Nuclear DNA ( nDNA ), or nuclear deoxyribonucleic acid , is the DNA contained within each cell nucleus of a eukaryotic organism . It encodes for the majority of the genome in eukaryotes, with mitochondrial DNA and plastid DNA coding for the rest. It adheres to Mendelian inheritance , with information coming from two parents, one male and one female—rather than matrilineally (through the mother) as in mitochondrial DNA.
74-477: A hypervariable region ( HVR ) is a location within nuclear DNA or the D-loop of mitochondrial DNA in which base pairs of nucleotides repeat (in the case of nuclear DNA) or have substitutions (in the case of mitochondrial DNA). Changes or repeats in the hypervariable region are highly polymorphic . There are two mitochondrial hypervariable regions used in human mitochondrial genealogical DNA testing . HVR1
148-640: A cell , and hence the number of possible alleles for autosomal and pseudoautosomal genes . Here sets of chromosomes refers to the number of maternal and paternal chromosome copies, respectively, in each homologous chromosome pair—the form in which chromosomes naturally exist. Somatic cells , tissues , and individual organisms can be described according to the number of sets of chromosomes present (the "ploidy level"): monoploid (1 set), diploid (2 sets), triploid (3 sets), tetraploid (4 sets), pentaploid (5 sets), hexaploid (6 sets), heptaploid or septaploid (7 sets), etc. The generic term polyploid
222-535: A ploidy series , featuring diploid ( X. tropicalis , 2n=20), tetraploid ( X. laevis , 4n=36), octaploid ( X. wittei , 8n=72), and dodecaploid ( X. ruwenzoriensis , 12n=108) species. Over evolutionary time scales in which chromosomal polymorphisms accumulate, these changes become less apparent by karyotype – for example, humans are generally regarded as diploid, but the 2R hypothesis has confirmed two rounds of whole genome duplication in early vertebrate ancestors. Ploidy can also vary between individuals of
296-417: A syncytium , though usually the ploidy of each nucleus is described individually. For example, a fungal dikaryon with two separate haploid nuclei is distinguished from a diploid cell in which the chromosomes share a nucleus and can be shuffled together. It is possible on rare occasions for ploidy to increase in the germline , which can result in polyploid offspring and ultimately polyploid species. This
370-675: A zygote with n pairs of chromosomes, i.e. 2 n chromosomes in total. The chromosomes in each pair, one of which comes from the sperm and one from the egg, are said to be homologous . Cells and organisms with pairs of homologous chromosomes are called diploid. For example, most animals are diploid and produce haploid gametes. During meiosis , sex cell precursors have their number of chromosomes halved by randomly "choosing" one member of each pair of chromosomes, resulting in haploid gametes. Because homologous chromosomes usually differ genetically, gametes usually differ genetically from one another. All plants and many fungi and algae switch between
444-536: A case. Techniques used include polymerase chain reaction (PCR), which allows one to utilize very small amounts of DNA by making copies of targeted regions on the molecule, also known as short tandem repeats (STRs). Like mitosis , meiosis is a form of eukaryotic cell division . Meiosis gives rise to four unique daughter cells, each of which has half the number of chromosomes as the parent cell. Because meiosis creates cells that are destined to become gametes (or reproductive cells), this reduction in chromosome number
518-428: A cell goes through an interphase period in which it grows, replicates its chromosomes, and checks all of its systems to ensure that it is ready to divide. Like mitosis, meiosis also has distinct stages called prophase , metaphase , anaphase , and telophase . A key difference, however, is that during meiosis, each of these phases occurs twice — once during the first round of division, called meiosis I, and again during
592-467: A chromosome copy number of 1 to 4, and that number is commonly fractional, counting portions of the chromosome partly replicated at a given time. This is because under exponential growth conditions the cells are able to replicate their DNA faster than they can divide. In ciliates, the macronucleus is called ampliploid , because only part of the genome is amplified. Mixoploidy is the case where two cell lines, one diploid and one polyploid, coexist within
666-480: A diverse set of DNA repair processes that remove nuclear DNA damages. These repair processes include base excision repair , nucleotide excision repair , homologous recombinational repair, non-homologous end joining and microhomology-mediated end joining . Such repair processes are essential for maintaining nuclear DNA stability. Failure of repair activity to keep up with the occurrence of damages has various negative consequences. Nuclear DNA damages, as well as
740-406: A five-carbon sugar, a phosphate group, and an organic base. Nucleotides are distinguished by their bases: purines , large bases that include adenine and guanine ; and pyrimidines , small bases that include thymine and cytosine . Chargaff's rules state that adenine always pairs with thymine, and guanine always with cytosine. The phosphate groups are held together by a phosphodiester bond and
814-424: A germ cell with an uneven number of chromosomes undergoes meiosis, the chromosomes cannot be evenly divided between the daughter cells, resulting in aneuploid gametes. Triploid organisms, for instance, are usually sterile. Because of this, triploidy is commonly exploited in agriculture to produce seedless fruit such as bananas and watermelons. If the fertilization of human gametes results in three sets of chromosomes,
SECTION 10
#1732801475468888-629: A haploid and a diploid state, with one of the stages emphasized over the other. This is called alternation of generations . Most fungi and algae are haploid during the principal stage of their life cycle, as are some primitive plants like mosses . More recently evolved plants, like the gymnosperms and angiosperms , spend the majority of their life cycle in the diploid stage. Most animals are diploid, but male bees , wasps , and ants are haploid organisms because they develop from unfertilized, haploid eggs, while females (workers and queens) are diploid, making their system haplodiploid . In some cases there
962-451: A number of chromosomes that is an exact multiple of the number of chromosomes in a normal gamete; and having any other number, respectively. For example, a person with Turner syndrome may be missing one sex chromosome (X or Y), resulting in a (45,X) karyotype instead of the usual (46,XX) or (46,XY). This is a type of aneuploidy and cells from the person may be said to be aneuploid with a (diploid) chromosome complement of 45. The term ploidy
1036-425: A process called endoreduplication , where duplication of the genome occurs without mitosis (cell division). The extreme in polyploidy occurs in the fern genus Ophioglossum , the adder's-tongues, in which polyploidy results in chromosome counts in the hundreds, or, in at least one case, well over one thousand. It is possible for polyploid organisms to revert to lower ploidy by haploidisation . Polyploidy
1110-533: A series of short DNA segments called Okazaki fragments . Each Okazaki fragment requires a separate RNA primer. As the Okazaki fragments are synthesized, the RNA primers are replaced with DNA nucleotides and the fragments are bonded together in a continuous complementary strand. Damage of nuclear DNA is a persistent problem arising from a variety of disruptive endogenous and exogenous sources. Eukaryotes have evolved
1184-476: A short sequence of RNA nucleotides, complementary to a small, initial section of the DNA strand being prepared for replication. DNA polymerase is then able to add DNA nucleotides to the RNA primer and thus begin the process of constructing a new complementary strand of DNA. Later the RNA primer is enzymatically removed and replaced with the appropriate sequence of DNA nucleotides. Because the two complementary strands of
1258-401: A single nucleus rather than in the cell as a whole. Because in most situations there is only one nucleus per cell, it is commonplace to speak of the ploidy of a cell, but in cases in which there is more than one nucleus per cell, more specific definitions are required when ploidy is discussed. Authors may at times report the total combined ploidy of all nuclei present within the cell membrane of
1332-437: A single chromosome and diploid individuals have two chromosomes. In Entamoeba , the ploidy level varies from 4 n to 40 n in a single population. Alternation of generations occurs in most plants, with individuals "alternating" ploidy level between different stages of their sexual life cycle. In large multicellular organisms, variations in ploidy level between different tissues, organs, or cell lineages are common. Because
1406-495: A single copy of each chromosome – that is, one and only one set of chromosomes. In this case, the nucleus of a eukaryotic cell is said to be haploid only if it has a single set of chromosomes , each one not being part of a pair. By extension a cell may be called haploid if its nucleus has one set of chromosomes, and an organism may be called haploid if its body cells (somatic cells) have one set of chromosomes per cell. By this definition haploid therefore would not be used to refer to
1480-484: A single parent, without the involvement of gametes and fertilization, and all the offspring are genetically identical to each other and to the parent, including in chromosome number. The parents of these vegetative clones may still be capable of producing haploid gametes in preparation for sexual reproduction, but these gametes are not used to create the vegetative offspring by this route. Some eukaryotic genome-scale or genome size databases and other sources which may list
1554-421: A template to guide the synthesis of the new complementary polynucleotide of DNA. The DNA single-strand template serves to guide the synthesis of a complementary strand of DNA. DNA replication begins at a specific site in the DNA molecule called the origin of replication . The enzyme helicase unwinds and separates a portion of the DNA molecule after which single-strand binding proteins react with and stabilize
SECTION 20
#17328014754681628-490: Is 24. The monoploid number equals the total chromosome number divided by the ploidy level of the somatic cells: 48 chromosomes in total divided by a ploidy level of 4 equals a monoploid number of 12. Hence, the monoploid number (12) and haploid number (24) are distinct in this example. However, commercial potato crops (as well as many other crop plants) are commonly propagated vegetatively (by asexual reproduction through mitosis), in which case new individuals are produced from
1702-402: Is 7. The gametes of common wheat are considered to be haploid, since they contain half the genetic information of somatic cells, but they are not monoploid, as they still contain three complete sets of chromosomes ( n = 3 x ). In the case of wheat, the origin of its haploid number of 21 chromosomes from three sets of 7 chromosomes can be demonstrated. In many other organisms, although
1776-519: Is a back-formation from haploidy and diploidy . "Ploid" is a combination of Ancient Greek -πλόος (-plóos, "-fold") and -ειδής (- eidḗs ), from εἶδος ( eîdos , "form, likeness"). The principal meaning of the Greek word ᾰ̔πλόος (haplóos) is "single", from ἁ- (ha-, "one, same"). διπλόος ( diplóos ) means "duplex" or "two-fold". Diploid therefore means "duplex-shaped" (compare "humanoid", "human-shaped"). Polish-German botanist Eduard Strasburger coined
1850-401: Is a nucleic acid , a polymeric biomolecule or biopolymer , found in the nucleus of eukaryotic cells. Its structure is a double helix , with two strands wound around each other, a structure first described by Francis Crick and James D. Watson (1953) using data collected by Rosalind Franklin . Each strand is a long polymer chain of repeating nucleotides . Each nucleotide is composed of
1924-413: Is a characteristic of the bacterium Deinococcus radiodurans and of the archaeon Halobacterium salinarum . These two species are highly resistant to ionizing radiation and desiccation , conditions that induce DNA double-strand breaks. This resistance appears to be due to efficient homologous recombinational repair. Depending on growth conditions, prokaryotes such as bacteria may have
1998-412: Is an important evolutionary mechanism in both plants and animals and is known as a primary driver of speciation . As a result, it may become desirable to distinguish between the ploidy of a species or variety as it presently breeds and that of an ancestor. The number of chromosomes in the ancestral (non-homologous) set is called the monoploid number ( x ), and is distinct from the haploid number ( n ) in
2072-462: Is associated with a 14% lower risk of being endangered, and a 20% greater chance of being invasive. Polyploidy may be associated with increased vigor and adaptability. Some studies suggest that selection is more likely to favor diploidy in host species and haploidy in parasite species. However, polyploidization is associated with an increase in transposable element content and relaxed purifying selection on recessive deleterious alleles. When
2146-911: Is common in invertebrates, reptiles, and amphibians. In some species, ploidy varies between individuals of the same species (as in the social insects ), and in others entire tissues and organ systems may be polyploid despite the rest of the body being diploid (as in the mammalian liver ). For many organisms, especially plants and fungi, changes in ploidy level between generations are major drivers of speciation . In mammals and birds, ploidy changes are typically fatal. There is, however, evidence of polyploidy in organisms now considered to be diploid, suggesting that polyploidy has contributed to evolutionary diversification in plants and animals through successive rounds of polyploidization and rediploidization. Humans are diploid organisms, normally carrying two complete sets of chromosomes in their somatic cells: one copy of paternal and maternal chromosomes, respectively, in each of
2220-581: Is considered a "low resolution" region and HVR2 is considered a "high resolution" region. Getting HVR1 and HVR2 DNA tests can help determine one's haplogroup . In the revised Cambridge Reference Sequence of the human mitogenome, the most variable sites of HVR1 are numbered 16024-16383 (this subsequence is called HVR-I), and the most variable sites of HVR2 are numbered 57-372 ( i.e., HVR-II) and 438-574 ( i.e., HVR-III). In some bony fishes , for example certain Protacanthopterygii and Gadidae ,
2294-523: Is critical — without it, the union of two gametes during fertilization would result in offspring with twice the normal number of chromosomes. Meiosis creates new combinations of genetic material in each of the four daughter cells. These new combinations result from the exchange of DNA between paired chromosomes. Such an exchange means that the gametes produced through meiosis often exhibit considerable genetic variation. Meiosis involves two rounds of nuclear division, not just one. Prior to undergoing meiosis,
Hypervariable region - Misplaced Pages Continue
2368-525: Is evidence that the n chromosomes in a haploid set have resulted from duplications of an originally smaller set of chromosomes. This "base" number – the number of apparently originally unique chromosomes in a haploid set – is called the monoploid number , also known as basic or cardinal number , or fundamental number . As an example, the chromosomes of common wheat are believed to be derived from three different ancestral species, each of which had 7 chromosomes in its haploid gametes. The monoploid number
2442-471: Is faster than diploid under high nutrient conditions. The NLH is also tested in haploid, diploid, and polyploid fungi by Gerstein et al. 2017. This result is also more complex: On the one hand, under phosphorus and other nutrient limitation, lower ploidy is selected as expected. However under normal nutrient levels or under limitation of only nitrogen , higher ploidy was selected. Thus the NLH – and more generally,
2516-515: Is known as the molecule of life and contains the genetic instructions for the development of all eukaryotic organisms. It is found in almost every cell in the human body, with exceptions such as red blood cells . Everyone has a unique genetic blueprint, even identical twins. Forensic departments such as the Bureau of Criminal Apprehension (BCA) and Federal Bureau of Investigation (FBI) are able to use techniques involving nuclear DNA to compare samples in
2590-511: Is often used to describe cells with three or more sets of chromosomes. Virtually all sexually reproducing organisms are made up of somatic cells that are diploid or greater, but ploidy level may vary widely between different organisms, between different tissues within the same organism, and at different stages in an organism's life cycle. Half of all known plant genera contain polyploid species, and about two-thirds of all grasses are polyploid. Many animals are uniformly diploid, though polyploidy
2664-427: Is particularly prone to mutation. Mutations arising in the nuclear DNA of the germline are most often neutral or adaptively disadvantageous. However, the small proportion of mutations that prove to be advantageous provide the genetic variation upon which natural selection operates to generate new adaptations. Diploid Ploidy ( / ˈ p l ɔɪ d i / ) is the number of complete sets of chromosomes in
2738-572: Is the simplest to illustrate in diagrams of genetics concepts. But this definition also allows for haploid gametes with more than one set of chromosomes. As given above, gametes are by definition haploid, regardless of the actual number of sets of chromosomes they contain. An organism whose somatic cells are tetraploid (four sets of chromosomes), for example, will produce gametes by meiosis that contain two sets of chromosomes. These gametes might still be called haploid even though they are numerically diploid. An alternative usage defines "haploid" as having
2812-426: Is the state in which the chromosomes are paired and can undergo meiosis. The zygoid state of a species may be diploid or polyploid. In the azygoid state the chromosomes are unpaired. It may be the natural state of some asexual species or may occur after meiosis. In diploid organisms the azygoid state is monoploid. (See below for dihaploidy.) In the strictest sense, ploidy refers to the number of sets of chromosomes in
2886-731: Is the state where all cells have multiple sets of chromosomes beyond the basic set, usually 3 or more. Specific terms are triploid (3 sets), tetraploid (4 sets), pentaploid (5 sets), hexaploid (6 sets), heptaploid or septaploid (7 sets), octoploid (8 sets), nonaploid (9 sets), decaploid (10 sets), undecaploid (11 sets), dodecaploid (12 sets), tridecaploid (13 sets), tetradecaploid (14 sets), etc. Some higher ploidies include hexadecaploid (16 sets), dotriacontaploid (32 sets), and tetrahexacontaploid (64 sets), though Greek terminology may be set aside for readability in cases of higher ploidy (such as "16-ploid"). Polytene chromosomes of plants and fruit flies can be 1024-ploid. Ploidy of systems such as
2960-402: Is thus 7 and the haploid number is 3 × 7 = 21. In general n is a multiple of x . The somatic cells in a wheat plant have six sets of 7 chromosomes: three sets from the egg and three sets from the sperm which fused to form the plant, giving a total of 42 chromosomes. As a formula, for wheat 2 n = 6 x = 42, so that the haploid number n is 21 and the monoploid number x
3034-417: Is well established in this original sense, but it has also been used for doubled monoploids or doubled haploids , which are homozygous and used for genetic research. Euploidy ( Greek eu , "true" or "even") is the state of a cell or organism having one or more than one set of the same set of chromosomes, possibly excluding the sex-determining chromosomes . For example, most human cells have 2 of each of
Hypervariable region - Misplaced Pages Continue
3108-469: The mitochondrial control region evolves remarkably slowly. Even functional mitochondrial genes accumulate mutations faster and more freely. It is not known whether such hypovariable control regions are more widespread. In the Ayu ( Plecoglossus altivelis ), an East Asian protacanthopterygian, control region mutation rate is not markedly lowered, but sequence differences between subspecies are far lower in
3182-423: The monoploid number ( x ). The haploid number ( n ) refers to the total number of chromosomes found in a gamete (a sperm or egg cell produced by meiosis in preparation for sexual reproduction). Under normal conditions, the haploid number is exactly half the total number of chromosomes present in the organism's somatic cells, with one paternal and maternal copy in each chromosome pair. For diploid organisms,
3256-575: The mutations and epigenetic alterations that such damages cause, are considered to be a major cause of cancer . Nuclear DNA damages are also implicated in aging and neurodegenerative diseases . Nuclear DNA is subject to mutation . A major cause of mutation is inaccurate DNA replication , often by specialized DNA polymerases that synthesize past DNA damages in the template strand (error-prone trans-lesion synthesis ). Mutations also arise by inaccurate DNA repair. The microhomology-mediated end joining pathway for repair of double-strand breaks
3330-425: The salivary gland , elaiosome , endosperm , and trophoblast can exceed this, up to 1048576-ploid in the silk glands of the commercial silkworm Bombyx mori . The chromosome sets may be from the same species or from closely related species. In the latter case, these are known as allopolyploids (or amphidiploids, which are allopolyploids that behave as if they were normal diploids). Allopolyploids are formed from
3404-453: The 23 homologous monoploid chromosomes, for a total of 46 chromosomes. A human cell with one extra set of the 23 normal chromosomes (functionally triploid) would be considered euploid. Euploid karyotypes would consequentially be a multiple of the haploid number , which in humans is 23. Aneuploidy is the state where one or more individual chromosomes of a normal set are absent or present in more than their usual number of copies (excluding
3478-407: The 23 homologous pairs of chromosomes that humans normally have. This results in two homologous pairs within each of the 23 homologous pairs, providing a full complement of 46 chromosomes. This total number of individual chromosomes (counting all complete sets) is called the chromosome number or chromosome complement . The number of chromosomes found in a single complete set of chromosomes is called
3552-407: The DNA molecule are oriented in opposite directions and the DNA polymerase can only accommodate replication in one direction, two different mechanisms for copying the strands of DNA are employed. One strand is replicated continuously towards unwinding, separating the portion of the original DNA molecule; while the other strand is replicated discontinuously in the opposite direction with the formation of
3626-572: The absence or presence of complete sets, which is considered euploidy). Unlike euploidy, aneuploid karyotypes will not be a multiple of the haploid number. In humans, examples of aneuploidy include having a single extra chromosome (as in Down syndrome , where affected individuals have three copies of chromosome 21) or missing a chromosome (as in Turner syndrome , where affected individuals have only one sex chromosome). Aneuploid karyotypes are given names with
3700-503: The bases are held together by hydrogen bonds . Nuclear DNA and mitochondrial DNA differ in many ways, starting with location and structure. Nuclear DNA is located within the nucleus of eukaryote cells and usually has two copies per cell while mitochondrial DNA is located in the mitochondria and contains 100–1,000 copies per cell. The structure of nuclear DNA chromosomes is linear with open ends and includes 46 chromosomes and contains for example 3 billion nucleotides in humans while
3774-437: The chromosome constitution. Dihaploids (which are diploid) are important for selective breeding of tetraploid crop plants (notably potatoes), because selection is faster with diploids than with tetraploids. Tetraploids can be reconstituted from the diploids, for example by somatic fusion. The term "dihaploid" was coined by Bender to combine in one word the number of genome copies (diploid) and their origin (haploid). The term
SECTION 50
#17328014754683848-453: The chromosome number is generally reduced only by the specialized process of meiosis, the somatic cells of the body inherit and maintain the chromosome number of the zygote by mitosis. However, in many situations somatic cells double their copy number by means of endoreduplication as an aspect of cellular differentiation . For example, the hearts of two-year-old human children contain 85% diploid and 15% tetraploid nuclei, but by 12 years of age
3922-499: The condition is called triploid syndrome . In unicellular organisms the ploidy nutrient limitation hypothesis suggests that nutrient limitation should encourage haploidy in preference to higher ploidies. This hypothesis is due to the higher surface-to-volume ratio of haploids, which eases nutrient uptake, thereby increasing the internal nutrient-to-demand ratio. Mable 2001 finds Saccharomyces cerevisiae to be somewhat inconsistent with this hypothesis however, as haploid growth
3996-509: The control region than elsewhere. This phenomenon completely defies explanation at present. In antibodies , hypervariable regions form the antigen-binding site and are found on both light and heavy chains . They also contribute to the specificity of each antibody. In a variable domain , the 3 H V segments of each heavy or light chain fold together at the N-terminus to form an antigen binding pocket. Nuclear DNA Nuclear DNA
4070-423: The diploid stage are under less efficient natural selection than those genes expressed in the haploid stage is referred to as the “masking theory”. Evidence in support of this masking theory has been reported in studies of the single-celled yeast Saccharomyces cerevisiae . In further support of the masking theory, evidence of strong purifying selection in haploid tissue-specific genes has been reported for
4144-425: The gametes produced by the tetraploid organism in the example above, since these gametes are numerically diploid. The term monoploid is often used as a less ambiguous way to describe a single set of chromosomes; by this second definition, haploid and monoploid are identical and can be used interchangeably. Gametes ( sperm and ova ) are haploid cells. The haploid gametes produced by most organisms combine to form
4218-419: The haploid number n = 21). The gametes are haploid for their own species, but triploid, with three sets of chromosomes, by comparison to a probable evolutionary ancestor, einkorn wheat . Tetraploidy (four sets of chromosomes, 2 n = 4 x ) is common in many plant species, and also occurs in amphibians , reptiles , and insects . For example, species of Xenopus (African toads) form
4292-532: The hybridization of two separate species. In plants, this probably most often occurs from the pairing of meiotically unreduced gametes , and not by diploid–diploid hybridization followed by chromosome doubling. The so-called Brassica triangle is an example of allopolyploidy, where three different parent species have hybridized in all possible pair combinations to produce three new species. Polyploidy occurs commonly in plants, but rarely in animals. Even in diploid organisms, many somatic cells are polyploid due to
4366-583: The idea that haploidy is selected by harsher conditions – is cast into doubt by these results. Older WGDs have also been investigated. Only as recently as 2015 was the ancient whole genome duplication in Baker's yeast proven to be allopolyploid , by Marcet-Houben and Gabaldón 2015. It still remains to be explained why there are not more polyploid events in fungi, and the place of neopolyploidy and mesopolyploidy in fungal history . The concept that those genes of an organism that are expressed exclusively in
4440-455: The monoploid number and haploid number are equal; in humans, both are equal to 23. When a human germ cell undergoes meiosis, the diploid 46 chromosome complement is split in half to form haploid gametes. After fusion of a male and a female gamete (each containing 1 set of 23 chromosomes) during fertilization , the resulting zygote again has the full complement of 46 chromosomes: 2 sets of 23 chromosomes. Euploidy and aneuploidy describe having
4514-418: The most generic sense, haploid refers to having the number of sets of chromosomes normally found in a gamete . Because two gametes necessarily combine during sexual reproduction to form a single zygote from which somatic cells are generated, healthy gametes always possess exactly half the number of sets of chromosomes found in the somatic cells, and therefore "haploid" in this sense refers to having exactly half
SECTION 60
#17328014754684588-565: The number of chromosomes may have originated in this way, this is no longer clear, and the monoploid number is regarded as the same as the haploid number. Thus in humans, x = n = 23. Diploid cells have two homologous copies of each chromosome , usually one from the mother and one from the father . All or nearly all mammals are diploid organisms. The suspected tetraploid (possessing four-chromosome sets) plains viscacha rat ( Tympanoctomys barrerae ) and golden viscacha rat ( Pipanacoctomys aureus ) have been regarded as
4662-406: The number of sets of chromosomes found in a somatic cell. By this definition, an organism whose gametic cells contain a single copy of each chromosome (one set of chromosomes) may be considered haploid while the somatic cells, containing two copies of each chromosome (two sets of chromosomes), are diploid. This scheme of diploid somatic cells and haploid gametes is widely used in the animal kingdom and
4736-694: The only known exceptions (as of 2004). However, some genetic studies have rejected any polyploidism in mammals as unlikely, and suggest that amplification and dispersion of repetitive sequences best explain the large genome size of these two rodents. All normal diploid individuals have some small fraction of cells that display polyploidy . Human diploid cells have 46 chromosomes (the somatic number, 2n ) and human haploid gametes (egg and sperm) have 23 chromosomes ( n ). Retroviruses that contain two copies of their RNA genome in each viral particle are also said to be diploid. Examples include human foamy virus , human T-lymphotropic virus , and HIV . Polyploidy
4810-409: The organism as it now reproduces. Common wheat ( Triticum aestivum ) is an organism in which x and n differ. Each plant has a total of six sets of chromosomes (with two sets likely having been obtained from each of three different diploid species that are its distant ancestors). The somatic cells are hexaploid, 2 n = 6 x = 42 (where the monoploid number x = 7 and
4884-403: The plant Scots Pine . The common potato ( Solanum tuberosum ) is an example of a tetraploid organism, carrying four sets of chromosomes. During sexual reproduction, each potato plant inherits two sets of 12 chromosomes from the pollen parent, and two sets of 12 chromosomes from the ovule parent. The four sets combined provide a full complement of 48 chromosomes. The haploid number (half of 48)
4958-400: The proportions become approximately equal, and adults examined contained 27% diploid, 71% tetraploid and 2% octaploid nuclei. There is continued study and debate regarding the fitness advantages or disadvantages conferred by different ploidy levels. A study comparing the karyotypes of endangered or invasive plants with those of their relatives found that being polyploid as opposed to diploid
5032-450: The same organism . Though polyploidy in humans is not viable, mixoploidy has been found in live adults and children. There are two types: diploid-triploid mixoploidy, in which some cells have 46 chromosomes and some have 69, and diploid-tetraploid mixoploidy, in which some cells have 46 and some have 92 chromosomes. It is a major topic of cytology. Dihaploid and polyhaploid cells are formed by haploidisation of polyploids, i.e., by halving
5106-500: The same species or at different stages of the life cycle . In some insects it differs by caste . In humans, only the gametes are haploid, but in many of the social insects , including ants , bees , and termites , males develop from unfertilized eggs, making them haploid for their entire lives, even as adults. In the Australian bulldog ant, Myrmecia pilosula , a haplodiploid species, haploid individuals of this species have
5180-477: The second round of division, called meiosis II. Prior to cell division, the DNA material in the original cell must be duplicated so that after cell division, each new cell contains the full amount of DNA material. The process of DNA duplication is usually called replication . The replication is termed semiconservative since each new cell contains one strand of original DNA and one newly synthesized strand of DNA. The original polynucleotide strand of DNA serves as
5254-419: The separated, single-stranded sections of the DNA molecule. The enzyme complex DNA polymerase engages the separated portion of the molecule and initiates the process of replication. DNA polymerase can only connect new DNA nucleotides to a pre-existing chain of nucleotides. Therefore, replication begins as an enzyme called primase assembles an RNA primer at the origin of replication. The RNA primer consists of
5328-402: The structure of Mitochondrial DNA chromosome is usually closed, circular, and contains for example 16,569 nucleotides in humans. Nuclear DNA in animals is diploid , ordinarily inheriting the DNA from two parents, while mitochondrial DNA is haploid , coming only from the mother. The mutation rate for nuclear DNA is less than 0.3% while that of mitochondrial DNA is generally higher. Nuclear DNA
5402-547: The suffix -somy (rather than -ploidy , used for euploid karyotypes), such as trisomy and monosomy . Homoploid means "at the same ploidy level", i.e. having the same number of homologous chromosomes . For example, homoploid hybridization is hybridization where the offspring have the same ploidy level as the two parental species. This contrasts with a common situation in plants where chromosome doubling accompanies or occurs soon after hybridization. Similarly, homoploid speciation contrasts with polyploid speciation . Zygoidy
5476-491: The terms haploid and diploid in 1905. Some authors suggest that Strasburger based the terms on August Weismann 's conception of the id (or germ plasm ), hence haplo- id and diplo- id . The two terms were brought into the English language from German through William Henry Lang 's 1908 translation of a 1906 textbook by Strasburger and colleagues. The term haploid is used with two distinct but related definitions. In
#467532