Misplaced Pages

Operation Bumblebee

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Operation Bumblebee was a US Navy effort to develop surface-to-air missiles (SAMs) to provide a mid-range layer of anti-aircraft defense between anti-aircraft guns in the short range and fighter aircraft operating at long range. A major reason for the Bumblebee efforts was the need to engage bombers before they could launch standoff anti-shipping weapons, as these aircraft might never enter the range of the shipboard guns.

#982017

91-546: Bumblebee originally concentrated on a ramjet -powered design, and the initial Applied Physics Lab PTV-N-4 Cobra /BTV (Propulsion Test Vehicle/Burner Test Vehicle) was flown in October 1945. Cobra eventually emerged as the RIM-8 Talos , which entered service on 28 May 1958 aboard the light cruiser USS Galveston . As part of the development program, several other vehicles were also developed. One of these developed into

182-400: A convergent–divergent nozzle . Although ramjets have been run as slow as 45 metres per second (160 km/h; 100 mph), below about Mach 0.5 (170 m/s; 610 km/h; 380 mph) they give little thrust and are highly inefficient due to their low pressure ratios. Above this speed, given sufficient initial flight velocity, a ramjet is self-sustaining. Unless the vehicle drag

273-763: A long-range antipodal bomber , similar to the Sänger-Bredt bomber , but powered by ramjet instead of rocket. In 1954, NPO Lavochkin and the Keldysh Institute began development of a Mach 3 ramjet-powered cruise missile, Burya . This project competed with the R-7 ICBM developed by Sergei Korolev , but was cancelled in 1957. Several ram jets were designed, built, and ground-tested at the Kawasaki Aircraft Company's facility in Gifu during

364-434: A pitot -type opening for the inlet. This is followed by a widening internal passage (subsonic diffuser) to achieve a lower subsonic velocity that is required at the combustor. At low supersonic speeds a normal (planar) shock wave forms in front of the inlet. For higher supersonic speeds the pressure loss through the shock wave becomes prohibitive and a protruding spike or cone is used to produce oblique shock waves in front of

455-409: A turbine , which generates its own compressed air (i.e. ram air in a ramjet) in order to generate thrust. The diffuser converts the high velocity of the air approaching the intake into high (static) pressure required for combustion. High combustion pressures minimise entropy rise during heat addition, this minimising wasted thermal energy in the exhaust gases Subsonic and low-supersonic ramjets use

546-675: A combination of warheads and massive amounts of countermeasures designed to defeat anti-missile systems ; it was announced by the Russian military as a response to the US Prompt Global Strike . In July 2023, North Korea fired a suspected intercontinental ballistic missile that landed short of Japanese waters. The launch follows North Korea's threat to retaliate against the US for alleged spy plane incursions. The following flight phases can be distinguished: ICBMs usually use

637-510: A combustor exit stagnation temperature of the order of 2,400 K (2,130 °C; 3,860 °F) for kerosene . Normally, the combustor must be capable of operating over a wide range of throttle settings, matching flight speeds and altitudes. Usually, a sheltered pilot region enables combustion to continue when the vehicle intake undergoes high yaw/pitch during turns. Other flame stabilization techniques make use of flame holders, which vary in design from combustor cans to flat plates, to shelter

728-429: A compact mechanism for high-speed, such as missiles . Weapons designers are investigating ramjet technology for use in artillery shells to increase range; a 120 mm ramjet-assisted mortar shell is thought to be able to travel 35 km (22 mi). They have been used, though not efficiently, as tip jets on the ends of helicopter rotors. L'Autre Monde: ou les États et Empires de la Lune ( Comical History of

819-414: A final normal shock that occurs at the inlet entrance lip. The diffuser in this case consists of two parts, the supersonic diffuser, with shock waves external to the inlet, followed by the internal subsonic diffuser. At higher speeds still, part of the supersonic diffusion has to take place internally, requiring external and internal oblique shock waves. The final normal shock has to occur in the vicinity of

910-462: A hot fuel-rich gas which is burnt in the ramcombustor with the compressed air supplied by the intake(s). The flow of gas improves the mixing of the fuel and air and increases total pressure recovery. In a throttleable ducted rocket, also known as a variable flow ducted rocket, a valve allows the gas generator exhaust to be throttled allowing thrust control. Unlike an LFRJ, solid propellant ramjets cannot flame out . The ducted rocket sits somewhere between

1001-461: A minimal independent nuclear deterrent entering its own cold war after an ideological split with the Soviet Union beginning in the early 1960s. After first testing a domestic built nuclear weapon in 1964, it went on to develop various warheads and missiles. Beginning in the early 1970s, the liquid fuelled DF-5 ICBM was developed and used as a satellite launch vehicle in 1975. The DF-5, with

SECTION 10

#1732790248983

1092-462: A minimum flow area known as the throat, which is followed by the subsonic diffuser. As with other jet engines, the combustor raises the air temperature by burning fuel. This takes place with a small pressure loss. The air velocity entering the combustor has to be low enough such that continuous combustion can take place in sheltered zones provided by flame holders . A ramjet combustor can safely operate at stoichiometric fuel:air ratios. This implies

1183-529: A modified Polikarpov I-15 . Merkulov designed a ramjet fighter "Samolet D" in 1941, which was never completed. Two of his DM-4 engines were installed on the Yak-7 PVRD fighter during World War II. In 1940, the Kostikov-302 experimental plane was designed, powered by a liquid fuel rocket for take-off and ramjet engines for flight. That project was cancelled in 1944. In 1947, Mstislav Keldysh proposed

1274-664: A network of binary addition circuits that continually recalculate the missile's position. The inputs to the navigation circuit are set by a general-purpose computer according to a navigational input schedule loaded into the missile before launch. One particular weapon developed by the Soviet Union ;– the Fractional Orbital Bombardment System  – had a partial orbital trajectory, and unlike most ICBMs its target could not be deduced from its orbital flight path. It

1365-410: A nozzle to accelerate it to supersonic speeds and generate forward thrust . Ramjets are much less complex than turbojets or turbofans , requiring only an air intake, a combustor, and a nozzle to be built. Additionally, ramjets have little to no moving parts - liquid-fuel ramjets have only a fuel pump, whilst solid-fuel ramjets lack even this. By comparison, a turbojet uses a compressor driven by

1456-628: A range of 10,000 to 12,000 km (6,200 to 7,500 mi)—long enough to strike the Western United States and the Soviet Union—was silo deployed, with the first pair in service by 1981 and possibly twenty missiles in service by the late 1990s. China also deployed the JL-1 Medium-range ballistic missile with a reach of 1,700 kilometres (1,100 mi) aboard the ultimately unsuccessful Type 092 submarine . In 1991,

1547-524: A range of about 105 kilometres (65 miles). It was also used as a surface-to-surface weapon and was modified to destroy land-based radars. Using technology proven by the AQM-60, In the late 1950s and early 1960s the US produced a widespread defense system called the CIM-10 Bomarc , which was equipped with hundreds of nuclear armed ramjet missiles with a range of several hundred miles. It was powered by

1638-529: A ready state. Failure rates were very high throughout the early years of ICBM technology. Human spaceflight programs ( Vostok , Mercury , Voskhod , Gemini , etc.) served as a highly visible means of demonstrating confidence in reliability, with successes translating directly to national defense implications. The US was well behind the Soviets in the Space Race and so US President John F. Kennedy increased

1729-474: A single missile to carry several warheads, each of which can strike a different target. The United States , Russia , China , France , India , the United Kingdom , Israel , and North Korea are the only countries known to have operational ICBMs. Pakistan is the only nuclear-armed state that does not possess ICBMs. Early ICBMs had limited precision , which made them suitable for use only against

1820-525: A solid fuel ramjet (SFRJ) vehicle test in August 2022. In 2023, General Electric demonstrated a ramjet with rotating detonation combustion. It is a turbine-based combined-cycle engine that incorporates a In the late 1950s, 1960s, and early 1970s, the UK developed several ramjet missiles. The Blue Envoy project was supposed to equip the country with a long range ramjet powered air defense against bombers, but

1911-593: A special test rig on a Dornier Do 17 Z at flight speeds of up to 200 metres per second (720 km/h). Later, as petrol became scarce in Germany, tests were carried out with blocks of pressed coal dust as a fuel (see e.g. Lippisch P.13a ), which were not successful due to slow combustion. Stovepipe (flying/flaming/supersonic) was a popular name for the ramjet during the 1950s in trade magazines such as Aviation Week & Space Technology and other publications such as The Cornell Engineer. The simplicity implied by

SECTION 20

#1732790248983

2002-488: A speed of Mach 3. It was used successfully in combat against multiple types of aircraft during the Falklands War . Eminent Swiss astrophysicist Fritz Zwicky was research director at Aerojet and holds many patents in jet propulsion. Patents US 5121670   and US 4722261   are for ram accelerators . The U.S. Navy would not allow Zwicky to publicly discuss his invention, US 2461797  

2093-439: A tandem arrangement. Integrated boosters provide a more efficient packaging option, since the booster propellant is cast inside the otherwise empty combustor. This approach has been used on solid-fuel ramjets (SFRJ), for example 2K12 Kub , liquid, for example ASMP , and ducted rocket, for example Meteor , designs. Integrated designs are complicated by the different nozzle requirements of the boost and ramjet flight phases. Due to

2184-428: Is a ballistic missile with a range greater than 5,500 kilometres (3,400 mi), primarily designed for nuclear weapons delivery (delivering one or more thermonuclear warheads ). Conventional , chemical , and biological weapons can also be delivered with varying effectiveness, but have never been deployed on ICBMs. Most modern designs support multiple independently targetable reentry vehicle (MIRVs), allowing

2275-665: Is believed to have deployed a road mobile nuclear ICBM, the Jericho III , which entered service in 2008; an upgraded version is in development. India successfully test fired Agni V , with a strike range of more than 5,000 km (3,100 mi) on 19 April 2012, claiming entry into the ICBM club. The missile's actual range is speculated by foreign researchers to be up to 8,000 km (5,000 mi) with India having downplayed its capabilities to avoid causing concern to other countries. On 15 December 2022, first night trial of Agni-V

2366-543: Is extremely high, the engine/airframe combination tends to accelerate to higher and higher flight speeds, substantially increasing the air intake temperature. As this could damage the engine and/or airframe integrity, the fuel control system must reduce fuel flow to stabilize speed and, thereby, air intake temperature. Due to the stoichiometric combustion temperature, efficiency is usually good at high speeds (around Mach 2 – Mach 3, 680–1,000 m/s, 2,500–3,700 km/h, 1,500–2,300 mph), whereas at low speeds

2457-557: Is for the Underwater Jet, a ram jet that performs in a fluid medium. Time magazine reported on Zwicky's work. The first part of a ramjet is its diffuser (compressor) in which the forward motion of the ramjet is used to raise the pressure of its working fluid (air) as required for combustion. Air is compressed, heated by combustion and expanded in a thermodynamic cycle known as the Brayton cycle , before being passed through

2548-526: Is no rocket exhaust or other emissions to mark its position to defenders. The high speeds of the warheads make them difficult to intercept and allow for little warning, striking targets many thousands of kilometers away from the launch site (and due to the possible locations of the submarines: anywhere in the world) within approximately 30 minutes. Many authorities say that missiles also release aluminized balloons, electronic noisemakers, and other decoys intended to confuse interception devices and radars . As

2639-412: Is through ablation of the propellant by the hot compressed air from the intake(s). An aft mixer may be used to improve combustion efficiency . SFIRRs are preferred over LFRJs for some applications because of the simplicity of the fuel supply, but only when the throttling requirements are minimal, i.e. when variations in altitude or speed are limited. In a ducted rocket, a solid fuel gas generator produces

2730-450: The Arrow missile in 1998, but it is mainly designed to intercept shorter-ranged theater ballistic missiles, not ICBMs. The Alaska-based United States national missile defense system attained initial operational capability in 2004. ICBMs can be deployed from multiple platforms: The last three kinds are mobile and therefore hard to detect prior to a missile launch. During storage, one of

2821-485: The Austro-Hungarian Army , but the proposal was rejected. After World War I, Fonó returned to the subject. In May 1928 he described an "air-jet engine" which he described as suitable for high-altitude supersonic aircraft, in a German patent application. In an additional patent application, he adapted the engine for subsonic speed. The patent was granted in 1932 (German Patent No. 554,906, 1932-11-02). In

Operation Bumblebee - Misplaced Pages Continue

2912-511: The LGM-30 Minuteman , Polaris and Skybolt . Modern ICBMs tend to be smaller than their ancestors, due to increased accuracy and smaller and lighter warheads, and use solid fuels, making them less useful as orbital launch vehicles. The Western view of the deployment of these systems was governed by the strategic theory of mutual assured destruction . In the 1950s and 1960s, development began on anti-ballistic missile systems by both

3003-562: The Leduc 0.10 was one of the first ramjet-powered aircraft to fly, in 1949. The Nord 1500 Griffon reached Mach 2.19 (745 m/s; 2,680 km/h) in 1958. In 1915, Hungarian inventor Albert Fonó devised a solution for increasing the range of artillery , comprising a gun-launched projectile united with a ramjet propulsion unit, thus giving a long range from relatively low muzzle velocities, allowing heavy shells to be fired from relatively lightweight guns. Fonó submitted his invention to

3094-581: The Lockheed D-21 spy drone. In the late 1950s the US Navy introduced a system called the RIM-8 Talos , which was a long range surface-to-air missile fired from ships. It successfully shot down enemy fighters during the Vietnam War , and was the first ship-launched missile to destroy an enemy aircraft in combat. On 23 May 1968, a Talos fired from USS Long Beach shot down a Vietnamese MiG at

3185-530: The RIM-2 Terrier , which entered operational status on 15 June 1956, two years before Talos; Terrier was first installed aboard the heavy cruiser USS Canberra . The Terrier was later modified as a short-range missile system for smaller ships, entering service in 1963 as the RIM-24 Tartar . Together, the three missiles were known as the "3 Ts". Bumblebee was not the only early Navy SAM project;

3276-690: The RIM-66 Standard . Talos became operational with the fleet aboard USS  Galveston in February 1959 and saw combat use during the Vietnam War . Ramjet knowledge acquired during the program aided the development of the XB-70 Valkyrie and the SR-71 Blackbird . Solid fuel boosters developed to bring the ramjet to operational velocity formed the basis for larger solid fuel rocket motors for ICBMs , satellite launch vehicles, and

3367-657: The SAM-N-2 Lark was rushed into production as a short-range counter to the Kamikaze threat. However, it never matured into an operational weapon. The RIM-50 Typhon was developed to replace the 3 Ts but was cancelled during development. The 3 Ts were ultimately replaced by the RIM-66 Standard , a development of the Tartar. Navy ships were hit by air-launched Henschel Hs 293 and Ruhrstahl SD 1400 X anti-ship guided bombs in 1943. A ramjet-powered anti-aircraft missile

3458-465: The Space Shuttle . Ramjet A ramjet is a form of airbreathing jet engine that requires forward motion of the engine to provide air for combustion. Ramjets work most efficiently at supersonic speeds around Mach  3 (2,300 mph; 3,700 km/h) and can operate up to Mach 6 (4,600 mph; 7,400 km/h). Ramjets can be particularly appropriate in uses requiring

3549-498: The USSR /Russia preferred ICBM designs that use hypergolic liquid fuels, which can be stored at room temperature for more than a few years. Once the booster falls away, the remaining "bus" releases several warheads, each of which continues on its own unpowered ballistic trajectory , much like an artillery shell or cannonball. The warhead is encased in a cone-shaped reentry vehicle and is difficult to detect in this phase of flight as there

3640-464: The cryogenic fuel liquid oxygen boiled off and caused ice formation, and therefore fueling the rocket was necessary before launch. This procedure was a source of significant operational delay and might allow the missiles to be destroyed by enemy counterparts before they could be used. To resolve this problem Nazi Germany invented the missile silo that protected the missile from Strategic Bombing and also hid fueling operations underground. Although

3731-409: The 32-metre-tall (105 ft) Unha-3 rocket. The United States claimed that the launch was in fact a way to test an ICBM. (See Timeline of first orbital launches by country .) In early July 2017, North Korea claimed for the first time to have tested successfully an ICBM capable of carrying a large thermonuclear warhead. In July 2014, China announced the development of its newest generation of ICBM,

Operation Bumblebee - Misplaced Pages Continue

3822-935: The A9/A10 rocket was tested a few times in January and February 1945. After the war, the US executed Operation Paperclip , which took von Braun and hundreds of other leading Nazi scientists to the United States to develop IRBMs , ICBMs, and launchers for the US Army. This technology was predicted by US General of the Army Hap Arnold , who wrote in 1943: Someday, not too distant, there can come streaking out of somewhere – we won't be able to hear it, it will come so fast – some kind of gadget with an explosive so powerful that one projectile will be able to wipe out completely this city of Washington. After World War II,

3913-703: The American missile defense batteries in California and Alaska. New development of ICBM technology are ICBMs able to carry hypersonic glide vehicles as a payload such as RS-28 Sarmat . On 12 March 2024 India announced that it had joined a very limited group of countries, which are capable of firing multiple warheads on a single ICBM. The announcement came after successfully testing multiple independently targetable reentry vehicle (MIRV) technology. [REDACTED] Russia [REDACTED] Russia [REDACTED] Russia [REDACTED] Russia Russia,

4004-651: The Americans and Soviets. Such systems were restricted by the 1972 Anti-Ballistic Missile Treaty . The first successful ABM test was conducted by the Soviets in 1961, which later deployed a fully operational system defending Moscow in the 1970s (see Moscow ABM system ). The 1972 SALT treaty froze the number of ICBM launchers of both the Americans and the Soviets at existing levels and allowed new submarine -based SLBM launchers only if an equal number of land-based ICBM launchers were dismantled. Subsequent talks, called SALT II, were held from 1972 to 1979 and actually reduced

4095-521: The Americans and the Soviets started rocket research programs based on the V-2 and other German wartime designs. Each branch of the US military started its own programs, leading to considerable duplication of effort. In the Soviet Union, rocket research was centrally organized although several teams worked on different designs. The US initiated ICBM research in 1946 with the RTV-A-2 Hiroc project. This

4186-676: The Atlas. Due to the improvements in engine technology and guidance systems the Titan I overtook the Atlas. In the Soviet Union, early development was focused on missiles able to attack European targets. That changed in 1953, when Sergei Korolyov was directed to start development of a true ICBM able to deliver newly developed hydrogen bombs. Given steady funding throughout, the R-7 developed with some speed. The first launch took place on 15 May 1957 and led to an unintended crash 400 km (250 mi) from

4277-605: The Bumblebee efforts, and the prototype examples were used as test vehicles. In addition to initial tests at the Island Beach, New Jersey , and Fort Miles , Delaware , temporary sites, Camp Davis , North Carolina , was used for Operation Bumblebee from 1 June 1946 to 28 July 1948. Topsail Island , North Carolina , became the permanent Bumblebee testing and launch facility in March 1947. The Topsail Historical Society hosts

4368-522: The Dongfeng-41 ( DF-41 ), which has a range of 12,000 kilometres (7,500 miles), capable of reaching the United States, and which analysts believe is capable of being outfitted with MIRV technology. Most countries in the early stages of developing ICBMs have used liquid propellants, with the known exceptions being the Indian Agni-V , the planned but cancelled South African RSA-4 ICBM, and

4459-458: The Missiles and More Museum at the site. Testing was transferred to Naval Air Weapons Station China Lake and then to White Sands Missile Range in 1951, where USS  Desert Ship  (LLS-1) was built as a prototype Talos launch facility. The RIM-2 Terrier , devised as a test vehicle, became operational as a fleet anti-aircraft missile aboard USS  Boston in 1955 and evolved into

4550-595: The Second World War. Company officials claimed, in December 1945, that these domestic initiatives were uninfluenced by parallel German developments. One post-war U.S. intelligence assessment described the Kawasaki ram jet's centrifugal fuel disperser as the company's "most outstanding accomplishment ... eliminat[ing] a large amount of the fuel injection system normally employed." Because of excessive vibration,

4641-506: The Soviet Union, a theory of supersonic ramjet engines was presented in 1928 by Boris Stechkin . Yuri Pobedonostsev, chief of GIRD 's 3rd Brigade, carried out research. The first engine, the GIRD-04, was designed by I.A. Merkulov and tested in April 1933. To simulate supersonic flight, it was fed by air compressed to 200 bar , and was fueled with hydrogen. The GIRD-08 phosphorus-fueled ramjet

SECTION 50

#1732790248983

4732-512: The Soviet testing of their first thermonuclear weapon , but it was not until 1954 that the Atlas missile program was given the highest national priority. The Atlas A first flew on 11 June 1957; the flight lasted only about 24 seconds before the rocket exploded. The first successful flight of an Atlas missile to full range occurred 28 November 1958. The first armed version of the Atlas, the Atlas D,

4823-574: The States and Empires of the Moon ) (1657) was the first of three satirical novels written by Cyrano de Bergerac that are considered among the first science fiction stories. Arthur C Clarke credited this book with conceiving the ramjet, and as the first fictional example of rocket-powered space flight. The ramjet was designed in 1913 by French inventor René Lorin , who was granted a patent (FR290356) for his device. He could not test his invention due to

4914-685: The United States and the Soviet Union agreed in the START I treaty to reduce their deployed ICBMs and attributed warheads. As of 2016 , all five of the nations with permanent seats on the United Nations Security Council have fully operational long-range ballistic missile systems; Russia, the United States, and China also have land-based ICBMs (the US missiles are silo-based, while China and Russia have both silo and road-mobile ( DF-31 , RT-2PM2 Topol-M missiles). Israel

5005-481: The additional warheads; hence, most ABM system proposals have been judged to be impractical. The first operational ABM systems were deployed in the United States during the 1970s. The Safeguard ABM facility, located in North Dakota, was operational from 1975 to 1976. The Soviets deployed their ABM-1 Galosh system around Moscow in the 1970s, which remains in service. Israel deployed a national ABM system based on

5096-421: The booster is mounted immediately aft of the ramjet, e.g. Sea Dart , or wraparound where multiple boosters are attached around the outside of the ramjet, e.g. 2K11 Krug . The choice of booster arrangement is usually driven by the size of the launch platform. A tandem booster increases the length of the system, whereas wraparound boosters increase the diameter. Wraparound boosters typically generate higher drag than

5187-496: The booster's higher thrust levels, a differently shaped nozzle is required for optimum thrust compared to that required for the lower thrust ramjet sustainer. This is usually achieved via a separate nozzle, which is ejected after booster burnout. However, designs such as Meteor feature nozzleless boosters. This offers the advantages of elimination of the hazard to launch aircraft from the boost debris, simplicity, reliability, and reduced mass and cost, although this must be traded against

5278-457: The compressed air bottle from which it is inflated, which is mounted lengthwise in the tank. This offers a lower-cost approach than a regulated LFRJ requiring a pump system to supply the fuel. A ramjet generates no static thrust and needs a booster to achieve a forward velocity high enough for efficient operation of the intake system. The first ramjet-powered missiles used external boosters, usually solid-propellant rockets, either in tandem, where

5369-635: The engine was only intended for use in rocket, or catapult-launched pilotless aircraft. Preparations for flight testing ended with the Japanese surrender in August 1945. In 1936, Hellmuth Walter constructed a test engine powered by natural gas . Theoretical work was carried out at BMW , Junkers , and DFL . In 1941, Eugen Sänger of DFL proposed a ramjet engine with a high combustion chamber temperature. He constructed large ramjet pipes with 500 millimetres (20 in) and 1,000 millimetres (39 in) diameter and carried out combustion tests on lorries and on

5460-427: The flame and improve fuel mixing. Over-fuelling the combustor can cause the final (normal) shock in the diffuser to be pushed forward beyond the intake lip, resulting in a substantial drop in airflow and thrust. The propelling nozzle is a critical part of a ramjet design, since it accelerates exhaust flow to produce thrust. Subsonic ramjets accelerate exhaust flow with a nozzle . Supersonic flight typically requires

5551-418: The fuel to the ramcombustor is required, which can be complicated and expensive. This propulsion system was first perfected by Yvonne Brill during her work at Marquardt Corporation . Aérospatiale-Celerg designed an LFRJ where the fuel is forced into the injectors by an elastomer bladder that inflates progressively along the length of the fuel tank. Initially, the bladder forms a close-fitting sheath around

SECTION 60

#1732790248983

5642-425: The incoming air is slowed to subsonic velocities for combustion. In addition, the combustion chamber's inlet temperature increases to very high values, approaching the dissociation limit at some limiting Mach number. Ramjet diffusers slow the incoming air to a subsonic velocity before it enters the combustor. Scramjets are similar to ramjets, but the air flows through the combustor at supersonic speed. This increases

5733-485: The largest targets , such as cities. They were seen as a "safe" basing option, one that would keep the deterrent force close to home where it would be difficult to attack. Attacks against military targets (especially hardened ones) demanded the use of a more precise, crewed bomber . Second- and third-generation designs (such as the LGM-118 Peacekeeper ) dramatically improved accuracy to the point where even

5824-578: The most important features of the missile is its serviceability. One of the key features of the first computer-controlled ICBM, the Minuteman missile , was that it could quickly and easily use its computer to test itself. After launch, a booster pushes the missile and then falls away. Most modern boosters are Solid-propellant rocket motors , which can be stored easily for long periods of time. Early missiles used liquid-fueled rocket motors . Many liquid-fueled ICBMs could not be kept fueled at all times as

5915-479: The name came from a comparison with the turbojet engine which employs relatively complex and expensive spinning turbomachinery. The US Navy developed a series of air-to-air missiles under the name of " Gorgon " using different propulsion mechanisms, including ramjet propulsion on the Gorgon IV. The ramjet Gorgon IVs, made by Glenn Martin , were tested in 1948 and 1949 at Naval Air Station Point Mugu . The ramjet

6006-665: The nearby detonation of friendly warheads), one neutron-resistant material developed for this purpose in the UK is three-dimensional quartz phenolic . Circular error probable is crucial, because halving the circular error probable decreases the needed warhead energy by a factor of four . Accuracy is limited by the accuracy of the navigation system and the available geodetic information. Strategic missile systems are thought to use custom integrated circuits designed to calculate navigational differential equations thousands to millions of FLOPS in order to reduce navigational errors caused by calculation alone. These circuits are usually

6097-566: The now in service Israeli Jericho III . The RS-28 Sarmat (Russian: РС-28 Сармат; NATO reporting name : SATAN 2), is a Russian liquid-fueled , MIRV -equipped, super-heavy thermonuclear armed intercontinental ballistic missile in development by the Makeyev Rocket Design Bureau from 2009, intended to replace the previous R-36 missile . Its large payload would allow for up to 10 heavy warheads or 15 lighter ones or up to 24 hypersonic glide vehicles Yu-74 , or

6188-526: The nuclear warhead reenters the Earth's atmosphere, its high speed causes compression of the air, leading to a dramatic rise in temperature which would destroy it, if it were not shielded in some way. In one design, warhead components are contained within an aluminium honeycomb substructure , sheathed in a pyrolytic carbon - epoxy synthetic resin composite material heat shield. Warheads are also often radiation-hardened (to protect against nuclear armed ABMs or

6279-649: The number of nuclear warheads held by the US and Soviets. SALT II was never ratified by the US Senate , but its terms were honored by both sides until 1986, when the Reagan administration "withdrew" after it had accused the Soviets of violating the pact. In the 1980s, President Ronald Reagan launched the Strategic Defense Initiative as well as the MX and Midgetman ICBM programs. China developed

6370-554: The pressure recovered from the streaming air and improves net thrust. Thermal choking of the exhaust is avoided by having a relatively high supersonic air velocity at combustor entry. Fuel injection is often into a sheltered region below a step in the combustor wall. The Boeing X-43 was a small experimental ramjet that achieved Mach 5 (1,700 m/s; 6,100 km/h) for 200 seconds on the X-51A Waverider . ICBM An intercontinental ballistic missile ( ICBM )

6461-437: The reduction in performance of a dedicated booster nozzle. A slight variation on the ramjet uses the supersonic exhaust from a rocket combustion process to compress and react with the incoming air in the main combustion chamber. This has the advantage of giving thrust even at zero speed. In a solid fuel integrated rocket ramjet (SFIRR), the solid fuel is cast along the outer wall of the ramcombustor. In this case, fuel injection

6552-430: The relatively low pressure means the ramjets are outperformed by turbojets and rockets . Ramjets can be classified according to the type of fuel, either liquid or solid; and the booster. In a liquid fuel ramjet (LFRJ), hydrocarbon fuel (typically) is injected into the combustor ahead of a flameholder. The flameholder stabilises the flame with the compressed air from the intake(s). A means of pressurizing and supplying

6643-539: The same engines as the AQM-60, but with improved materials to endure longer flight times. The system was withdrawn in the 1970s as the threat from bombers subsided. In April 2020, the U.S. Department of Defense and the Norwegian Ministry of Defense jointly announced their partnership to develop advanced technologies applicable to long range high-speed and hypersonic weapons. The Tactical High-speed Offensive Ramjet for Extended Range (THOR-ER) program completed

6734-1081: The simplicity of the SFRJ and LFRJ's unlimited speed control. Ramjets generally give little or no thrust below about half the speed of sound , and they are inefficient ( specific impulse of less than 600 seconds) until the airspeed exceeds 1,000 kilometres per hour (280 m/s; 620 mph) due to low compression ratios. Even above the minimum speed, a wide flight envelope (range of flight conditions), such as low to high speeds and low to high altitudes, can force significant design compromises, and they tend to work best optimised for one designed speed and altitude (point designs). However, ramjets generally outperform gas turbine-based jet engine designs and work best at supersonic speeds (Mach 2–4). Although inefficient at slower speeds, they are more fuel-efficient than rockets over their entire useful working range up to at least Mach 6 (2,000 m/s; 7,400 km/h). The performance of conventional ramjets falls off above Mach 6 due to dissociation and pressure loss caused by shock as

6825-469: The site. The first successful test followed on 21 August 1957; the R-7 flew over 6,000 km (3,700 mi) and became the world's first ICBM. The first strategic-missile unit became operational on 9 February 1959 at Plesetsk in north-west Russia. It was the same R-7 launch vehicle that placed the first artificial satellite in space, Sputnik , on 4 October 1957. The first human spaceflight in history

6916-477: The smallest point targets can be successfully attacked. ICBMs are differentiated by having greater range and speed than other ballistic missiles: intermediate-range ballistic missiles (IRBMs), medium-range ballistic missiles (MRBMs), short-range ballistic missiles (SRBMs) and tactical ballistic missiles . The first practical design for an ICBM grew out of Nazi Germany 's V-2 rocket program. The liquid-fueled V-2, designed by Wernher von Braun and his team,

7007-486: The stakes with the Apollo program , which used Saturn rocket technology that had been funded by President Dwight D. Eisenhower . These early ICBMs also formed the basis of many space launch systems. Examples include R-7 , Atlas , Redstone , Titan , and Proton , which was derived from the earlier ICBMs but never deployed as an ICBM. The Eisenhower administration supported the development of solid-fueled missiles such as

7098-613: The system was cancelled. It was replaced by a shorter range ramjet missile system called the Bloodhound . The system was designed as a second line of defense in case attackers were able to bypass the fleet of defending English Electric Lightning fighters. In the 1960s the Royal Navy developed and deployed a ramjet powered surface to air missile for ships called the Sea Dart . It had a range of 65–130 kilometres (40–80 mi) and

7189-428: The trajectory which optimizes range for a given amount of payload (the minimum-energy trajectory ); an alternative is a depressed trajectory , which allows less payload, shorter flight time, and has a much lower apogee. Modern ICBMs typically carry multiple independently targetable reentry vehicles ( MIRVs ), each of which carries a separate nuclear warhead , allowing a single missile to hit multiple targets. MIRV

7280-428: The unavailability of adequate equipment since there was no way at the time for an aircraft to go fast enough for a ramjet to function properly. His patent showed a piston internal combustion engine with added 'trumpets' as exhaust nozzles, expressing the idea that the exhaust from internal combustion engines could be directed into nozzles to create jet propulsion. The works of René Leduc were notable. Leduc's Model,

7371-432: Was a three-stage effort with the ICBM development not starting until the third stage. However, funding was cut in 1948 after only three partially successful launches of the second stage design, that was used to test variations of the V-2 design. With overwhelming air superiority and truly intercontinental bombers, the newly formed US Air Force did not take the problem of ICBM development seriously. Things changed in 1953 with

7462-518: Was accomplished on a derivative of R-7, Vostok , on 12 April 1961 , by Soviet cosmonaut Yuri Gagarin . A heavily modernized version of the R-7 is still used as the launch vehicle for the Soviet/Russian Soyuz spacecraft , marking more than 60 years of operational history of Sergei Korolyov 's original rocket design. The R-7 and Atlas each required a large launch facility, making them vulnerable to attack, and could not be kept in

7553-534: Was an outgrowth of the rapidly shrinking size and weight of modern warheads and the Strategic Arms Limitation Treaties ( SALT I and SALT II ), which imposed limitations on the number of launch vehicles. It has also proved to be an "easy answer" to proposed deployments of anti-ballistic missile (ABM) systems: It is far less expensive to add more warheads to an existing missile system than to build an ABM system capable of shooting down

7644-418: Was declared operational in January 1959 at Vandenberg, although it had not yet flown. The first test flight was carried out on 9 July 1959, and the missile was accepted for service on 1 September. The Titan I was another US multistage ICBM, with a successful launch February 5, 1959, with Titan I A3. Unlike the Atlas, the Titan I was a two-stage missile, rather than three. The Titan was larger, yet lighter, than

7735-416: Was decommissioned in compliance with arms control agreements, which address the maximum range of ICBMs and prohibit orbital or fractional-orbital weapons. However, according to reports, Russia is working on the new Sarmat ICBM which leverages Fractional Orbital Bombardment concepts to use a Southern polar approach instead of flying over the northern polar regions. Using that approach, it is theorized, avoids

7826-689: Was designed at the University of Southern California and manufactured by the Marquardt Aircraft Company . The engine was 2.1 metres (7 ft) long and 510 millimetres (20 in) in diameter and was positioned below the missile. In the early 1950s the US developed a Mach 4+ ramjet under the Lockheed X-7 program. This was developed into the Lockheed AQM-60 Kingfisher . Further development resulted in

7917-520: Was not as demanding as the attacking weapon was much larger, but there was a desire for long range and rapid deployment. This led to a second concept, the SAM-N-2 Lark , a subsonic missile intended to provide a middle layer of defense between the long-range combat air patrols and short-range anti-aircraft artillery . With the ending of the war, and the introduction of jet-powered bombers with significantly higher performance, interest in Lark ended in favor of

8008-530: Was proposed to destroy aircraft launching such weapons while remaining beyond the range of shipboard artillery. Initial performance goals were target intercept at a horizontal range of 10 miles and 30,000 ft (9,100 m) altitude, with a 300 to 600 lb (140 to 270 kg) warhead for a 30 to 60 percent kill probability. Heavy shipping losses to kamikaze attacks during the Battle of Okinawa provided additional incentive for missile development. This role

8099-408: Was successfully carried out by SFC from Abdul Kalam Island, Odisha. The missile is now 20 percent lighter because the use of composite materials rather than steel material. The range has been increased to 7,000 km. By 2012 there was speculation by some intelligence agencies that North Korea is developing an ICBM. North Korea successfully put a satellite into space on 12 December 2012 using

8190-520: Was tested by firing it from an artillery cannon. These shells may have been the first jet-powered projectiles to break the speed of sound . In 1939, Merkulov did further ramjet tests using a two-stage rocket , the R-3. He developed the first ramjet engine for use as an auxiliary motor of an aircraft, the DM-1. The world's first ramjet-powered airplane flight took place in December 1940, using two DM-2 engines on

8281-470: Was then widely used by Nazi Germany from mid-1944 until March 1945 to bomb British and Belgian cities, particularly Antwerp and London. Under Projekt Amerika, von Braun's team developed the A9/10 ICBM, intended for use in bombing New York and other American cities. Initially intended to be guided by radio, it was changed to be a piloted craft after the failure of Operation Elster . The second stage of

#982017