parts of the Horn of Africa as late as the 19th century. Further advances in hydraulic engineering occurred in the Muslim world between the 8th and 16th centuries, during what is known as the Islamic Golden Age . Of particular importance was the ' water management technological complex ' which
11900-460: The steam from the exhaust of the turbine into liquid to allow it to be pumped. If the condenser can be made cooler, the pressure of the exhaust steam is reduced and efficiency of the cycle increases. The surface condenser is a shell and tube heat exchanger in which cooling water is circulated through the tubes. The exhaust steam from the low-pressure turbine enters the shell, where it is cooled and converted to condensate (water) by flowing over
12019-420: The steam turbines. The condensate flow rate at full load in a 500 MW plant is about 6,000 US gallons per minute (400 L/s). The water is usually pressurized in two stages, and typically flows through a series of six or seven intermediate feed water heaters, heated up at each point with steam extracted from an appropriate extraction connection on the turbines and gaining temperature at each stage. Typically, in
12138-565: The stress is present. The flow inside the layer can be either vicious or turbulent, depending on Reynolds number. Common topics of design for hydraulic engineers include hydraulic structures such as dams , levees , water distribution networks including both domestic and fire water supply, distribution and automatic sprinkler systems, water collection networks, sewage collection networks, storm water management, sediment transport , and various other topics related to transportation engineering and geotechnical engineering . Equations developed from
12257-440: The stress-strain behaviours of such fluids, which include emulsions and slurries , some viscoelastic materials such as blood and some polymers , and sticky liquids such as latex , honey and lubricants . The dynamic of fluid parcels is described with the help of Newton's second law . An accelerating parcel of fluid is subject to inertial effects. The Reynolds number is a dimensionless quantity which characterises
12376-465: The study of fluids at rest. In a fluid at rest, there exists a force, known as pressure, that acts upon the fluid's surroundings. This pressure, measured in N/m, is not constant throughout the body of fluid. Pressure, p, in a given body of fluid, increases with an increase in depth. Where the upward force on a body acts on the base and can be found by the equation: where, Rearranging this equation gives you
12495-433: The temperature beyond the turbine limits during winter, causing excessive condensation in the turbine). Plants operating in hot climates may have to reduce output if their source of condenser cooling water becomes warmer; unfortunately this usually coincides with periods of high electrical demand for air conditioning . The condenser generally uses either circulating cooling water from a cooling tower to reject waste heat to
12614-405: The term static pressure to distinguish it from total pressure and dynamic pressure. Static pressure is identical to pressure and can be identified for every point in a fluid flow field. A point in a fluid flow where the flow has come to rest (that is to say, speed is equal to zero adjacent to some solid body immersed in the fluid flow) is of special significance. It is of such importance that it
12733-414: The terminology that is necessary in the study of fluid dynamics is not found in other similar areas of study. In particular, some of the terminology used in fluid dynamics is not used in fluid statics . Dimensionless numbers (or characteristic numbers ) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena . They include the Reynolds and
12852-481: The terraces. It is said that if the steps were put end to end, it would encircle half the globe. Eupalinos of Megara was an ancient Greek engineer who built the Tunnel of Eupalinos on Samos in the 6th century BC, an important feat of both civil and hydraulic engineering. The civil engineering aspect of this tunnel was that it was dug from both ends which required the diggers to maintain an accurate path so that
12971-455: The tubes as shown in the adjacent diagram. Such condensers use steam ejectors or rotary motor -driven exhausts for continuous removal of air and gases from the steam side to maintain vacuum . For best efficiency, the temperature in the condenser must be kept as low as practical in order to achieve the lowest possible pressure in the condensing steam. Since the condenser temperature can almost always be kept significantly below 100 °C where
13090-452: The tubes to scrub them clean without the need to take the system off-line. The cooling water used to condense the steam in the condenser returns to its source without having been changed other than having been warmed. If the water returns to a local water body (rather than a circulating cooling tower), it is often tempered with cool 'raw' water to prevent thermal shock when discharged into that body of water. Another form of condensing system
13209-432: The turbine was considered a better alternative to reciprocating engines; turbines offered higher speeds, more compact machinery, and stable speed regulation allowing for parallel synchronous operation of generators on a common bus. After about 1905, turbines entirely replaced reciprocating engines in almost all large central power stations. The largest reciprocating engine-generator sets ever built were completed in 1901 for
13328-592: The two tunnels met and that the entire effort maintained a sufficient slope to allow the water to flow. Hydraulic engineering was highly developed in Europe under the aegis of the Roman Empire where it was especially applied to the construction and maintenance of aqueducts to supply water to and remove sewage from their cities. In addition to supplying the needs of their citizens they used hydraulic mining methods to prospect and extract alluvial gold deposits in
13447-497: The velocity field than the viscous (friction) effects. In high Reynolds number flows, the flow is often modeled as an inviscid flow , an approximation in which viscosity is completely neglected. Eliminating viscosity allows the Navier–Stokes equations to be simplified into the Euler equations . The integration of the Euler equations along a streamline in an inviscid flow yields Bernoulli's equation . When, in addition to being inviscid,
13566-423: The volume surface. The momentum balance can also be written for a moving control volume. The following is the differential form of the momentum conservation equation. Here, the volume is reduced to an infinitesimally small point, and both surface and body forces are accounted for in one total force, F . For example, F may be expanded into an expression for the frictional and gravitational forces acting at
13685-400: The water walls. From these headers the water rises through the water walls of the furnace where some of it is turned into steam and the mixture of water and steam then re-enters the steam drum. This process may be driven purely by natural circulation (because the water is the downcomers is denser than the water/steam mixture in the water walls) or assisted by pumps. In the steam drum, the water
13804-433: The world's thermal power stations are driven by steam turbines, gas turbines, or a combination of the two. The efficiency of a thermal power station is determined by how effectively it converts heat energy into electrical energy, specifically the ratio of saleable electricity to the heating value of the fuel used. Different thermodynamic cycles have varying efficiencies, with the Rankine cycle generally being more efficient than
13923-785: Was central to the Islamic Green Revolution . The various components of this 'toolkit' were developed in different parts of the Afro-Eurasian landmass, both within and beyond the Islamic world. However, it was in the medieval Islamic lands where the technological complex was assembled and standardized, and subsequently diffused to the rest of the Old World. Under the rule of a single Islamic caliphate , different regional hydraulic technologies were assembled into "an identifiable water management technological complex that
14042-533: Was highly developed, and engineers constructed massive canals with levees and dams to channel the flow of water for irrigation, as well as locks to allow ships to pass through. Sunshu Ao is considered the first Chinese hydraulic engineer. Another important Hydraulic Engineer in China, Ximen Bao was credited of starting the practice of large scale canal irrigation during the Warring States period (481 BC–221 BC), even today hydraulic engineers remain
14161-472: Was to have a global impact." The various components of this complex included canals , dams , the qanat system from Persia, regional water-lifting devices such as the noria , shaduf and screwpump from Egypt , and the windmill from Islamic Afghanistan . Other original Islamic developments included the saqiya with a flywheel effect from Islamic Spain, the reciprocating suction pump and crankshaft - connecting rod mechanism from Iraq , and
#379620