Misplaced Pages

Onion Test

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#925074

83-447: The onion test is a way of assessing the validity of an argument for a functional role for junk DNA . It relates to the paradox that would emerge if the majority of eukaryotic non-coding DNA were assumed to be functional and the difficulty of reconciling that assumption with the diversity in genome sizes among species. The term "onion test" was originally proposed informally in a blog post by T. Ryan Gregory in order to help clarify

166-408: A mouse , the plant Arabidopsis thaliana , the puffer fish , and the bacteria E. coli . In December 2013, scientists first sequenced the entire genome of a Neanderthal , an extinct species of humans . The genome was extracted from the toe bone of a 130,000-year-old Neanderthal found in a Siberian cave . New sequencing technologies, such as massive parallel sequencing have also opened up

249-430: A big potential to modify the genetic control in a host organism. The movement of TEs is a driving force of genome evolution in eukaryotes because their insertion can disrupt gene functions, homologous recombination between TEs can produce duplications, and TE can shuffle exons and regulatory sequences to new locations. Retrotransposons are found mostly in eukaryotes but not found in prokaryotes. Retrotransposons form

332-506: A defined structure that are able to change their location in the genome. TEs are categorized as either as a mechanism that replicates by copy-and-paste or as a mechanism that can be excised from the genome and inserted at a new location. In the human genome, there are three important classes of TEs that make up more than 45% of the human DNA; these classes are The long interspersed nuclear elements (LINEs), The interspersed nuclear elements (SINEs), and endogenous retroviruses. These elements have

415-618: A genome sequence and aids in navigating around the genome. The Human Genome Project was organized to map and to sequence the human genome . A fundamental step in the project was the release of a detailed genomic map by Jean Weissenbach and his team at the Genoscope in Paris. Reference genome sequences and maps continue to be updated, removing errors and clarifying regions of high allelic complexity. The decreasing cost of genomic mapping has permitted genealogical sites to offer it as

498-451: A haploid genome size of 7.5 Gb, less than half that of onions, yet Allium ursinum (wild garlic) has a haploid genome size of 30.9 Gb, nearly twice (1.94x) that of onion and over four times (4.1x) that of chives. This extreme size variation between closely related species in the genus Allium is also part of the extended onion test rationale as originally defined: Further, if you think perhaps onions are somehow special, consider that members of

581-546: A human? Onions and their relatives vary dramatically in their genome sizes, without changing their ploidy, and this gives an exceptionally valuable window on the genomic expansion junk DNA. Since the onion ( Allium cepa ) is a diploid organism having a haploid genome size of 15.9 Gb, it has 4.9x as much DNA as does a human genome (3.2 Gb). Other species in the genus Allium vary hugely in DNA content without changing their ploidy . Allium schoenoprasum ( chives ) for example has

664-557: A large fraction of the human genome, such as LTR retrotransposons (8.3% of total genome), SINEs (13.1% of total genome) including Alu elements , LINEs (20.4% of total genome), SVAs (SINE- VNTR -Alu) and Class II DNA transposons (2.9% of total genome). Many of these sequences are the descendents of ancient virus infections and are thus "non-functional" in terms of human genome function. (2) Many sequences can be deleted as shown by comparing genomes. For instance, an analysis of 14,623 individuals identified 42,765 structural variants in

747-534: A large portion of the genomes of many eukaryotes. A retrotransposon is a transposable element that transposes through an RNA intermediate. Retrotransposons are composed of DNA , but are transcribed into RNA for transposition, then the RNA transcript is copied back to DNA formation with the help of a specific enzyme called reverse transcriptase. A retrotransposon that carries reverse transcriptase in its sequence can trigger its own transposition but retrotransposons that lack

830-405: A main driving role to generate genetic novelty and natural genome editing. Works of science fiction illustrate concerns about the availability of genome sequences. Michael Crichton's 1990 novel Jurassic Park and the subsequent film tell the story of a billionaire who creates a theme park of cloned dinosaurs on a remote island, with disastrous outcomes. A geneticist extracts dinosaur DNA from

913-413: A major role in shaping the genome. Duplication may range from extension of short tandem repeats , to duplication of a cluster of genes, and all the way to duplication of entire chromosomes or even entire genomes . Such duplications are probably fundamental to the creation of genetic novelty. Horizontal gene transfer is invoked to explain how there is often an extreme similarity between small portions of

SECTION 10

#1732765311926

996-467: A major theme of the book. The 1997 film Gattaca is set in a futurist society where genomes of children are engineered to contain the most ideal combination of their parents' traits, and metrics such as risk of heart disease and predicted life expectancy are documented for each person based on their genome. People conceived outside of the eugenics program, known as "In-Valids" suffer discrimination and are relegated to menial occupations. The protagonist of

1079-428: A new site. This cut-and-paste mechanism typically reinserts transposons near their original location (within 100 kb). DNA transposons are found in bacteria and make up 3% of the human genome and 12% of the genome of the roundworm C. elegans . Genome size is the total number of the DNA base pairs in one copy of a haploid genome. Genome size varies widely across species. Invertebrates have small genomes, this

1162-412: A paper by David Comings in 1972 where he is reported to have said that junk DNA refers to all non-coding DNA. But Comings never said that. In that paper he discusses non-coding genes for ribosomal RNA and tRNAs and non-coding regulatory DNA and he proposes several possible functions for the bulk of non-coding DNA. In another publication from the same year Comings again discusses the term junk DNA with

1245-501: A precise definition of "genome." It usually refers to the DNA (or sometimes RNA) molecules that carry the genetic information in an organism but sometimes it is difficult to decide which molecules to include in the definition; for example, bacteria usually have one or two large DNA molecules ( chromosomes ) that contain all of the essential genetic material but they also contain smaller extrachromosomal plasmid molecules that carry important genetic information. The definition of 'genome' that

1328-415: A reference, whereas analyses of coverage depth and mapping topology can provide details regarding structural variations such as chromosomal translocations and segmental duplications. DNA sequences that carry the instructions to make proteins are referred to as coding sequences. The proportion of the genome occupied by coding sequences varies widely. A larger genome does not necessarily contain more genes, and

1411-655: A relationship that proves nothing but which suggests an association that can only be falsified by downward exceptions, of which there are none known. Freeling et al. proposed a genome balance hypothesis that presumably accounts for the C-Value Paradox and passes the Onion Test. Junk DNA Junk DNA ( non-functional DNA ) is a DNA sequence that has no known biological function. Most organisms have some junk DNA in their genomes —mostly, pseudogenes and fragments of transposons and viruses—but it

1494-487: A reverse transcriptase must use reverse transcriptase synthesized by another retrotransposon. Retrotransposons can be transcribed into RNA, which are then duplicated at another site into the genome. Retrotransposons can be divided into long terminal repeats (LTRs) and non-long terminal repeats (Non-LTRs). Long terminal repeats (LTRs) are derived from ancient retroviral infections, so they encode proteins related to retroviral proteins including gag (structural proteins of

1577-651: A service, to the extent that one may submit one's genome to crowdsourced scientific endeavours such as DNA.LAND at the New York Genome Center , an example both of the economies of scale and of citizen science . Viral genomes can be composed of either RNA or DNA. The genomes of RNA viruses can be either single-stranded RNA or double-stranded RNA , and may contain one or more separate RNA molecules (segments: monopartit or multipartit genome). DNA viruses can have either single-stranded or double-stranded genomes. Most DNA virus genomes are composed of

1660-404: A single, linear molecule of DNA, but some are made up of a circular DNA molecule. Prokaryotes and eukaryotes have DNA genomes. Archaea and most bacteria have a single circular chromosome , however, some bacterial species have linear or multiple chromosomes. If the DNA is replicated faster than the bacterial cells divide, multiple copies of the chromosome can be present in a single cell, and if

1743-518: A small mitochondrial genome . Algae and plants also contain chloroplasts with a chloroplast genome. The study of the genome is called genomics . The genomes of many organisms have been sequenced and various regions have been annotated. The Human Genome Project was started in October 1990, and then reported the sequence of the human genome in April 2003, although the initial "finished" sequence

SECTION 20

#1732765311926

1826-453: A small percentage of the human genome contains functional DNA elements (genes) that can be destroyed by mutation. (see Genetic load for more information) In 1966 Muller reviewed these predictions and concluded that the human genome could only contain about 30,000 genes based on the number of deleterious mutations that the species could tolerate. Similar predictions were made by other leading experts in molecular evolution who concluded that

1909-560: A species. Within a species, the vast majority of nucleotides are identical between individuals, but sequencing multiple individuals is necessary to understand the genetic diversity. In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome ( Bacteriophage MS2 ). The next year, Fred Sanger completed the first DNA-genome sequence: Phage Φ-X174 , of 5386 base pairs. The first bacterial genome to be sequenced

1992-485: Is also correlated to a small number of transposable elements. Fish and Amphibians have intermediate-size genomes, and birds have relatively small genomes but it has been suggested that birds lost a substantial portion of their genomes during the phase of transition to flight.  Before this loss, DNA methylation allows the adequate expansion of the genome. In humans, the nuclear genome comprises approximately 3.1 billion nucleotides of DNA, divided into 24 linear molecules,

2075-432: Is another DIRS-like elements belong to Non-LTRs. Non-LTRs are widely spread in eukaryotic genomes. Long interspersed elements (LINEs) encode genes for reverse transcriptase and endonuclease, making them autonomous transposable elements. The human genome has around 500,000 LINEs, taking around 17% of the genome. Short interspersed elements (SINEs) are usually less than 500 base pairs and are non-autonomous, so they rely on

2158-444: Is carried in plasmids . For this, the word genome should not be used as a synonym of chromosome . Eukaryotic genomes are composed of one or more linear DNA chromosomes. The number of chromosomes varies widely from Jack jumper ants and an asexual nemotode , which each have only one pair, to a fern species that has 720 pairs. It is surprising the amount of DNA that eukaryotic genomes contain compared to other genomes. The amount

2241-408: Is commonly used in the scientific literature is usually restricted to the large chromosomal DNA molecules in bacteria. Eukaryotic genomes are even more difficult to define because almost all eukaryotic species contain nuclear chromosomes plus extra DNA molecules in the mitochondria . In addition, algae and plants have chloroplast DNA. Most textbooks make a distinction between the nuclear genome and

2324-408: Is difficult to determine whether other regions of the genome are functional or nonfunctional. There is considerable controversy over which criteria should be used to identify function. Many scientists have an evolutionary view of the genome and they prefer criteria based on whether DNA sequences are preserved by natural selection. Other scientists dispute this view or have different interpretations of

2407-564: Is even more than what is necessary for DNA protein-coding and noncoding genes due to the fact that eukaryotic genomes show as much as 64,000-fold variation in their sizes. However, this special characteristic is caused by the presence of repetitive DNA, and transposable elements (TEs). A typical human cell has two copies of each of 22 autosomes , one inherited from each parent, plus two sex chromosomes , making it diploid. Gametes , such as ova, sperm, spores, and pollen, are haploid, meaning they carry only one copy of each chromosome. In addition to

2490-492: Is facilitated by active DNA demethylation , a process that entails the DNA base excision repair pathway. This pathway is employed in the erasure of CpG methylation (5mC) in primordial germ cells. The erasure of 5mC occurs via its conversion to 5-hydroxymethylcytosine (5hmC) driven by high levels of the ten-eleven dioxygenase enzymes TET1 and TET2 . Genomes are more than the sum of an organism's genes and have traits that may be measured and studied without reference to

2573-437: Is non-trivial, but there is some good evidence for both categories. Protein-coding sequences are the most obvious functional sequences in genomes. However, they make up only 1-2% of most vertebrate genomes. However, there are also functional but non-coding DNA sequences such as regulatory sequences , origins of replication , and centromeres . These sequences are usually conserved in evolution and make up another 3-8% of

Onion Test - Misplaced Pages Continue

2656-444: Is possible that some organisms have substantial amounts of junk DNA. All protein-coding regions are generally considered to be functional elements in genomes. Additionally, non-protein coding regions such as genes for ribosomal RNA and transfer RNA, regulatory sequences, origins of replication, centromeres, telomeres, and scaffold attachment regions are considered as functional elements. (See Non-coding DNA for more information.) It

2739-487: Is rare in bacterial genomes which typically have an extremely high gene density, with only a few percent being not protein-coding. However, in most animal or plant genomes, a large fraction of DNA is non-functional, given that there is no obvious selective pressure on these sequences. More importantly, there is strong evidence that these sequences are not functional in other ways (using the human genome as example): (1) Repetitive elements, especially mobile elements make up

2822-401: Is rather exceptional, eukaryotes generally have these features in their genes and their genomes contain variable amounts of repetitive DNA. In mammals and plants, the majority of the genome is composed of repetitive DNA. High-throughput technology makes sequencing to assemble new genomes accessible to everyone. Sequence polymorphisms are typically discovered by comparing resequenced isolates to

2905-522: Is repeated in media reports and in the introduction of far too many scientific studies. Some of the criticisms have been strong: Revisionist claims that equate noncoding DNA with junk merely reveal that people who are allowed to exhibit their logorrhea in Nature and other glam journals are as ignorant as the worst young-earth creationists. The main challenge of identifying junk DNA is to distinguish between "functional" and "non-functional " sequences. This

2988-405: Is sacred. The Darwinian evolutionists will be outraged because they believe every change in DNA that is accepted in evolution is necessarily an adaptive change. To suggest anything else is an insult to the sacred memory of Darwin." The other point of view was expressed by Roy John Britten and Kohne in their seminal paper on repetitive DNA. "A concept that is repugnant to us is that about half of

3071-421: Is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multi-cellular organisms (see developmental biology ). The work is both in vivo and in silico . There are many enormous differences in size in genomes, specially mentioned before in

3154-464: The C-value paradox . The paradox was resolved with the discovery of repetitive DNA and the observation that most of the differences in genome size could be attributed to repetitive DNA. Some scientists thought that most of the repetitive DNA was involved in regulating gene expression but many scientists thought that the excess repetitive DNA was nonfunctional. At about the same time (late 1960s)

3237-498: The University of Hamburg , Germany. The website Oxford Dictionaries and the Online Etymology Dictionary suggest the name is a blend of the words gene and chromosome . However, see omics for a more thorough discussion. A few related -ome words already existed, such as biome and rhizome , forming a vocabulary into which genome fits systematically. It is very difficult to come up with

3320-401: The 1970s seemed to confirm the views of junk DNA proponents because it meant that genes were very large and even huge genomes could not accommodate large numbers of genes. The proponents of junk DNA tended to dismiss intron sequences as mostly nonfunctional DNA (junk) but junk DNA opponents advanced a number of hypotheses attributing functions of various sort to intron sequences. By 1980 it

3403-585: The DNA of higher organisms is trivial or permanently inert (on an evolutionary timescale)." There is considerable confusion in the popular press and in the scientific literature about the distinction between non-coding DNA and junk DNA. According to an article published in 2021 in American Scientist: Close to 99 percent of our genome has been historically classified as noncoding, useless "junk" DNA. Consequently, these sequences were rarely studied. A book published in 2020 states: When it

Onion Test - Misplaced Pages Continue

3486-711: The ENCODE project against arguments disputing the main finding of the project: The other substantive argument that bears on the issue, alluded to in the quotes that preface the Graur et al. article, and more explicitly discussed by Doolittle, is the so-called ‘C-value enigma’ , which refers to the fact that some organisms (like some amoebae, onions, some arthropods, and amphibians) have much more DNA per cell than humans, but cannot possibly be more developmentally or cognitively complex, implying that eukaryotic genomes can and do carry varying amounts of unnecessary baggage. That may be so, but

3569-426: The X and Y chromosomes of mammals, so the technical definition of the genome must include both copies of the sex chromosomes. For example, the standard reference genome of humans consists of one copy of each of the 22 autosomes plus one X chromosome and one Y chromosome. A genome sequence is the complete list of the nucleotides (A, C, G, and T for DNA genomes) that make up all the chromosomes of an individual or

3652-412: The blood of ancient mosquitoes and fills in the gaps with DNA from modern species to create several species of dinosaurs. A chaos theorist is asked to give his expert opinion on the safety of engineering an ecosystem with the dinosaurs, and he repeatedly warns that the outcomes of the project will be unpredictable and ultimately uncontrollable. These warnings about the perils of using genomic information are

3735-549: The cells divide faster than the DNA can be replicated, multiple replication of the chromosome is initiated before the division occurs, allowing daughter cells to inherit complete genomes and already partially replicated chromosomes. Most prokaryotes have very little repetitive DNA in their genomes. However, some symbiotic bacteria (e.g. Serratia symbiotica ) have reduced genomes and a high fraction of pseudogenes: only ~40% of their DNA encodes proteins. Some bacteria have auxiliary genetic material, also part of their genome, which

3818-478: The chromosomes in the nucleus, organelles such as the chloroplasts and mitochondria have their own DNA. Mitochondria are sometimes said to have their own genome often referred to as the " mitochondrial genome ". The DNA found within the chloroplast may be referred to as the " plastome ". Like the bacteria they originated from, mitochondria and chloroplasts have a circular chromosome. Unlike prokaryotes where exon-intron organization of protein coding genes exists but

3901-435: The clear understanding that it does not include non-coding regulatory sequences. The idea that all non-coding DNA was thought to be junk has been criticized by numerous authors for distorting the history of junk DNA; for example: It is simply not true that noncoding DNA has long been dismissed as worthless junk and that functional hypotheses have only recently been proposed - despite the frequency with which this cliché

3984-459: The data. The idea that only a fraction of the human genome could be functional dates back to the late 1940s. The estimated mutation rate in humans suggested that if a large fraction of those mutations were deleterious then the human species could not survive such a mutation load (genetic load). This led to predictions in the late 1940s by one of the founders of population genetics, J.B.S. Haldane , and by Nobel laureate Hermann Muller , that only

4067-434: The debate about junk DNA . The term has been mentioned in newspapers and online media, scientific journal articles, and a textbook. The test is defined as: The onion test is a simple reality check for anyone who thinks they have come up with a universal function for junk DNA. Whatever your proposed function, ask yourself this question: Can I explain why an onion needs about five times more non-coding DNA for this function than

4150-445: The details of any particular genes and their products. Researchers compare traits such as karyotype (chromosome number), genome size , gene order, codon usage bias , and GC-content to determine what mechanisms could have produced the great variety of genomes that exist today (for recent overviews, see Brown 2002; Saccone and Pesole 2003; Benfey and Protopapas 2004; Gibson and Muse 2004; Reese 2004; Gregory 2005). Duplications play

4233-402: The extent of such baggage in humans is unknown. However, where data is available, these upward exceptions appear to be due to polyploidy and/or varying transposon loads (of uncertain biological relevance), rather than an absolute increase in genetic complexity. Moreover, there is a broadly consistent rise in the amount of non-protein-coding intergenic and intronic DNA with developmental complexity,

SECTION 50

#1732765311926

4316-518: The fields of molecular biology and genetics , a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses ). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as regulatory sequences (see non-coding DNA ), and often a substantial fraction of junk DNA with no evident function. Almost all eukaryotes have mitochondria and

4399-406: The genomes of two organisms that are otherwise very distantly related. Horizontal gene transfer seems to be common among many microbes . Also, eukaryotic cells seem to have experienced a transfer of some genetic material from their chloroplast and mitochondrial genomes to their nuclear chromosomes. Recent empirical data suggest an important role of viruses and sub-viral RNA-networks to represent

4482-484: The genus Allium range in genome size from 7 pg to 31.5 pg. So why can A. altyncolicum make do with one fifth as much regulation, structural maintenance, protection against mutagens, or [insert preferred universal function] as A. ursinum ? Some researchers argue that the onion test is related to wider issues involving the C-value paradox and is only valid if one can justify the presumption that genome size has no bearing on organismal physiology. According to Larry Moran,

4565-455: The human genome All the cells of an organism originate from a single cell, so they are expected to have identical genomes; however, in some cases, differences arise. Both the process of copying DNA during cell division and exposure to environmental mutagens can result in mutations in somatic cells. In some cases, such mutations lead to cancer because they cause cells to divide more quickly and invade surrounding tissues. In certain lymphocytes in

4648-425: The human genome and 9% of the fruit fly genome. Tandem repeats can be functional. For example, telomeres are composed of the tandem repeat TTAGGG in mammals, and they play an important role in protecting the ends of the chromosome. In other cases, expansions in the number of tandem repeats in exons or introns can cause disease . For example, the human gene huntingtin (Htt) typically contains 6–29 tandem repeats of

4731-402: The human genome could not contain more than 40,000 genes and that less than 10% of the genome was functional. The size of genomes in various species was known to vary considerably and there did not seem to be a correlation between genome size and the complexity of the species. Even closely related species could have very different genome sizes. This observation led to what came to be known as

4814-647: The human genome has a function then you should explain how that accounts for the genomes of onions. Ryan Gregory knew that most so-called explanations look very silly when you try using them to account for genome size in onion species. Ewan Birney (then head of the ENCODE Project) explained the difference as a product of polyploidy , and therefore not relevant to the discussion of humans. (re: onions etc); polyploidy and letting your repeats "go crazy" (bad piRNAs anyone) mean your genome can be v. big Similar claims were made by John Mattick in an article defending

4897-476: The human genome is conserved and about 7% is under purifying selection . Opponents of junk DNA argue that biochemical activity detects functional regions of the genome that are not identified by sequence conservation or purifying selection. According to some scientists, until a region in question has been shown to have additional features, beyond what is expected of the null hypothesis, it should provisionally be labelled as non-functional. Genome In

4980-440: The human genome of which 23.4% affected multiple genes (by deleting them or part of them). This study also found 47 deletions of >1 MB, showing that large chunks of the human genome can get deleted without obvious consequences. (3) Only a small fraction of the human genome is conserved, indicating that there is no strong (functional) selection pressure on these sequences, so they can rather freely mutate. About 11% or less of

5063-535: The human genome. The Encyclopedia of DNA Elements ( ENCODE ) project reported that detectable biochemical activity was observed in regions covering at least 80% of the human genome, with biochemical activity defined primarily as being transcribed. While these findings were announced as the demise of junk DNA it is important to point out that transcription does not mean a sequence is "functional", analogous to some meaningless text that can be transcribed or copied without having any meaning. Non-functional DNA

SECTION 60

#1732765311926

5146-517: The human immune system, V(D)J recombination generates different genomic sequences such that each cell produces a unique antibody or T cell receptors. During meiosis , diploid cells divide twice to produce haploid germ cells. During this process, recombination results in a reshuffling of the genetic material from homologous chromosomes so each gamete has a unique genome. Genome-wide reprogramming in mouse primordial germ cells involves epigenetic imprint erasure leading to totipotency . Reprogramming

5229-471: The larger amount of DNA thus provides a selective advantage by contributing to the skeleton and volume of the nucleus of these cells. Larry Moran who was actually addressed in McLatchie's post extensively replied : [the onion test is] designed as a thought experiment to test a hypothesis about the possible function of large amounts of noncoding DNA. If you think you have an explanation for why most of

5312-462: The late 1950s but Susumu Ohno popularized the term in a 1972 paper titled "So much 'junk' DNA in our genome" where he summarized the current evidence that had accumulated by then. In a second paper that same year, he concluded that 90% of mammalian genomes consisted of nonfunctional DNA. The case for junk DNA was summarized in a lengthy paper by David Comings in 1972 where he listed four reasons for proposing junk DNA: The discovery of introns in

5395-476: The multicellular eukaryotic genomes. Much of this is due to the differing abundances of transposable elements, which evolve by creating new copies of themselves in the chromosomes. Eukaryote genomes often contain many thousands of copies of these elements, most of which have acquired mutations that make them defective. Here is a table of some significant or representative genomes. See #See also for lists of sequenced genomes. Initial sequencing and analysis of

5478-498: The newly developed technique of C 0 t analysis was refined to include RNA:DNA hybridization leading to the discovery that considerably less than 10% of the human genome was complementary to mRNA and this DNA was in the unique (non-repetitive) fraction. This confirmed the predictions made from genetic load arguments and was consistent with the idea that much of the repetitive DNA is nonfunctional. The idea that large amounts of eukaryotic genomes could be nonfunctional conflicted with

5561-795: The nucleotides CAG (encoding a polyglutamine tract). An expansion to over 36 repeats results in Huntington's disease , a neurodegenerative disease. Twenty human disorders are known to result from similar tandem repeat expansions in various genes. The mechanism by which proteins with expanded polygulatamine tracts cause death of neurons is not fully understood. One possibility is that the proteins fail to fold properly and avoid degradation, instead accumulating in aggregates that also sequester important transcription factors, thereby altering gene expression. Tandem repeats are usually caused by slippage during replication, unequal crossing-over and gene conversion. Transposable elements (TEs) are sequences of DNA with

5644-456: The onion test is not an argument for junk DNA, but an approach to assessing possible functional explanations for non-coding DNA. According to him, it asks why allium species need so much more of that proposed function than do humans, and why so much more (or less) than other closely related species of allium and does not address the variation in genome size ( C-value ) among organisms itself. According to Christian creationist Jonathan McLatchie,

5727-445: The onion test is only valid if one can justify the presumption that genome size has no bearing on organismal physiology. Long sequences of repetitive DNA can be highly relevant to an organism and can contribute to transcription delays and developmental timing mechanisms for an organism. Furthermore, he argues that there is a positive correlation between genome size and cell volume for unicellular eukaryotes like plants and protozoa and so

5810-447: The organelle (mitochondria and chloroplast) genomes so when they speak of, say, the human genome, they are only referring to the genetic material in the nucleus. This is the most common use of 'genome' in the scientific literature. Most eukaryotes are diploid , meaning that there are two of each chromosome in the nucleus but the 'genome' refers to only one copy of each chromosome. Some eukaryotes have distinctive sex chromosomes, such as

5893-416: The organism or the species. The most important opponent of junk DNA at this time was Thomas Cavalier-Smith who argued that the extra DNA was required to increase the volume of the nucleus in order to promote more efficient transport across the nuclear membrane. The positions of the two sides of the controversy hardened with one side believing that evolution was consistent with large amounts of junk DNA and

5976-413: The other side believing that natural selection should eliminate junk DNA. These differing views of evolution were highlighted in a letter from Thomas Jukes , a proponent of junk DNA, to Francis Crick on December 20, 1979: "Dear Francis, I am sure that you realize how frightfully angry a lot of people will be if you say that much of the DNA is junk. The geneticists will be angry because they think that DNA

6059-426: The prevailing view of evolution in 1968 since it seemed likely that nonfunctional DNA would be eliminated by natural selection. The development of the neutral theory and the nearly neutral theory provided a way out of this problem since it allowed for the preservation of slightly deleterious nonfunctional DNA in accordance with fundamental principles of population genetics. The term "junk DNA" began to be used in

6142-590: The proportion of non-repetitive DNA decreases along with increasing genome size in complex eukaryotes. Noncoding sequences include introns , sequences for non-coding RNAs, regulatory regions, and repetitive DNA. Noncoding sequences make up 98% of the human genome. There are two categories of repetitive DNA in the genome: tandem repeats and interspersed repeats. Short, non-coding sequences that are repeated head-to-tail are called tandem repeats . Microsatellites consisting of 2–5 basepair repeats, while minisatellite repeats are 30–35 bp. Tandem repeats make up about 4% of

6225-412: The prospect of personal genome sequencing as a diagnostic tool, as pioneered by Manteia Predictive Medicine . A major step toward that goal was the completion in 2007 of the full genome of James D. Watson , one of the co-discoverers of the structure of DNA. Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than

6308-439: The proteins encoded by LINEs for transposition. The Alu element is the most common SINE found in primates. It is about 350 base pairs and occupies about 11% of the human genome with around 1,500,000 copies. DNA transposons encode a transposase enzyme between inverted terminal repeats. When expressed, the transposase recognizes the terminal inverted repeats that flank the transposon and catalyzes its excision and reinsertion in

6391-423: The shortest 45 000 000 nucleotides in length and the longest 248 000 000 nucleotides, each contained in a different chromosome. There is no clear and consistent correlation between morphological complexity and genome size in either prokaryotes or lower eukaryotes . Genome size is largely a function of the expansion and contraction of repetitive DNA elements. Since genomes are very complex, one research strategy

6474-541: The virus), pol (reverse transcriptase and integrase), pro (protease), and in some cases env (envelope) genes. These genes are flanked by long repeats at both 5' and 3' ends. It has been reported that LTRs consist of the largest fraction in most plant genome and might account for the huge variation in genome size. Non-long terminal repeats (Non-LTRs) are classified as long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and Penelope-like elements (PLEs). In Dictyostelium discoideum , there

6557-459: Was apparent that most of the repetitive DNA in the human genome was related to transposons . This prompted a series of papers and letters describing transposons as selfish DNA that acted as a parasite in genomes and produced no fitness advantage for the organism. Opponents of junk DNA interpreted these results as evidence that most of the genome is functional and they developed several hypotheses advocating that transposon sequences could benefit

6640-429: Was completed in 1996, again by The Institute for Genomic Research. The development of new technologies has made genome sequencing dramatically cheaper and easier, and the number of complete genome sequences is growing rapidly. The US National Institutes of Health maintains one of several comprehensive databases of genomic information. Among the thousands of completed genome sequencing projects include those for rice ,

6723-401: Was first discovered, the nongenic DNA was sometimes called—somewhat derisively by people who did not know better—"junk DNA" because it had no obvious utility, and they foolishly assumed that if it was not carrying coding information it must be useless trash. The common theme is that the original proponents of junk DNA thought that all non-coding DNA was junk. This claim has been attributed to

6806-477: Was missing 8% of the genome consisting mostly of repetitive sequences. With advancements in technology that could handle sequencing of the many repetitive sequences found in human DNA that were not fully uncovered by the original Human Genome Project study, scientists reported the first end-to-end human genome sequence in March 2022. The term genome was created in 1920 by Hans Winkler , professor of botany at

6889-400: Was that of Haemophilus influenzae , completed by a team at The Institute for Genomic Research in 1995. A few months later, the first eukaryotic genome was completed, with sequences of the 16 chromosomes of budding yeast Saccharomyces cerevisiae published as the result of a European-led effort begun in the mid-1980s. The first genome sequence for an archaeon , Methanococcus jannaschii ,

#925074