The LG KU990 or LG KE990 (known and marketed as the LG Viewty ) is a 3.5G touchscreen smartphone by LG Electronics , announced on August 23, 2007 and then released in Europe and Asia. A high-end model at the time of its release, the Viewty had a resistive touchscreen and was specially marketed for its camera due to its powerful camera features. The Viewty had a high gloss black look similar to the previous LG Prada , although it was also released in many other colours. In South Korea, it was known as the Beauty Phone (Korean: 뷰티폰).
111-482: A key feature of the LG Viewty is its 5-megapixel digital camera with Schneider Kreuznach optics, Xenon flash, autofocus , and a digital image stabilizer. It features an ISO 800-equivalent High-Sensitivity mode for night scenery shots and "Smart Light" for bright and clear images in the dark. It allows capturing of MP4 VGA video at 30 FPS , and QVGA at 120 FPS for slow-motion playback. According to
222-403: A Bayer filter mosaic, or three separate image sensors (one each for the primary additive colors red, green, and blue) which are exposed to the same image via a beam splitter (see Three-CCD camera ). Multi-shot exposes the sensor to the image in a sequence of three or more openings of the lens aperture . There are several methods of application of the multi-shot technique. The most common
333-599: A lens with a variable diaphragm to focus light onto an image pickup device. The diaphragm and shutter admit a controlled amount of light to the image, just as with film, but the image pickup device is electronic rather than chemical. However, unlike film cameras, digital cameras can display images on a screen immediately after being recorded, and store and delete images from memory . Many digital cameras can also record moving videos with sound . Some digital cameras can crop and stitch pictures and perform other kinds of image editing . The first semiconductor image sensor
444-640: A 1024 GB flash chip, with eight stacked 96-layer V-NAND chips and with QLC technology. Flash memory stores information in an array of memory cells made from floating-gate transistors . In single-level cell (SLC) devices, each cell stores only one bit of information. Multi-level cell (MLC) devices, including triple-level cell (TLC) devices, can store more than one bit per cell. The floating gate may be conductive (typically polysilicon in most kinds of flash memory) or non-conductive (as in SONOS flash memory). In flash memory, each memory cell resembles
555-489: A 16 GB flash memory chip that was manufactured with 24 stacked NAND flash chips using a wafer bonding process. Toshiba also used an eight-layer 3D IC for their 32 GB THGBM flash chip in 2008. In 2010, Toshiba used a 16-layer 3D IC for their 128 GB THGBM2 flash chip, which was manufactured with 16 stacked 8 GB chips. In the 2010s, 3D ICs came into widespread commercial use for NAND flash memory in mobile devices . In 2016, Micron and Intel introduced
666-433: A 64 MB NOR flash memory chip. In 2009, Toshiba and SanDisk introduced NAND flash chips with QLC technology storing 4 bits per cell and holding a capacity of 64 Gbit. Samsung Electronics introduced triple-level cell (TLC) technology storing 3-bits per cell, and began mass-producing NAND chips with TLC technology in 2010. Charge trap flash (CTF) technology replaces the polysilicon floating gate, which
777-413: A Bayer filter on the chip. The third method is called scanning because the sensor moves across the focal plane much like the sensor of an image scanner . The linear or tri-linear sensors in scanning cameras utilize only a single line of photosensors, or three lines for the three colors. Scanning may be accomplished by moving the sensor (for example, when using color co-site sampling ) or by rotating
888-515: A PDF document viewer, movie and photo editor, and Obigo web browser. The rear camera has a wheel that physically rotates, which can be used for scrolling in menus, zooming in and out of webpages or changing the volume. An updated model, the KU990i, was later released, but only in European markets. It features a new camera module, always-on flash mode and automatic smile and face detection. However,
999-548: A certain number of faults (NOR flash, as is used for a BIOS ROM, is expected to be fault-free). Manufacturers try to maximize the amount of usable storage by shrinking the size of the transistors or cells, however the industry can avoid this and achieve higher storage densities per die by using 3D NAND, which stacks cells on top of each other. NAND flash cells are read by analysing their response to various voltages. NAND flash uses tunnel injection for writing and tunnel release for erasing. NAND flash memory forms
1110-517: A charge-trapping mechanism for NOR flash memory cells. CTF was later commercialized by AMD and Fujitsu in 2002. 3D V-NAND (vertical NAND) technology stacks NAND flash memory cells vertically within a chip using 3D charge trap flash (CTP) technology. 3D V-NAND technology was first announced by Toshiba in 2007, and the first device, with 24 layers, was first commercialized by Samsung Electronics in 2013. 3D integrated circuit (3D IC) technology stacks integrated circuit (IC) chips vertically into
1221-484: A considerable depth up to 100 feet (30 m); others only 10 feet (3 m), but only a few will float. Ruggeds often lack some of the features of ordinary compact camera, but they have video capability and the majority can record sound. Most have image stabilization and built-in flash. Touchscreen LCD and GPS do not work underwater. GoPro and other brands offer action cameras that are rugged, small, and can be easily attached to helmets , arms, bicycles, etc. Most have
SECTION 10
#17327754867601332-466: A different architecture, relying on a serial access approach. This makes NAND suitable for high-density data storage but less efficient for random access tasks. NAND flash is often employed in scenarios where cost-effective, high-capacity storage is crucial, such as in USB drives, memory cards, and solid-state drives ( SSDs ). The primary differentiator lies in their use cases and internal structures. NOR flash
1443-429: A digital camera is often limited by the image sensor that turns light into discrete signals. The brighter the image at a given point on the sensor, the larger the value that is read for that pixel. Depending on the physical structure of the sensor, a color filter array may be used, which requires demosaicing to recreate a full-color image . The number of pixels in the sensor determines the camera's " pixel count ". In
1554-501: A fast read access time but it is not as fast as static RAM or ROM. In portable devices, it is preferred to use flash memory because of its mechanical shock resistance since mechanical drives are more prone to mechanical damage. Because erase cycles are slow, the large block sizes used in flash memory erasing give it a significant speed advantage over non-flash EEPROM when writing large amounts of data. As of 2019, flash memory costs greatly less than byte-programmable EEPROM and had become
1665-588: A frame of 35 mm film. Common values for field of view crop in DSLRs using active pixel sensors include 1.3x for some Canon (APS-H) sensors, 1.5x for Sony APS-C sensors used by Nikon, Pentax and Konica Minolta and for Fujifilm sensors, 1.6 (APS-C) for most Canon sensors, ~1.7x for Sigma 's Foveon sensors and 2x for Kodak and Panasonic 4/3-inch sensors currently used by Olympus and Panasonic. Crop factors for non-SLR consumer compact and bridge cameras are larger, frequently 4x or more. The resolution of
1776-403: A full array of RGB image data. Cameras that use a beam-splitter single-shot 3CCD approach, three-filter multi-shot approach, color co-site sampling or Foveon X3 sensor do not use anti-aliasing filters, nor demosaicing. Firmware in the camera, or a software in a raw converter program such as Adobe Camera Raw , interprets the raw data from the sensor to obtain a full-color image, because
1887-484: A larger sensor including, at the high end, a pricey full-frame sensor compact camera, such as Sony Cyber-shot DSC-RX1 , but have capability near that of a DSLR. A variety of additional features are available depending on the model of the camera. Such features include GPS , compass, barometers and altimeters . Starting in 2010, some compact digital cameras can take 3D still photos. These 3D compact stereo cameras can capture 3D panoramic photos with dual lens or even
1998-425: A more typical 10,000 or 100,000 erase cycles, up to 1,000,000 erase cycles. NOR-based flash was the basis of early flash-based removable media; CompactFlash was originally based on it, though later cards moved to less expensive NAND flash. NAND flash has reduced erase and write times, and requires less chip area per cell, thus allowing greater storage density and lower cost per bit than NOR flash. However,
2109-401: A much higher cost. Autofocus systems in compact digital cameras generally are based on a contrast-detection methodology using the image data from the live preview feed of the main imager. Some compact digital cameras use a hybrid autofocus system similar to what is commonly available on DSLRs. Typically, compact digital cameras incorporate a nearly silent leaf shutter into the lens but play
2220-488: A photo affects the quality of the image, as high ISO settings equate to an image that is less sharp due to the increased amount of noise allowed into the image, along with too little noise, which can also produce an image that is not sharp. Since the first digital backs were introduced, there have been three main methods of capturing the image, each based on the hardware configuration of the sensor and color filters. Single-shot capture systems use either one sensor chip with
2331-518: A planar charge trap cell into a cylindrical form. As of 2020, 3D NAND flash memories by Micron and Intel instead use floating gates, however, Micron 128 layer and above 3D NAND memories use a conventional charge trap structure, due to the dissolution of the partnership between Micron and Intel. Charge trap 3D NAND flash is thinner than floating gate 3D NAND. In floating gate 3D NAND, the memory cells are completely separated from one another, whereas in charge trap 3D NAND, vertical groups of memory cells share
SECTION 20
#17327754867602442-416: A retractable lens assembly that provides optical zoom. In most models, an auto-actuating lens cover protects the lens from elements. Most ruggedized or water-resistant models do not retract, and most with superzoom capability do not retract fully. Compact cameras are usually designed to be easy to use . Almost all include an automatic mode, or "auto mode", which automatically makes all camera settings for
2553-421: A separate die inside the package. The origins of flash memory can be traced back to the development of the floating-gate MOSFET (FGMOS) , also known as the floating-gate transistor. The original MOSFET was invented at Bell Labs between 1955 and 1960, after Frosch and Derick discovered surface passivation and used their discovery to create the first planar transistors. Dawon Kahng went on to develop
2664-407: A simulated camera sound for skeuomorphic purposes. For low cost and small size, these cameras typically use image sensor formats with a diagonal between 6 and 11 mm, corresponding to a crop factor between 7 and 4. This gives them weaker low-light performance, greater depth of field , generally closer focusing ability, and smaller components than cameras using larger sensors. Some cameras use
2775-489: A single 3D IC chip package. Toshiba introduced 3D IC technology to NAND flash memory in April 2007, when they debuted a 16 GB eMMC compliant (product number THGAM0G7D8DBAI6, often abbreviated THGAM on consumer websites) embedded NAND flash memory chip, which was manufactured with eight stacked 2 GB NAND flash chips. In September 2007, Hynix Semiconductor (now SK Hynix ) introduced 24-layer 3D IC technology, with
2886-548: A single lens for playback on a 3D TV . In 2013, Sony released two add-on camera models without display, to be used with a smartphone or tablet, controlled by a mobile application via WiFi. Rugged compact cameras typically include protection against submersion, hot and cold conditions, shock, and pressure. Terms used to describe such properties include waterproof, freeze-proof, heatproof, shockproof, and crushproof, respectively. Nearly all major camera manufacturers have at least one product in this category. Some are waterproof to
2997-424: A single memory product. A single-level NOR flash cell in its default state is logically equivalent to a binary "1" value, because current will flow through the channel under application of an appropriate voltage to the control gate, so that the bitline voltage is pulled down. A NOR flash cell can be programmed, or set to a binary "0" value, by the following procedure: To erase a NOR flash cell (resetting it to
3108-409: A single supply voltage and produce the high voltages that are required using on-chip charge pumps . Over half the energy used by a 1.8 V-NAND flash chip is lost in the charge pump itself. Since boost converters are inherently more efficient than charge pumps, researchers developing low-power SSDs have proposed returning to the dual Vcc/Vpp supply voltages used on all early flash chips, driving
3219-407: A smaller sensor is used, as in most digicams, the field of view is cropped by the sensor to smaller than the 35 mm full-frame format's field of view. This narrowing of the field of view may be described as crop factor, a factor by which a longer focal length lens would be needed to get the same field of view on a 35 mm film camera. Full-frame digital SLRs utilize a sensor of the same size as
3330-488: A standard metal–oxide–semiconductor field-effect transistor (MOSFET) except that the transistor has two gates instead of one. The cells can be seen as an electrical switch in which current flows between two terminals (source and drain) and is controlled by a floating gate (FG) and a control gate (CG). The CG is similar to the gate in other MOS transistors, but below this, there is the FG insulated all around by an oxide layer. The FG
3441-482: A technology known as CMOS Under the Array/CMOS Under Array (CUA), Core over Periphery (COP), Periphery Under Cell (PUA), or Xtacking, in which the control circuitry for the flash memory is placed under or above the flash memory cell array. This has allowed for an increase in the number of planes or sections a flash memory chip has, increasing from 2 planes to 4, without increasing the area dedicated to
LG Viewty - Misplaced Pages Continue
3552-843: A time. NAND flash also uses floating-gate transistors , but they are connected in a way that resembles a NAND gate : several transistors are connected in series, and the bit line is pulled low only if all the word lines are pulled high (above the transistors' V T ). These groups are then connected via some additional transistors to a NOR-style bit line array in the same way that single transistors are linked in NOR ;flash. Compared to NOR flash, replacing single transistors with serial-linked groups adds an extra level of addressing. Whereas NOR flash might address memory by page then word, NAND flash might address it by page, word and bit. Bit-level addressing suits bit-serial applications (such as hard disk emulation), which access only one bit at
3663-453: A time. Execute-in-place applications, on the other hand, require every bit in a word to be accessed simultaneously. This requires word-level addressing. In any case, both bit and word addressing modes are possible with either NOR or NAND flash. To read data, first the desired group is selected (in the same way that a single transistor is selected from a NOR array). Next, most of the word lines are pulled up above V T2 , while one of them
3774-506: A type of flash memory with a charge trap method. In 1998, Boaz Eitan of Saifun Semiconductors (later acquired by Spansion ) patented a flash memory technology named NROM that took advantage of a charge trapping layer to replace the conventional floating gate used in conventional flash memory designs. In 2000, an Advanced Micro Devices (AMD) research team led by Richard M. Fastow, Egyptian engineer Khaled Z. Ahmed and Jordanian engineer Sameer Haddad (who later joined Spansion) demonstrated
3885-443: A typical sensor, the pixel count is the product of the number of rows and the number of columns. Pixels are square and is often equal to 1 , for example, a 1,000 by 1,000-pixel sensor would have 1,000,000 pixels, or 1 megapixel . On full-frame sensors (i.e., 24 mm 36 mm), some cameras propose images with 20–25 million pixels that were captured by 7.5–m photosites , or a surface that is 50 times larger. Digital cameras come in
3996-450: A variation, the floating-gate MOSFET, with Taiwanese-American engineer Simon Min Sze at Bell Labs in 1967. They proposed that it could be used as floating-gate memory cells for storing a form of programmable read-only memory ( PROM ) that is both non-volatile and re-programmable. Early types of floating-gate memory included EPROM (erasable PROM) and EEPROM (electrically erasable PROM) in
4107-590: A wide angle and fixed focus and can take still pictures and video, typically with sound. The 360-degree camera can take picture or video 360 degrees using two lenses back-to-back and shooting at the same time. Some of the cameras are Ricoh Theta S, Nikon Keymission 360 and Samsung Gear 360. Nico360 was launched in 2016 and claimed as the world's smallest 360-degree camera with size 46 x 46 x 28 mm (1.8 x 1.8 x 1.1 in) and price less than $ 200. With virtual reality mode built-in stitching, Wifi, and Bluetooth, live streaming can be done. Due to it also being water resistant,
4218-442: A wide range of sizes, prices, and capabilities. In addition to general-purpose digital cameras, specialized cameras including multispectral imaging equipment and astrographs are used for scientific, military, medical, and other special purposes. Compact cameras are intended to be portable (pocketable) and are particularly suitable for casual " snapshots ". Point-and-shoot cameras usually fall under this category. Many incorporate
4329-480: Is a factor of multiple systems throughout the DSLR camera by its ISO , resolution, lens, and the lens settings, the environment of the image, and its post-processing. Images have a possibility of being too sharp, but they can never be too in focus. A digital camera resolution is determined by a digital sensor. The digital sensor indicates a high level of sharpness can be produced through the amount of noise and grain that
4440-436: Is almost always used to frame the photo on an integrated LCD. In addition to being able to take still photographs almost all compact cameras have the ability to record video . Compacts often have macro capability and zoom lenses , but the zoom range (up to 30x) is generally enough for candid photography but less than is available on bridge cameras (more than 60x), or the interchangeable lenses of DSLR cameras available at
4551-515: Is also often used to store configuration data in digital products, a task previously made possible by EEPROM or battery-powered static RAM . A key disadvantage of flash memory is that it can endure only a relatively small number of write cycles in a specific block. NOR flash is known for its direct random access capabilities, making it apt for executing code directly. Its architecture allows for individual byte access, facilitating faster read speeds compared to NAND flash. NAND flash memory operates with
LG Viewty - Misplaced Pages Continue
4662-535: Is an electronic non-volatile computer memory storage medium that can be electrically erased and reprogrammed. The two main types of flash memory, NOR flash and NAND flash , are named for the NOR and NAND logic gates . Both use the same cell design, consisting of floating-gate MOSFETs . They differ at the circuit level depending on whether the state of the bit line or word lines is pulled high or low: in NAND flash,
4773-444: Is an electrically insulating tunnel oxide layer between the floating gate and the silicon, so the gate "floats" above the silicon. The oxide keeps the electrons confined to the floating gate. Degradation or wear (and the limited endurance of floating gate Flash memory) occurs due to the extremely high electric field (10 million volts per centimeter) experienced by the oxide. Such high voltage densities can break atomic bonds over time in
4884-525: Is interposed between the CG and the MOSFET channel. Because the FG is electrically isolated by its insulating layer, electrons placed on it are trapped. When the FG is charged with electrons, this charge screens the electric field from the CG, thus, increasing the threshold voltage (V T ) of the cell. This means that the V T of the cell can be changed between the uncharged FG threshold voltage (V T1 ) and
4995-484: Is optimal for applications requiring quick access to individual bytes, like in embedded systems for program execution. NAND flash, on the other hand, shines in scenarios demanding cost-effective, high-capacity storage with sequential data access. Flash memory is used in computers , PDAs , digital audio players , digital cameras , mobile phones , synthesizers , video games , scientific instrumentation , industrial robotics , and medical electronics . Flash memory has
5106-636: Is programmed in blocks while EEPROM is programmed in bytes. According to Toshiba, the name "flash" was suggested by Masuoka's colleague, Shōji Ariizumi, because the erasure process of the memory contents reminded him of the flash of a camera . Masuoka and colleagues presented the invention of NOR flash in 1984, and then NAND flash at the IEEE 1987 International Electron Devices Meeting (IEDM) held in San Francisco. Toshiba commercially launched NAND flash memory in 1987. Intel Corporation introduced
5217-422: Is pulled up to V I . The series group will conduct (and pull the bit line low) if the selected bit has not been programmed. Despite the additional transistors, the reduction in ground wires and bit lines allows a denser layout and greater storage capacity per chip. (The ground wires and bit lines are actually much wider than the lines in the diagrams.) In addition, NAND flash is typically permitted to contain
5328-484: Is sandwiched between a blocking gate oxide above and a tunneling oxide below it, with an electrically insulating silicon nitride layer; the silicon nitride layer traps electrons. In theory, CTF is less prone to electron leakage, providing improved data retention. Because CTF replaces the polysilicon with an electrically insulating nitride, it allows for smaller cells and higher endurance (lower degradation or wear). However, electrons can become trapped and accumulate in
5439-513: Is thus highly suitable for use in mass-storage devices, such as memory cards and solid-state drives (SSD). For example, SSDs store data using multiple NAND flash memory chips. The first NAND-based removable memory card format was SmartMedia , released in 1995. Many others followed, including MultiMediaCard , Secure Digital , Memory Stick , and xD-Picture Card . A new generation of memory card formats, including RS-MMC , miniSD and microSD , feature extremely small form factors. For example,
5550-421: Is tolerated through the lens of the camera. Resolution within the field of digital stills and digital movies is indicated through the camera's ability to determine detail based on the distance, which is then measured by frame size, pixel type, number, and organization. Although some DSLR cameras have limited resolutions, it is almost impossible to not have the proper sharpness for an image. The ISO choice when taking
5661-504: The Landsat 1 satellite's multispectral scanner (MSS) started taking digital images of Earth. The MSS, designed by Virginia Norwood at Hughes Aircraft Company starting in 1969, captured and transmitted image data from green, red, and two infrared bands with 6 bits per channel, using a mechanical rocking mirror and an array of 24 detectors. Operating for six years, it transmitted more than 300,000 digital photographs of Earth while orbiting
SECTION 50
#17327754867605772-548: The RGB color model requires three intensity values for each pixel: one each for the red, green, and blue (other color models, when used, also require three or more values per pixel). A single sensor element cannot simultaneously record these three intensities, so a color filter array (CFA) must be used to selectively filter a particular color for each pixel. The Bayer filter pattern is a repeating 2x2 mosaic pattern of light filters, with green ones at opposite corners and red and blue in
5883-410: The image sensor that turns light into discrete signals. The brighter the image at a given point on the sensor, the larger the value that is read for that pixel. Depending on the physical structure of the sensor, a color filter array may be used, which requires demosaicing to recreate a full-color image . The number of pixels in the sensor determines the camera's " pixel count ". In a typical sensor,
5994-502: The "1" state), a large voltage of the opposite polarity is applied between the CG and source terminal, pulling the electrons off the FG through Fowler–Nordheim tunneling (FN tunneling). This is known as Negative gate source source erase. Newer NOR memories can erase using negative gate channel erase, which biases the wordline on a NOR memory cell block and the P-well of the memory cell block to allow FN tunneling to be carried out, erasing
6105-536: The "Still Video Floppy", or "SVF". The Canon RC-701, introduced in May 1986, was the first SVF camera (and the first electronic SLR camera) sold in the US. It employed an SLR viewfinder, included a 2/3" format color CCD sensor with 380K pixels, and was sold along with a removable 11-66mm and 50-150mm zoom lens. Over the next few years, many other companies began selling SVF cameras. These analog electronic cameras included
6216-712: The 1970s. However, early floating-gate memory required engineers to build a memory cell for each bit of data, which proved to be cumbersome, slow, and expensive, restricting floating-gate memory to niche applications in the 1970s, such as military equipment and the earliest experimental mobile phones . Modern EEPROM based on Fowler-Nordheim tunnelling to erase data was invented by Bernward and patented by Siemens in 1974. And further developed between 1976 and 1978 by Eliyahou Harari at Hughes Aircraft Company and George Perlegos and others at Intel. This led to Masuoka's invention of flash memory at Toshiba in 1980. The improvement between EEPROM and flash being that flash
6327-438: The FG is charged. The binary value of the cell is sensed by determining whether there is current flowing through the transistor when V I is asserted on the CG. In a multi-level cell device, which stores more than one bit per cell, the amount of current flow is sensed (rather than simply its presence or absence), in order to determine more precisely the level of charge on the FG. Floating gate MOSFETs are so named because there
6438-646: The FUJIX DS-X, the first fully digital camera to be commercially released. In 1996, Toshiba 's 40 MB flash memory card was adopted for several digital cameras. The first commercial camera phone was the Kyocera Visual Phone VP-210, released in Japan in May 1999. It was called a "mobile videophone" at the time, and had a 110,000- pixel front-facing camera . It stored up to 20 JPEG digital images , which could be sent over e-mail, or
6549-540: The I/O interface of NAND flash does not provide a random-access external address bus. Rather, data must be read on a block-wise basis, with typical block sizes of hundreds to thousands of bits. This makes NAND flash unsuitable as a drop-in replacement for program ROM, since most microprocessors and microcontrollers require byte-level random access. In this regard, NAND flash is similar to other secondary data storage devices , such as hard disks and optical media , and
6660-490: The Jet Propulsion Laboratory was thinking about how to use a mosaic photosensor to capture digital images. His idea was to take pictures of the planets and stars while travelling through space to give information about the astronauts' position. As with Texas Instruments employee Willis Adcock's filmless camera (US patent 4,057,830) in 1972, the technology had yet to catch up with the concept. In 1972,
6771-468: The Nico360 can be used as action camera. There are tend that action cameras have capabilities to shoot 360 degrees with at least 4K resolution. Bridge cameras physically resemble DSLRs, and are sometimes called DSLR-shape or DSLR-like. They provide some similar features but, like compacts, they use a fixed lens and a small sensor. Some compact cameras have also PSAM mode. Most use live preview to frame
SECTION 60
#17327754867606882-615: The Nikon QV-1000C, which had an SLR viewfinder and a 2/3" format monochrome CCD sensor with 380K pixels and recorded analog black-and-white images on a Still Video Floppy. At Photokina 1988, Fujifilm introduced the FUJIX DS-1P, the first fully digital camera, which recorded digital images using a semiconductor memory card . The camera's memory card had a capacity of 2 MB of SRAM (static random-access memory) and could hold up to ten photographs. In 1989, Fujifilm released
6993-712: The Viewty Smile. Digital camera A digital camera , also called a digicam , is a camera that captures photographs in digital memory . Most cameras produced today are digital, largely replacing those that capture images on photographic film or film stock . Digital cameras are now widely incorporated into mobile devices like smartphones with the same or more capabilities and features of dedicated cameras. High-end, high-definition dedicated cameras are still commonly used by professionals and those who desire to take higher-quality photographs. Digital and digital movie cameras share an optical system, typically using
7104-416: The beginning of the 21st century made single-shot cameras almost completely dominant, even in high-end commercial photography. Most current consumer digital cameras use a Bayer filter mosaic in combination with an optical anti-aliasing filter to reduce the aliasing due to the reduced sampling of the different primary-color images. A demosaicing algorithm is used to interpolate color information to create
7215-509: The camera used a silicon diode vidicon tube detector, which was cooled using dry ice to reduce dark current, allowing exposure times of up to one hour. The Cromemco Cyclops was an all-digital camera introduced as a commercial product in 1975. Its design was published as a hobbyist construction project in the February 1975 issue of Popular Electronics magazine. It used a 32×32 metal–oxide–semiconductor (MOS) image sensor, which
7326-466: The cell block. Older memories used source erase, in which a high voltage was applied to the source and then electrons from the FG were moved to the source. Modern NOR flash memory chips are divided into erase segments (often called blocks or sectors). The erase operation can be performed only on a block-wise basis; all the cells in an erase segment must be erased together. Programming of NOR cells, however, generally can be performed one byte or word at
7437-502: The cell by increasing the MOSFET's threshold voltage. This, in turn, changes the drain-source current that flows through the transistor for a given gate voltage, which is ultimately used to encode a binary value. The Fowler-Nordheim tunneling effect is reversible, so electrons can be added to or removed from the floating gate, processes traditionally known as writing and erasing. Despite the need for relatively high programming and erasing voltages, virtually all flash chips today require only
7548-402: The cells are logically set to 1. Data can only be programmed in one pass to a page in a block that was erased. The programming process is set one or more cells from 1 to 0. Any cells that have been set to 0 by programming can only be reset to 1 by erasing the entire block. This means that before new data can be programmed into a page that already contains data, the current contents of the page plus
7659-584: The control or periphery circuitry. This increases the number of IO operations per flash chip or die, but it also introduces challenges when building capacitors for charge pumps used to write to the flash memory. Some flash dies have as many as 6 planes. As of August 2017, microSD cards with a capacity up to 400 GB (400 billion bytes) are available. The same year, Samsung combined 3D IC chip stacking with its 3D V-NAND and TLC technologies to manufacture its 512 GB KLUFG8R1EM flash memory chip with eight stacked 64-layer V-NAND chips. In 2019, Samsung produced
7770-404: The core of the removable USB storage devices known as USB flash drives , as well as most memory card formats and solid-state drives available today. The hierarchical structure of NAND flash starts at a cell level which establishes strings, then pages, blocks, planes and ultimately a die. A string is a series of connected NAND cells in which the source of one cell is connected to the drain of
7881-576: The dominant memory type wherever a system required a significant amount of non-volatile solid-state storage . EEPROMs, however, are still used in applications that require only small amounts of storage, e.g. in SPD implementations on computer memory modules. Flash memory packages can use die stacking with through-silicon vias and several dozen layers of 3D TLC NAND cells (per die) simultaneously to achieve capacities of up to 1 tebibyte per package using 16 stacked dies and an integrated flash controller as
7992-575: The entire device. NOR flash memory allows a single machine word to be written – to an erased location – or read independently. A flash memory device typically consists of one or more flash memory chips (each holding many flash memory cells), along with a separate flash memory controller chip. The NAND type is found mainly in memory cards , USB flash drives , solid-state drives (those produced since 2009), feature phones , smartphones , and similar products, for general storage and transfer of data. NAND or NOR flash memory
8103-497: The first commercial NOR type flash chip in 1988. NOR-based flash has long erase and write times, but provides full address and data buses , allowing random access to any memory location . This makes it a suitable replacement for older read-only memory (ROM) chips, which are used to store program code that rarely needs to be updated, such as a computer's BIOS or the firmware of set-top boxes . Its endurance may be from as little as 100 erase cycles for an on-chip flash memory, to
8214-462: The flash storage device (such as SSD ), the data actually written to the flash memory may be 0011 1100. Vertical NAND (V-NAND) or 3D NAND memory stacks memory cells vertically and uses a charge trap flash architecture. The vertical layers allow larger areal bit densities without requiring smaller individual cells. It is also sold under the trademark BiCS Flash , which is a trademark of Kioxia Corporation (formerly Toshiba Memory Corporation). 3D NAND
8325-418: The floating gate. This is why data retention goes down and the risk of data loss increases with increasing degradation. The silicon oxide in a cell degrades with every erase operation. The degradation increases the amount of negative charge in the cell over time due to trapped electrons in the oxide and negates some of the control gate voltage, this over time also makes erasing the cell slower, so to maintain
8436-435: The high Vpp voltage for all flash chips in an SSD with a single shared external boost converter. In spacecraft and other high-radiation environments, the on-chip charge pump is the first part of the flash chip to fail, although flash memories will continue to work – in read-only mode – at much higher radiation levels. In NOR flash, each cell has one end connected directly to ground, and
8547-415: The higher charged FG threshold voltage (V T2 ) by changing the FG charge. In order to read a value from the cell, an intermediate voltage (V I ) between V T1 and V T2 is applied to the CG. If the channel conducts at V I , the FG must be uncharged (if it were charged, there would not be conduction because V I is less than V T2 ). If the channel does not conduct at the V I , it indicates that
8658-466: The image. Their usual autofocus is by the same contrast-detect mechanism as compacts, but many bridge cameras have a manual focus mode and some have a separate focus ring for greater control. The big physical size and small sensor allow superzoom and wide aperture. Bridge cameras generally include an image stabilization system to enable longer handheld exposures, sometimes better than DSLR for low light conditions. Flash memory Flash memory
8769-576: The lack of a lens cover and the "fiddly" rotating disc. LG reported sales of 310,000 units in Europe in the first five weeks. A blog entry by UK mobile phone reseller Dial-A-Phone suggested that the Viewty was outselling the Apple iPhone in the region, citing anecdotal reports of sluggish sales and Apple's reluctance to publish figures for the iPhone in the region as evidence. The pricing and featuresets of
8880-415: The manufacturer, the camera's frame rate is high enough to film a balloon bursting. The Viewty also has a front camera, designed for 3G video calling. In addition to being able to view YouTube videos, the LG Viewty also featured the ability to upload videos directly onto the platform. The device supports Flash Lite 2 and MIDP Java 2.0. There are a few built-in system applications like Office and
8991-659: The microSD card has an area of just over 1.5 cm , with a thickness of less than 1 mm. NAND flash has achieved significant levels of memory density as a result of several major technologies that were commercialized during the late 2000s to early 2010s. NOR flash was the most common type of Flash memory sold until 2005, when NAND flash overtook NOR flash in sales. Multi-level cell (MLC) technology stores more than one bit in each memory cell . NEC demonstrated multi-level cell (MLC) technology in 1998, with an 80 Mb flash memory chip storing 2 bits per cell. STMicroelectronics also demonstrated MLC in 2000, with
9102-422: The new data must be copied to a new, erased page. If a suitable erased page is available, the data can be written to it immediately. If no erased page is available, a block must be erased before copying the data to a page in that block. The old page is then marked as invalid and is available for erasing and reuse. This is different from operating system LBA view, for example, if operating system writes 1100 0011 to
9213-414: The next one. Depending on the NAND technology, a string typically consists of 32 to 128 NAND cells. Strings are organised into pages which are then organised into blocks in which each string is connected to a separate line called a bitline. All cells with the same position in the string are connected through the control gates by a wordline. A plane contains a certain number of blocks that are connected through
9324-474: The nitride, leading to degradation. Leakage is exacerbated at high temperatures since electrons become more excited with increasing temperatures. CTF technology however still uses a tunneling oxide and blocking layer which are the weak points of the technology, since they can still be damaged in the usual ways (the tunnel oxide can be degraded due to extremely high electric fields and the blocking layer due to Anode Hot Hole Injection (AHHI). Degradation or wear of
9435-413: The number of bits increases, the number of possible states also increases and thus the cell is less tolerant of adjustments to programming voltages, because there is less space between the voltage levels that define each state in a cell. The process of moving electrons from the control gate and into the floating gate is called Fowler–Nordheim tunneling , and it fundamentally changes the characteristics of
9546-412: The number of remaining photos in free space, postponing the exhaustion of space storage, which is of use where no further data storage device is available and for captures of lower significance, where the benefit from less space storage consumption outweighs the disadvantage from reduced detail. An image's sharpness is presented through the crisp detail, defined lines, and its depicted contrast. Sharpness
9657-516: The other end connected directly to a bit line. This arrangement is called "NOR flash" because it acts like a NOR gate: when one of the word lines (connected to the cell's CG) is brought high, the corresponding storage transistor acts to pull the output bit line low. NOR flash continues to be the technology of choice for embedded applications requiring a discrete non-volatile memory device. The low read latencies characteristic of NOR devices allow for both direct code execution and data storage in
9768-513: The other two positions. The high proportion of green takes advantage of the properties of the human visual system, which determines brightness mostly from green and is far more sensitive to brightness than to hue or saturation. Sometimes a 4-color filter pattern is used, often involving two different hues of green. This provides potentially more accurate color, but requires a slightly more complicated interpolation process. The color intensity values not captured for each pixel can be interpolated from
9879-435: The oxides is the reason why flash memory has limited endurance, and data retention goes down (the potential for data loss increases) with increasing degradation, since the oxides lose their electrically insulating characteristics as they degrade. The oxides must insulate against electrons to prevent them from leaking which would cause data loss. In 1991, NEC researchers including N. Kodama, K. Oyama and Hiroki Shirai described
9990-413: The performance and reliability of the NAND chip, the cell must be retired from use. Endurance also decreases with the number of bits in a cell. With more bits in a cell, the number of possible states (each represented by a different voltage level) in a cell increases and is more sensitive to the voltages used for programming. Voltages may be adjusted to compensate for degradation of the silicon oxide, and as
10101-513: The phone could send up to two images per second over Japan's Personal Handy-phone System (PHS) cellular network . The Samsung SCH-V200, released in South Korea in June 2000, was also one of the first phones with a built-in camera. It had a TFT liquid-crystal display (LCD) and stored up to 20 digital photos at 350,000-pixel resolution. However, it could not send the resulting image over
10212-435: The pixel count is the product of the number of rows and the number of columns. For example, a 1,000 by 1,000-pixel sensor would have 1,000,000 pixels, or 1 megapixel . Firmwares' resolution selector allows the user to optionally lower the resolution to reduce the file size per picture and extend lossless digital zooming . The bottom resolution option is typically 640×480 pixels (0.3 megapixels). A lower resolution extends
10323-403: The pixels, while each pixel in a CMOS active-pixel sensor has its own amplifier. Compared to CCDs, CMOS sensors use less power. Cameras with a small sensor use a back-side-illuminated CMOS (BSI-CMOS) sensor. The image processing capabilities of the camera determine the outcome of the final image quality much more than the sensor type. The resolution of a digital camera is often limited by
10434-444: The planet about 14 times per day. Also in 1972, Thomas McCord from MIT and James Westphal from Caltech together developed a digital camera for use with telescopes . Their 1972 "photometer-digitizer system " used an analog-to-digital converter and a digital frame memory to store 256 x 256-pixel images of planets and stars, which were then recorded on digital magnetic tape. CCD sensors were not yet commercially available, and
10545-544: The relationship between the bit line and the word lines resembles a NAND gate; in NOR flash, it resembles a NOR gate. Flash memory, a type of floating-gate memory, was invented by Fujio Masuoka at Toshiba in 1980 and is based on EEPROM technology. Toshiba began marketing flash memory in 1987. EPROMs had to be erased completely before they could be rewritten. NAND flash memory, however, may be erased, written, and read in blocks (or pages), which generally are much smaller than
10656-459: The relatively thin oxide, gradually degrading its electrically insulating properties and allowing electrons to be trapped in and pass through freely (leak) from the floating gate into the oxide, increasing the likelihood of data loss since the electrons (the quantity of which is used to represent different charge levels, each assigned to a different combination of bits in MLC Flash) are normally in
10767-410: The same bitline. A flash die consists of one or more planes, and the peripheral circuitry that is needed to perform all the read, write, and erase operations. The architecture of NAND flash means that data can be read and programmed (written) in pages, typically between 4 KiB and 16 KiB in size, but can only be erased at the level of entire blocks consisting of multiple pages. When a block is erased, all
10878-407: The same silicon nitride material. An individual memory cell is made up of one planar polysilicon layer containing a hole filled by multiple concentric vertical cylinders. The hole's polysilicon surface acts as the gate electrode. The outermost silicon dioxide cylinder acts as the gate dielectric, enclosing a silicon nitride cylinder that stores charge, in turn enclosing a silicon dioxide cylinder as
10989-424: The strobe flash is replaced by an LED, and it does not include image stabilization nor Schneider Kreuznach optics. The organizer in the phone could only store 100 calendar events and is not officially listed on the compatible list with the popular GooSync, which helps sync phone calendars with Google Calendar (though it does work by using instructions for LG Arena). The KU990 was the original Viewty model. The KE990
11100-634: The telephone function but required a computer connection to access photos. The first mass-market camera phone was the J-SH04 , a Sharp J-Phone model sold in Japan in November 2000. It could instantly transmit pictures via cell phone telecommunication. By the mid-2000s, higher-end cell phones had an integrated digital camera, and by the early 2010s, almost all smartphones had an integrated digital camera. The two major types of digital image sensors are CCD and CMOS. A CCD sensor has one amplifier for all
11211-418: The tunnel dielectric that surrounds a central rod of conducting polysilicon which acts as the conducting channel. Memory cells in different vertical layers do not interfere with each other, as the charges cannot move vertically through the silicon nitride storage medium, and the electric fields associated with the gates are closely confined within each layer. The vertical collection is electrically identical to
11322-636: The two phones were used as an explanation. In January 2009, LG reported that the Viewty had sold 5 million units after 14 months on the market. It was succeeded by the LG Renoir in 2008. A number of newer Viewty phones were then released: the Viewty Smart (GC900) in 2009, which was similar to the LG Arena but with improved camera capabilities, and two budget phones in 2010—the Viewty Snap and
11433-418: The user. Some also have manual controls. Compact digital cameras typically contain a small sensor that trades-off picture quality for compactness and simplicity; images can usually only be stored using lossy compression (JPEG). Most have a built-in flash usually of low power, sufficient for nearby subjects. A few high-end compact digital cameras have a hotshoe for connecting to an external flash. Live preview
11544-421: The values of adjacent pixels which represent the color being calculated. Cameras with digital image sensors that are smaller than the typical 35 mm film size have a smaller field or angle of view when used with a lens of the same focal length . This is because the angle of view is a function of both focal length and the sensor or film size used. The crop factor is relative to the 35mm film format . If
11655-636: The whole camera. A digital rotating line camera offers images consisting of a total resolution that is very high. The choice of method for a given capture is determined largely by the subject matter. It is usually inappropriate to attempt to capture a subject that moves with anything but a single-shot system. However, the higher color fidelity and larger file sizes and resolutions that are available with multi-shot and scanning backs make them more attractive for commercial photographers who are working with stationary subjects and large-format photographs. Improvements in single-shot cameras and image file processing at
11766-436: Was a modified MOS dynamic RAM ( DRAM ) memory chip . Steven Sasson , an engineer at Eastman Kodak , built a self-contained electronic camera that used a monochrome Fairchild CCD image sensor in 1975. Around the same time, Fujifilm began developing CCD technology in the 1970s. Early uses were mainly military and scientific, followed by medical and news applications. The first filmless SLR (single lens reflex) camera
11877-417: Was first announced by Toshiba in 2007. V-NAND was first commercially manufactured by Samsung Electronics in 2013. V-NAND uses a charge trap flash geometry (which was commercially introduced in 2002 by AMD and Fujitsu ) that stores charge on an embedded silicon nitride film. Such a film is more robust against point defects and can be made thicker to hold larger numbers of electrons. V-NAND wraps
11988-453: Was originally to use a single image sensor with three filters passed in front of the sensor in sequence to obtain the additive color information. Another multiple-shot method is called microscanning . This method uses a single sensor chip with a Bayer filter and physically moves the sensor on the focus plane of the lens to construct a higher resolution image than the native resolution of the chip. A third version combines these two methods without
12099-468: Was publicly demonstrated by Sony in August 1981. The Sony "Mavica" (magnetic still video camera ) used a color-striped 2/3" format CCD sensor with 280K pixels, along with analogue video signal processing and recording. The Mavica electronic still camera recorded FM-modulated analog video signals on a newly developed 2" magnetic floppy disk, dubbed the "Mavipak". The disk format was later standardized as
12210-410: Was released in 2008 and lacks 3G ( HSDPA ) support, but does have a camera cover. In South Korea its model numbers were LG SH10/KH2100/LH2100. Mobile Phones UK praised the device, calling it a "souped-up Prada" and commenting that the Viewty "ticks all the boxes" in terms of features. TechRadar in its review wrote that the device was stylish and praised its camera and HSDPA connection, but criticised
12321-559: Was the charge-coupled device (CCD), invented by Willard S. Boyle and George E. Smith at Bell Labs in 1969, based on MOS capacitor technology. The NMOS active-pixel sensor was later invented by Tsutomu Nakamura 's team at Olympus in 1985, which led to the development of the CMOS active-pixel sensor (CMOS sensor) at the NASA Jet Propulsion Laboratory in 1993. In the 1960s, Eugene F. Lally of
#759240