A multistage rocket or step rocket is a launch vehicle that uses two or more rocket stages , each of which contains its own engines and propellant . A tandem or serial stage is mounted on top of another stage; a parallel stage is attached alongside another stage. The result is effectively two or more rockets stacked on top of or attached next to each other. Two-stage rockets are quite common, but rockets with as many as five separate stages have been successfully launched.
146-712: The Launch Vehicle Mark-3 or LVM3 (previously referred as the Geosynchronous Satellite Launch Vehicle Mark III or GSLV Mk III ) is a three-stage medium-lift launch vehicle developed by the Indian Space Research Organisation (ISRO). Primarily designed to launch communication satellites into geostationary orbit , it is also due to launch crewed missions under the Indian Human Spaceflight Programme . LVM3 has
292-660: A C-Band transponder that allows radar tracking and preliminary orbit determination are also mounted on the C25. The communications link is also used for range safety and flight termination that uses a dedicated system that is located on all stages of the vehicle and features separate avionics. The first static fire test of the C25 cryogenic stage was conducted on 25 January 2017 at the ISRO Propulsion Complex (IPRC) facility at Mahendragiri, Tamil Nadu. The stage fired for
438-534: A request for qualification (RFQ), inviting responses from private partners for the large-scale production of LVM-3. Plans call for a 14-year partnership between ISRO and the chosen commercial entity. The private partner is expected to be able to produce four to six LVM3 rockets annually over the following twelve years, with the first two years serving as the "development phase" for the transfer of technology and know-how. The first stage consists of two S200 solid motors, also known as Large Solid Boosters (LSB) attached to
584-778: A Quad-redundant Navigation and Guidance Computer (NGC), Dual chain Telemetry & Telecommand Processor (TTCP) and an Integrated Health Monitoring System (LVHM). The launch vehicle will have the High Thrust Vikas engines (HTVE) of L110 core stage operating at a chamber pressure of 58.5 bar instead of 62 bar. Human rated S200 (HS200) boosters will operate at chamber pressure of 55.5 bar instead of 58.8 bar and its segment joints will have three O-rings each. Electro mechanical actuators and digital stage controllers will be employed in HS200, L110 and C25 stages. The L110 core stage in
730-479: A capacity of 5,755 kg (12,688 lb) of fuel, and a volume of 89 m (3,100 cu ft). On 9 November 2022, CE-20 cryogenic engine of upper stage was tested with an uprated thrust regime of 21.8 tonnes in November 2022. Along a suitable stage with additional propellant loading this could increase payload capacity of LVM3 to GTO by up to 450 kg (990 lb). On 23 December 2022, CE-20 engine E9
876-536: A core stage but carried dummy upper stage whose LOX and LH₂ tanks were filled with LN₂ and GN₂ respectively for simulating weight. It also carried the Crew Module Atmospheric Re-entry Experiment (CARE) that was tested on re-entry . Just over five minutes into the flight, the rocket ejected CARE at an altitude of 126 kilometres (78 mi), which then descended, controlled by its onboard reaction control system . During
1022-417: A crane. This is generally not practical for larger space vehicles, which are assembled off the pad and moved into place on the launch site by various methods. NASA's Apollo / Saturn V crewed Moon landing vehicle, and Space Shuttle , were assembled vertically onto mobile launcher platforms with attached launch umbilical towers, in a Vehicle Assembly Building , and then a special crawler-transporter moved
1168-510: A dragon's head with an open mouth. The British scientist and historian Joseph Needham points out that the written material and depicted illustration of this rocket come from the oldest stratum of the Huolongjing , which can be dated roughly 1300–1350 AD (from the book's part 1, chapter 3, page 23). Another example of an early multistaged rocket is the Juhwa (走火) of Korean development. It
1314-424: A duration of 50 seconds and performed nominally. A second static fire test for the full in-flight duration of 640 seconds was completed on 17 February 2017. This test demonstrated consistency in engine performance along with its sub-systems, including the thrust chamber, gas generator, turbopumps and control components for the full duration. The CFRP composite payload fairing has a diameter of 5 metres (16 ft),
1460-429: A five-year period. The LVM3 has launched CARE , India's space capsule recovery experiment module, Chandrayaan-2 and Chandrayaan-3 , India's second and third lunar missions, and will be used to carry Gaganyaan , the first crewed mission under Indian Human Spaceflight Programme. In March 2022, UK-based global communication satellite provider OneWeb entered into an agreement with ISRO to launch OneWeb satellites aboard
1606-514: A gearbox. The waste gas, now cooler and at low pressure, was passed back over the gas generator housing to cool it before being dumped overboard. The gearbox drove the fuel pump, its own lubrication pump, and the HPU hydraulic pump. A startup bypass line went around the pump and fed the gas generator using the nitrogen tank pressure until the APU speed was such that the fuel pump outlet pressure exceeded that of
SECTION 10
#17327944514491752-476: A height of 10.75 metres (35.3 ft) and a payload volume of 110 cubic metres (3,900 cu ft). It is manufactured by Coimbatore-based LMW Advanced Technology Centre . After the first flight of the rocket with CARE module, the payload fairing was modified to an ogive shape, and the S200 booster nose cones and inter-tank structure were redesigned to have better aerodynamic performance. The vehicle features
1898-408: A higher cost for deployment. Hot-staging is a type of rocket staging in which the next stage fires its engines before separation instead of after. During hot-staging, the earlier stage throttles down its engines. Hot-staging may reduce the complexity of stage separation, and gives a small extra payload capacity to the booster. It also eliminates the need for ullage motors , as the acceleration from
2044-686: A higher payload capacity than its predecessor, GSLV . After several delays and a sub-orbital test flight on 18 December 2014, ISRO successfully conducted the first orbital test launch of LVM3 on 5 June 2017 from the Satish Dhawan Space Centre . Total development cost of project was ₹ 2,962.78 crore (equivalent to ₹ 45 billion or US$ 540 million in 2023). In June 2018, the Union Cabinet approved ₹ 4,338 crore (equivalent to ₹ 58 billion or US$ 700 million in 2023) to build 10 LVM3 rockets over
2190-415: A higher specific impulse means a more efficient rocket engine, capable of burning for longer periods of time. In terms of staging, the initial rocket stages usually have a lower specific impulse rating, trading efficiency for superior thrust in order to quickly push the rocket into higher altitudes. Later stages of the rocket usually have a higher specific impulse rating because the vehicle is further outside
2336-502: A hydraulic pump that produced hydraulic pressure for the SRB hydraulic system. The two separate HPUs and two hydraulic systems were located on the aft end of each SRB between the SRB nozzle and aft skirt. The HPU components were mounted on the aft skirt between the rock and tilt actuators. The two systems operated from T minus 28 seconds until SRB separation from the orbiter and external tank. The two independent hydraulic systems were connected to
2482-417: A large fairing with a five-meter diameter to provide sufficient space even to large satellites and spacecraft. Separation of fairing in a nominal flight scenario occurs at approximately T+253 seconds and is accomplished by a linear piston cylinder separation and jettisoning mechanism (zip cord) spanning full length of PLF which is pyrotechnically initiated. The gas pressure generated by the zip cord expands
2628-571: A launch hold. Electrical power distribution in each SRB consisted of orbiter-supplied main DC bus power to each SRB via SRB buses labeled A, B and C. Orbiter main DC buses A, B and C supplied main DC bus power to corresponding SRB buses A, B and C. In addition, orbiter main DC bus C supplied backup power to SRB buses A and B, and orbiter bus B supplied backup power to SRB bus C. This electrical power distribution arrangement allowed all SRB buses to remain powered in
2774-442: A liftoff thrust of approximately 2,800,000 pounds-force (12 MN ) at sea level, increasing shortly after liftoff to about 3,300,000 lbf (15 MN). They were ignited after the three RS-25 main engines' thrust level was verified. Seventy-five seconds after SRB separation, SRB apogee occurred at an altitude of approximately 220,000 ft (42 mi; 67 km); parachutes were then deployed and impact occurred in
2920-453: A limitation imposed by the laws of physics on the velocity change achievable by a rocket stage. The limit depends on the fueled-to-dry mass ratio and on the effective exhaust velocity of the engine. This relation is given by the classical rocket equation : where: The delta v required to reach low Earth orbit (or the required velocity of a sufficiently heavy suborbital payload) requires a wet to dry mass ratio larger than has been achieved in
3066-483: A manual lock pin from each SRB safe and arm device has been removed. The ground crew removes the pin during prelaunch activities. At T−5:00, the SRB safe and arm device is rotated to the arm position. The solid rocket motor ignition commands are issued when the three Space Shuttle Main Engines (SSMEs) are at or above 90% of rated thrust, no SSME fail and/or SRB ignition Pyrotechnic Initiator Controller (PIC) low voltage
SECTION 20
#17327944514493212-441: A mission is the burn time, which is the amount of time the rocket engine will last before it has exhausted all of its propellant. For most non-final stages, thrust and specific impulse can be assumed constant, which allows the equation for burn time to be written as: Where m 0 {\displaystyle m_{\mathrm {0} }} and m f {\displaystyle m_{\mathrm {f} }} are
3358-472: A multistage rocket introduces additional risk into the success of the launch mission. Reducing the number of separation events results in a reduction in complexity . Separation events occur when stages or strap-on boosters separate after use, when the payload fairing separates prior to orbital insertion, or when used, a launch escape system which separates after the early phase of a launch. Pyrotechnic fasteners , or in some cases pneumatic systems like on
3504-694: A parking orbit of 170 x 36,500 km. On 15 November 2023, the Cryogenic Upper Stage ( C25 ) of the LVM3 M4 ( NORAD ID: 57321) made an uncontrolled re-entry into the Earth's atmosphere around 9:12 UTC. The impact point is predicted over the North Pacific Ocean and the final ground track did not pass over India. On 21 March 2022, OneWeb announced that it had signed a launch agreement with United States launch provider SpaceX to launch
3650-440: A predetermined time, an isolating valve would be selected, excluding it from the force-sum entirely. Failure monitors were provided for each channel to indicate which channel had been bypassed, and the isolation valve on each channel could be reset. Each actuator ram was equipped with transducers for position feedback to the thrust vector control system. Within each servoactuator ram was a splashdown load relief assembly to cushion
3796-654: A rocket or part of it with on-board explosives by remote command if the rocket is out of control, in order to limit the danger to people on the ground from crashing pieces, explosions, fire, poisonous substances, etc. The RSS was only activated once – during the Space Shuttle Challenger disaster (37 seconds after the breakup of the vehicle, when the SRBs were in uncontrolled flight). The shuttle vehicle had two RSS, one in each SRB. Both were capable of receiving two command messages (arm and fire) transmitted from
3942-466: A rocket system will be when performing optimizations and comparing varying configurations for a mission. For initial sizing, the rocket equations can be used to derive the amount of propellant needed for the rocket based on the specific impulse of the engine and the total impulse required in N·s. The equation is: where g is the gravity constant of Earth. This also enables the volume of storage required for
4088-481: A rubber below that pushes the piston and cylinder apart and thereby pushing the payload fairing halves laterally away from the launcher. The fairing is made of Aluminum alloy featuring acoustic absorption blankets. While the LVM3 is being human rated for Gaganyaan project, the rocket was always designed with potential human spaceflight applications in consideration. The maximum acceleration during ascent phase of flight
4234-402: A single rocket stage. The multistage rocket overcomes this limit by splitting the delta-v into fractions. As each lower stage drops off and the succeeding stage fires, the rest of the rocket is still traveling near the burnout speed. Each lower stage's dry mass includes the propellant in the upper stages, and each succeeding upper stage has reduced its dry mass by discarding the useless dry mass of
4380-478: A specific energy density of about 31.0 MJ/kg . The propellant had an 11-pointed star-shaped perforation in the forward motor segment and a double-truncated- cone perforation in each of the aft segments and aft closure. This configuration provided high thrust at ignition and then reduced the thrust by approximately a third 50 seconds after lift-off to avoid overstressing the vehicle during maximum dynamic pressure (max. Q). SRB ignition can occur only when
4526-478: A switching valve that allowed the hydraulic power to be distributed from either HPU to both actuators if necessary. Each HPU served as the primary hydraulic source for one servoactuator, and a secondary source for the other servoactuator. Each HPU possessed the capacity to provide hydraulic power to both servoactuators within 115% operational limits in the event that hydraulic pressure from the other HPU should drop below 2,050 psi (14.1 MPa). A switch contact on
LVM3 - Misplaced Pages Continue
4672-754: A switchover was made from the SRB RGAs to the orbiter RGAs. The SRB RGA rates passed through the orbiter flight aft multiplexers/demultiplexers to the orbiter GPCs. The RGA rates were then mid-value-selected in redundancy management to provide SRB pitch and yaw rates to the user software. The RGAs were designed for 20 missions. Made out of 2-cm-thick D6AC high-strength low-alloy steel . The rocket propellant mixture in each solid rocket motor consisted of ammonium perchlorate ( oxidizer , 69.6% by weight), atomized aluminum powder ( fuel , 16%), iron oxide ( catalyst , 0.4%), PBAN (binder, also acts as fuel, 12.04%), and an epoxy curing agent (1.96%). This propellant
4818-399: A technical algorithm that generates an analytical solution that can be implemented by a program, or simple trial and error. For the trial and error approach, it is best to begin with the final stage, calculating the initial mass which becomes the payload for the previous stage. From there it is easy to progress all the way down to the initial stage in the same manner, sizing all the stages of
4964-448: A total of 5796 kg was launched onboard LVM3 M2 rocket codenamed OneWeb India-1 Mission on 22 October 2022 and the satellites were injected to a low earth orbit of 601 km altitude and 87.4° inclination on a sequential basis. This constituted the first commercial mission and the first multi-satellite mission to low earth orbit of the rocket, marking its entry to global commercial launch service market. The separation of satellites involved
5110-499: A total thrust of 1,532 kilonewtons (344,000 lb f ). The L110 is the first clustered liquid-fueled engine designed in India. The Vikas engines uses regenerative cooling , providing improved weight and specific impulse compared to earlier Indian rockets. Each Vikas engine can be individually gimbaled to control vehicle pitch, yaw and roll control. The L110 core stage ignites 114 seconds after liftoff and burns for 203 seconds. Since
5256-464: A unique maneuver of the cryogenic stage to undergo several re-orientation and velocity additions covering 9 phases spanning 75 minutes. On 26 March 2023, codenamed OneWeb India-2 Mission, the second batch of 36 satellites was launched onboard LVM3 M3 and injected to an altitude of 450 km with same inclination. The launch featured a white cryogenic stage which takes into account environmental-friendly manufacturing processes, better insulation properties and
5402-431: Is a commonly used rocket system to attain Earth orbit. The spacecraft uses three distinct stages to provide propulsion consecutively in order to achieve orbital velocity. It is intermediate between a four-stage-to-orbit launcher and a two-stage-to-orbit launcher. Other designs (in fact, most modern medium- to heavy-lift designs) do not have all three stages inline on the main stack, instead having strap-on boosters for
5548-415: Is a safe and reasonable assumption to say that 91 to 94 percent of the total mass is fuel. It is also important to note there is a small percentage of "residual" propellant that will be left stuck and unusable inside the tank, and should also be taken into consideration when determining amount of fuel for the rocket. A common initial estimate for this residual propellant is five percent. With this ratio and
5694-474: Is commonly referred to as ammonium perchlorate composite propellant (APCP). This mixture gave the solid rocket motors a specific impulse of 242 seconds (2.37 km/s) at sea level or 268 seconds (2.63 km/s) in a vacuum. Upon ignition, the motor burned the fuel at a nominal chamber pressure of 906.8 psi (6.252 MPa). Aluminum was chosen as a propellant due to high volumetric energy density, and its resilience to accidental ignition. Aluminum has
5840-706: Is expected to be the backbone of the Indian Human Spaceflight program. However, ISRO has clarified that the semi-cryogenic stage shall not be part of the Gaganyaan program till after all developmental flights of LVM3-SC are completed and validated. The maiden flight of the LVM3 lifted off from the Second Launch Pad at the Satish Dhawan Space Center on 18 December 2014 at 04:00 UTC. The test had functional boosters,
5986-453: Is generally assembled at its manufacturing site and shipped to the launch site; the term vehicle assembly refers to the mating of all rocket stage(s) and the spacecraft payload into a single assembly known as a space vehicle . Single-stage vehicles ( suborbital ), and multistage vehicles on the smaller end of the size range, can usually be assembled directly on the launch pad by lifting the stage(s) and spacecraft vertically in place by means of
LVM3 - Misplaced Pages Continue
6132-400: Is held for four seconds, and SRB thrust drops to less than 60,000 lbf (270 kN). The SRBs separate from the external tank within 30 milliseconds of the ordnance firing command. The forward attachment point consists of a ball (SRB) and socket (External Tank; ET) held together by one bolt. The bolt contains one NSD pressure cartridge at each end. The forward attachment point also carries
6278-577: Is impractical to directly compare the rocket's certain trait with the same trait of another because their individual attributes are often not independent of one another. For this reason, dimensionless ratios have been designed to enable a more meaningful comparison between rockets. The first is the initial to final mass ratio, which is the ratio between the rocket stage's full initial mass and the rocket stage's final mass once all of its fuel has been consumed. The equation for this ratio is: Where m E {\displaystyle m_{\mathrm {E} }}
6424-574: Is indicated and there are no holds from the Launch Processing System (LPS). The solid rocket motor ignition commands are sent by the orbiter computers through the Master Events Controllers (MECs) to the safe and arm device NASA standard detonators (NSDs) in each SRB. A PIC single-channel capacitor discharge device controls the firing of each pyrotechnic device. Three signals must be present simultaneously for
6570-428: Is intermediate between a five-stage-to-orbit launcher and a three-stage-to-orbit launcher, most often used with solid-propellant launch systems. Other designs do not have all four stages inline on the main stack, instead having strap-on boosters for the "stage-0" with three core stages. In these designs, the boosters and first stage fire simultaneously instead of consecutively, providing extra initial thrust to lift
6716-434: Is less than or equal to 50 psi (340 kPa). A backup cue is the time elapsed from booster ignition. The separation sequence is initiated, commanding the thrust vector control actuators to the null position and putting the main propulsion system into a second-stage configuration (0.8 seconds from sequence initialization), which ensures the thrust of each SRB is less than 100,000 lbf (440 kN). Orbiter yaw attitude
6862-453: Is powered by a single CE-20 engine, producing 200 kN (45,000 lb f ) of thrust. CE-20 is the first cryogenic engine developed by India which uses a gas generator , as compared to the staged combustion engines used in GSLV. In LVM3-M3 mission, a new white coloured C25 stage was introduced which has more environmental-friendly manufacturing processes, better insulation properties and
7008-427: Is repeated until the desired final velocity is achieved. In some cases with serial staging, the upper stage ignites before the separation—the interstage ring is designed with this in mind, and the thrust is used to help positively separate the two vehicles. Only multistage rockets have reached orbital speed . Single-stage-to-orbit designs are sought, but have not yet been demonstrated. Multi-stage rockets overcome
7154-461: Is stored in an externally mounted cylindrical tank at the base of each booster. These boosters burn for 130 seconds and produce an average thrust of 3,578.2 kilonewtons (804,400 lb f ) and a peak thrust of 5,150 kilonewtons (1,160,000 lb f ) each. The simultaneous separation from core stage occurs at T+149 seconds in a normal flight and is initiated using pyrotechnic separation devices and six small solid-fueled jettison motors located in
7300-514: Is the empty mass of the stage, m p {\displaystyle m_{\mathrm {p} }} is the mass of the propellant, and m P L {\displaystyle m_{\mathrm {PL} }} is the mass of the payload. The second dimensionless performance quantity is the structural ratio, which is the ratio between the empty mass of the stage, and the combined empty mass and propellant mass as shown in this equation: The last major dimensionless performance quantity
7446-619: Is the largest solid-fuel booster after the SLS SRBs , the Space Shuttle SRBs and the Ariane 5 SRBs . The flex nozzles can be vectored up to ±8° by electro-hydraulic actuators with a capacity of 294 kilonewtons (66,000 lb f ) using hydro-pneumatic pistons operating in blow-down mode by high pressure oil and nitrogen. They are used for vehicle control during the initial ascent phase. Hydraulic fluid for operating these actuators
SECTION 50
#17327944514497592-402: Is the mass of the oxidizer and m f u e l {\displaystyle m_{\mathrm {fuel} }} is the mass of the fuel. This mixture ratio not only governs the size of each tank, but also the specific impulse of the rocket. Determining the ideal mixture ratio is a balance of compromises between various aspects of the rocket being designed, and can vary depending on
7738-455: Is the payload ratio, which is the ratio between the payload mass and the combined mass of the empty rocket stage and the propellant: After comparing the three equations for the dimensionless quantities, it is easy to see that they are not independent of each other, and in fact, the initial to final mass ratio can be rewritten in terms of structural ratio and payload ratio: These performance ratios can also be used as references for how efficient
7884-457: The Andaman and Nicobar Islands and was recovered successfully. Following the failure of Phobos-Grunt mission of Roscosmos , it resulted in a complete review of technical aspects connected with the spacecraft, which were also slotted to be used in the proposed Russian lander for Chandrayaan-2 . This delayed the lander from Russia and eventually Roscosmos declared its inability to meet up with
8030-480: The Falcon 9 Full Thrust , are typically used to separate rocket stages. A two-stage-to-orbit ( TSTO ) or two-stage rocket launch vehicle is a spacecraft in which two distinct stages provide propulsion consecutively in order to achieve orbital velocity. It is intermediate between a three-stage-to-orbit launcher and a hypothetical single-stage-to-orbit (SSTO) launcher. The three-stage-to-orbit launch system
8176-734: The RTV-G-4 Bumper rockets tested at the White Sands Proving Ground and later at Cape Canaveral from 1948 to 1950. These consisted of a V-2 rocket and a WAC Corporal sounding rocket. The greatest altitude ever reached was 393 km, attained on February 24, 1949, at White Sands. In 1947, the Soviet rocket engineer and scientist Mikhail Tikhonravov developed a theory of parallel stages, which he called "packet rockets". In his scheme, three parallel stages were fired from liftoff , but all three engines were fueled from
8322-509: The Singijeon , or 'magical machine arrows' in the 16th century. The earliest experiments with multistage rockets in Europe were made in 1551 by Austrian Conrad Haas (1509–1576), the arsenal master of the town of Hermannstadt , Transylvania (now Sibiu/Hermannstadt, Romania). This concept was developed independently by at least five individuals: The first high-speed multistage rockets were
8468-490: The Soviet and U.S. space programs, were not passivated after mission completion. During the initial attempts to characterize the space debris problem, it became evident that a good proportion of all debris was due to the breaking up of rocket upper stages, particularly unpassivated upper-stage propulsion units. An illustration and description in the 14th century Chinese Huolongjing by Jiao Yu and Liu Bowen shows
8614-577: The Space Shuttle 's thrust at liftoff and for the first two minutes of ascent. After burnout, they were jettisoned, and parachuted into the Atlantic Ocean, where they were recovered , examined, refurbished, and reused . The Space Shuttle SRBs were the most powerful solid rocket motors to ever launch humans. The Space Launch System (SLS) SRBs, adapted from the shuttle, surpassed it as the most powerful solid rocket motors ever flown, after
8760-523: The "stage-0" with two core stages. In these designs, the boosters and first stage fire simultaneously instead of consecutively, providing extra initial thrust to lift the full launcher weight and overcome gravity losses and atmospheric drag. The boosters are jettisoned a few minutes into flight to reduce weight. The four-stage-to-orbit launch system is a rocket system used to attain Earth orbit. The spacecraft uses four distinct stages to provide propulsion consecutively in order to achieve orbital velocity. It
8906-485: The L110 stage is air-lit, its engines need shielding during flight from the exhaust of the operating S200 boosters and reverse flow of gases by a 'nozzle closure system' which gets jettisoned prior to L110 ignition. ISRO conducted the first static test of the L110 core stage at its Liquid Propulsion Systems Centre (LPSC) test facility at Mahendragiri , Tamil Nadu on 5 March 2010. The test was planned to last 200 seconds, but
SECTION 60
#17327944514499052-669: The LVM3 along with the PSLV , due to the launch services from Roscosmos being cut off, caused by the Russian invasion of Ukraine . The first launch took place on 22 October 2022, injecting 36 satellites into Low Earth orbit . ISRO initially planned two launcher families, the Polar Satellite Launch Vehicle for low Earth orbit and polar launches and the larger Geosynchronous Satellite Launch Vehicle for payloads to geostationary transfer orbit (GTO). The vehicle
9198-594: The LVM3 is planned to be replaced by the SC120, a kerolox stage powered by the SCE-200 engine to increase its payload capacity to 7.5 metric tons (17,000 lb) to geostationary transfer orbit (GTO). The SCE-200 uses kerosene instead of unsymmetrical dimethylhydrazine (UDMH) as fuel and has a thrust of around 200 tonnes. Four such engines can be clustered in a rocket without strap on boosters to deliver up to 10 tonnes (22,000 lb) to GTO. The first propellant tank for
9344-567: The PIC to generate the pyro firing output. These signals, arm, fire 1 and fire 2, originate in the orbiter general-purpose computers (GPCs) and are transmitted to the MECs. The MECs reformat them to 28 volt DC signals for the PICs. The arm signal charges the PIC capacitor to 40 volts DC (minimum of 20 volts DC). The GPC launch sequence also controls certain critical main propulsion system valves and monitors
9490-538: The SC120 was delivered in October 2021 by HAL. The SC120 powered version of LVM3 will not be used for the crewed mission of the Gaganyaan spacecraft. In September 2019, in an interview by AstrotalkUK, S. Somanath , director of Vikram Sarabhai Space Centre claimed that the SCE-200 engine was ready to begin testing. As per an agreement between India and Ukraine signed in 2005, Ukraine was expected to test components of
9636-826: The SCE-200 engine, so an upgraded version of the LVM3 was not expected before 2022. The SCE-200 engine is reported to be based on the Ukrainian RD-810 , which itself is proposed for use on the Mayak family of launch vehicles. The C25 stage with nearly 25 t (55,000 lb) propellant load will be replaced by the C32, with a higher propellant load of 32 t (71,000 lb). The C32 stage will be re-startable and with uprated CE-20 engine. Total mass of avionics will be brought down by using miniaturised components. On 30 November 2020, Hindustan Aeronautics Limited delivered an aluminium alloy based cryogenic tank to ISRO. The tank has
9782-424: The SRB. The solid rocket motor ignition commands were issued by the orbiter's computers through the master events controllers to the hold-down pyrotechnic initiator controllers (PICs) on the mobile launcher platform . They provided the ignition to the hold-down NSDs. The launch processing system monitored the SRB hold-down PICs for low voltage during the last 16 seconds before launch. PIC low voltage would initiate
9928-486: The SRBs from the external tank. The solid rocket motors in each cluster of four are ignited by firing redundant NSD pressure cartridges into redundant confined detonating fuse manifolds. The separation commands issued from the orbiter by the SRB separation sequence initiate the redundant NSD pressure cartridge in each bolt and ignite the BSMs to effect a clean separation. A range safety system (RSS) provides for destruction of
10074-449: The SRBs were manufactured by Thiokol of Brigham City, Utah , which was later purchased by ATK . The prime contractor for most other components of the SRBs, as well as for the integration of all the components and retrieval of the spent SRBs, was USBI, a subsidiary of Pratt & Whitney . The contract was subsequently transitioned to United Space Alliance , a joint venture of Boeing and Lockheed Martin . Out of 270 SRBs launched over
10220-527: The Shuttle program, all but four were recovered – those from STS-4 (due to a parachute malfunction) and STS-51-L ( terminated by the range during the Challenger disaster ). Over 5,000 parts were refurbished for reuse after each flight. The final set of SRBs that launched STS-135 included parts that had flown on 59 previous missions, including STS-1 . Recovery also allowed post-flight examination of
10366-462: The atmosphere and the exhaust gas does not need to expand against as much atmospheric pressure. When selecting the ideal rocket engine to use as an initial stage for a launch vehicle, a useful performance metric to examine is the thrust-to-weight ratio, and is calculated by the equation: The common thrust-to-weight ratio of a launch vehicle is within the range of 1.3 to 2.0. Another performance metric to keep in mind when designing each rocket stage in
10512-444: The boosters, identification of anomalies, and incremental design improvements. The two reusable SRBs provided the main thrust to lift the shuttle off the launch pad and up to an altitude of about 150,000 ft (28 mi; 46 km). While on the pad, the two SRBs carried the entire weight of the external tank and orbiter and transmitted the weight load through their structure to the mobile launcher platform . Each booster had
10658-401: The breakup of a single upper stage while in orbit. After the 1990s, spent upper stages are generally passivated after their use as a launch vehicle is complete in order to minimize risks while the stage remains derelict in orbit . Passivation means removing any sources of stored energy remaining on the vehicle, as by dumping fuel or discharging batteries. Many early upper stages, in both
10804-423: The bypass line, at which point all the fuel was supplied to the fuel pump. When the APU speed reached 100%, the APU primary control valve closed, and the APU speed was controlled by the APU controller electronics. If the primary control valve logic failed to the open state, the secondary control valve assumed control of the APU at 112% speed. Each HPU on an SRB was connected to both servoactuators on that SRB by
10950-489: The commands to each servoactuator of the main engines and SRBs. Four independent flight control system channels and four ATVC channels controlled six main engine and four SRB ATVC drivers, with each driver controlling one hydraulic port on each main and SRB servoactuator. Each SRB servoactuator consisted of four independent, two-stage servovalves that received signals from the drivers. Each servovalve controlled one power spool in each actuator, which positioned an actuator ram and
11096-424: The core stage. Each booster is 3.2 metres (10 ft) wide, 25 metres (82 ft) long, and carries 207 tonnes (456,000 lb) of hydroxyl-terminated polybutadiene (HTPB) based propellant in three segments with casings made out of M250 maraging steel . The head-end segment contains 27,100 kg of propellant, the middle segment contains 97,380 kg and the nozzle-end segment is loaded with 82,210 kg of propellants. It
11242-547: The cryogenic upper stage, delayed the LVM3 development program. The LVM3, while sharing a name with the GSLV, features different systems and components. To manufacture the LVM3 in public–private partnership (PPP) mode, ISRO and NewSpace India Limited (NSIL) have started working on the project. To investigate possible PPP partnership opportunities for LVM3 production through the Indian private sector, NSIL has hired IIFCL Projects Limited (IPL). On Friday 10th May 2024, NSIL released
11388-419: The different stages of the rocket should be clearly defined. Continuing with the previous example, the end of the first stage which is sometimes referred to as 'stage 0', can be defined as when the side boosters separate from the main rocket. From there, the final mass of stage one can be considered the sum of the empty mass of stage one, the mass of stage two (the main rocket and the remaining unburned fuel) and
11534-404: The drawbacks of a less efficient specific impulse rating. But suppose the defining constraint for the launch system is volume, and a low density fuel is required such as hydrogen. This example would be solved by using an oxidizer-rich mixture ratio, reducing efficiency and specific impulse rating, but will meet a smaller tank volume requirement. The ultimate goal of optimal staging is to maximize
11680-400: The end of the rocket stage's motion, as the vehicle will still have a velocity that will allow it to coast upward for a brief amount of time until the acceleration of the planet's gravity gradually changes it to a downward direction. The velocity and altitude of the rocket after burnout can be easily modeled using the basic physics equations of motion. When comparing one rocket with another, it
11826-511: The engine ready indications from the SSMEs. The MPS start commands are issued by the onboard computers at T−6.6 seconds (staggered start engine three, engine two, engine one all approximately within 0.25 of a second), and the sequence monitors the thrust buildup of each engine. All three SSMEs must reach the required 90% thrust within three seconds; otherwise, an orderly shutdown is commanded and safing functions are initiated. Normal thrust buildup to
11972-598: The entire vehicle stack to the launch pad in an upright position. In contrast, vehicles such as the Russian Soyuz rocket and the SpaceX Falcon 9 are assembled horizontally in a processing hangar, transported horizontally, and then brought upright at the pad. Spent upper stages of launch vehicles are a significant source of space debris remaining in orbit in a non-operational state for many years after use, and occasionally, large debris fields created from
12118-411: The equations for determining the burnout velocities, burnout times, burnout altitudes, and mass of each stage. This would make for a better approach to a conceptual design in a situation where a basic understanding of the system behavior is preferential to a detailed, accurate design. One important concept to understand when undergoing restricted rocket staging, is how the burnout velocity is affected by
12264-474: The event one orbiter main bus failed. The nominal operating voltage was 28 ± 4 volts DC. There were two self-contained, independent Hydraulic Power Units (HPUs) on each SRB, used to actuate the thrust vector control (TVC) system. Each HPU consisted of an auxiliary power unit (APU), fuel supply module, hydraulic pump , hydraulic reservoir and hydraulic fluid manifold assembly. The APUs were fueled by hydrazine and generated mechanical shaft power to drive
12410-404: The first operational flight of LVM3 after two developmental flights. The apogee of the earth parking orbit is about 6,000 km more than originally envisaged and thereby eliminated one of the seven earth-bound orbit raising manoeuvres. It was attributed to a 15 percentage increase in rocket performance. On 14 July 2023, the LVM3 M4 rocket successfully injected the 3900 kg Chandrayaan-3 composite to
12556-486: The first stage of the American Atlas I and Atlas II launch vehicles, arranged in a row, used parallel staging in a similar way: the outer pair of booster engines existed as a jettisonable pair which would, after they shut down, drop away with the lowermost outer skirt structure, leaving the central sustainer engine to complete the first stage's engine burn towards apogee or orbit. Separation of each portion of
12702-401: The flight deck aboard the orbiter), as the flight reference computers translate navigation commands (steering to a particular waypoint in space, and at a particular time) into engine and motor nozzle gimbal commands, which orient the vehicle about its center of mass. As the forces on the vehicle change due to propellant consumption, increasing speed, changes in aerodynamic drag, and other factors,
12848-476: The flight stack (orbiter, external tank, SRBs) over onto the external tank. That rotating moment is initially countered by the hold-bolts. Prior to release of the vehicle stack for liftoff, the SRBs must simultaneously ignite and pressurize their combustion chambers and exhaust nozzles to produce a thrust-derived, net counter-rotating moment exactly equal to the SSME's rotating moment. With the SRBs reaching full thrust,
12994-407: The force to expel (positive expulsion) the fuel from the tank to the fuel distribution line, maintaining a positive fuel supply to the APU throughout its operation. In the APU, a fuel pump boosted the hydrazine pressure and fed it to a gas generator. The gas generator catalytically decomposed the hydrazine into hot, high-pressure gas; a two-stage turbine converted this into mechanical power, driving
13140-467: The fuel to be calculated if the density of the fuel is known, which is almost always the case when designing the rocket stage. The volume is yielded when dividing the mass of the propellant by its density. Asides from the fuel required, the mass of the rocket structure itself must also be determined, which requires taking into account the mass of the required thrusters, electronics, instruments, power equipment, etc. These are known quantities for typical off
13286-419: The full launcher weight and overcome gravity losses and atmospheric drag. The boosters are jettisoned a few minutes into flight to reduce weight. Space Shuttle Solid Rocket Booster#Space Launch System (SLS) The Space Shuttle Solid Rocket Booster ( SRB ) was the first solid-propellant rocket to be used for primary propulsion on a vehicle used for human spaceflight . A pair of them provided 85% of
13432-411: The ground launch sequence is terminated. Timing sequence referencing in ignition is critical for a successful liftoff and ascent flight. The explosive hold-down bolts relieve (through the launch support pedestals and pad structure) the asymmetric vehicle dynamic loads caused by the SSME ignition and thrust buildup, and applied thrust bearing loads. Without the hold-down bolts the SSMEs would violently tip
13578-430: The hold-down bolts are blown, releasing the vehicle stack, the net rotating moment is zero, and the net vehicle thrust (opposing gravity) is positive, lifting the orbiter stack vertically from the launch pedestal, controllable through the coordinated gimbal movements of the SSMEs and the SRB exhaust nozzles. During ascent, multiple all-axis accelerometers detect and report the vehicle's flight and orientation (referencing
13724-402: The hold-down stud. The stud traveled downward because of the release of tension in the stud (pretensioned before launch), NSD gas pressure and gravity. The stud was stopped by the stud deceleration stand, which contained sand. The hold-down stud was 28 in (710 mm) long and 3.5 in (89 mm) in diameter. The frangible nut was captured in a blast container mounted on the aft skirt of
13870-405: The initial and final masses of the rocket stage respectively. In conjunction with the burnout time, the burnout height and velocity are obtained using the same values, and are found by these two equations: When dealing with the problem of calculating the total burnout velocity or time for the entire rocket system, the general procedure for doing so is as follows: The burnout time does not define
14016-443: The largest rocket ever to do so, as well as the first reusable vehicle to utilize hot staging. A rocket system that implements tandem staging means that each individual stage runs in order one after the other. The rocket breaks free from the previous stage, then begins burning through the next stage in straight succession. On the other hand, a rocket that implements parallel staging has two or more different stages that are active at
14162-554: The launch of the Artemis 1 mission in 2022. Each Space Shuttle SRB provided a maximum 14.7 MN (3,300,000 lbf ) thrust, roughly double the most powerful single- combustion chamber liquid-propellant rocket engine ever flown, the Rocketdyne F-1 . With a combined mass of about 1,180 t (1,160 long tons; 1,300 short tons), they comprised over half the mass of the Shuttle stack at liftoff. The motor segments of
14308-479: The manufacturer and then shipped to Kennedy Space Center by rail for final assembly. The segments were fixed together using circumferential tang, clevis, and clevis pin fastening, and sealed with O-rings (originally two, changed to three after the Challenger Disaster in 1986) and heat-resistant putty. Each solid rocket booster had four hold-down posts that fit into corresponding support posts on
14454-403: The mass of the payload. High-altitude and space-bound upper stages are designed to operate with little or no atmospheric pressure. This allows the use of lower pressure combustion chambers and engine nozzles with optimal vacuum expansion ratios . Some upper stages, especially those using hypergolic propellants like Delta-K or Ariane 5 ES second stage, are pressure fed , which eliminates
14600-464: The mass of the propellant calculated, the mass of the empty rocket weight can be determined. Sizing rockets using a liquid bipropellant requires a slightly more involved approach because there are two separate tanks that are required: one for the fuel, and one for the oxidizer. The ratio of these two quantities is known as the mixture ratio, and is defined by the equation: Where m o x {\displaystyle m_{\mathrm {ox} }}
14746-411: The mobile launcher platform. Hold-down studs held the SRB and launcher platform posts together. Each stud had a nut at each end, the top one being a frangible nut . The top nut contained two explosive charges initiated by NASA standard detonators (NSDs), which were ignited at solid rocket motor ignition commands. When the two NSDs were ignited at each hold down, the frangible nut fractured, releasing
14892-566: The nearly spent stage keeps the propellants settled at the bottom of the tanks. Hot-staging is used on Soviet-era Russian rockets such as Soyuz and Proton-M . The N1 rocket was designed to use hot staging, however none of the test flights lasted long enough for this to occur. Starting with the Titan II, the Titan family of rockets used hot staging. SpaceX retrofitted their Starship rocket to use hot staging after its first flight , making it
15038-656: The need for complex turbopumps . Other upper stages, such as the Centaur or DCSS , use liquid hydrogen expander cycle engines, or gas generator cycle engines like the Ariane 5 ECA's HM7B or the S-IVB 's J-2 . These stages are usually tasked with completing orbital injection and accelerating payloads into higher energy orbits such as GTO or to escape velocity . Upper stages, such as Fregat , used primarily to bring payloads from low Earth orbit to GTO or beyond are sometimes referred to as space tugs . Each individual stage
15184-450: The nose and aft segments of the boosters. The first static fire test of the S200 solid rocket booster , ST-01, was conducted on 24 January 2010. The booster fired for 130 seconds and had nominal performance throughout the burn. It generated a peak thrust of about 4,900 kN (1,100,000 lbf). A second static fire test, ST-02, was conducted on 4 September 2011. The booster fired for 140 seconds and again had nominal performance through
15330-467: The nozzle at water splashdown and prevent damage to the nozzle flexible bearing. Each SRB contained three rate gyro assemblies (RGAs), with each RGA containing one pitch and one yaw gyro. These provided an output proportional to angular rates about the pitch and yaw axes to the orbiter computers and guidance, navigation and control system during first-stage ascent flight in conjunction with the orbiter roll rate gyros until SRB separation. At SRB separation,
15476-432: The nozzle rock and tilt servoactuators . The HPU controller electronics were located in the SRB aft integrated electronic assemblies (IEAs ) on the aft external tank attach rings. The HPUs and their fuel systems were isolated from each other. Each fuel supply module (tank) contained 22 lb (10.0 kg) of hydrazine. The fuel tank was pressurized with gaseous nitrogen at 400 psi (2.8 MPa ), which provided
15622-417: The nozzle to control the direction of thrust. The four servovalves operating each actuator provided a force-summed majority-voting arrangement to position the power spool. With four identical commands to the four servovalves, the actuator force-sum action prevented, instantaneously, a single erroneous input affecting power ram motion. If differential-pressure sensing detected the erroneous input persisting over
15768-419: The number of stages that split up the rocket system. Increasing the number of stages for a rocket while keeping the specific impulse, payload ratios and structural ratios constant will always yield a higher burnout velocity than the same systems that use fewer stages. However, the law of diminishing returns is evident in that each increment in number of stages gives less of an improvement in burnout velocity than
15914-558: The ocean approximately 122 nautical miles (226 km ) downrange, after which the two SRBs were recovered. The SRBs helped take the Space Shuttle to an altitude of 28 miles (45 km) and a speed of 3,094 mph (4,979 km/h) along with the main engines. The SRBs committed the shuttle to liftoff and ascent, without the possibility of launch abort, until both motors had fully consumed their propellants and had simultaneously been jettisoned by explosive jettisoning bolts from
16060-454: The oldest known multistage rocket; this was the " fire-dragon issuing from the water " (火龙出水, huǒ lóng chū shuǐ), which was used mostly by the Chinese navy. It was a two-stage rocket that had booster rockets that would eventually burn out, yet, before they did so, automatically ignited a number of smaller rocket arrows that were shot out of the front end of the missile, which was shaped like
16206-525: The outer two stages, until they are empty and could be ejected. This is more efficient than sequential staging, because the second-stage engine is never just dead weight. In 1951, Soviet engineer and scientist Dmitry Okhotsimsky carried out a pioneering engineering study of general sequential and parallel staging, with and without the pumping of fuel between stages. The design of the R-7 Semyorka emerged from that study. The trio of rocket engines used in
16352-632: The overall payload ratio of the entire system. It is important to note that when computing payload ratio for individual stages, the payload includes the mass of all the stages after the current one. The overall payload ratio is: Where n is the number of stages the rocket system comprises. Similar stages yielding the same payload ratio simplify this equation, however that is seldom the ideal solution for maximizing payload ratio, and ΔV requirements may have to be partitioned unevenly as suggested in guideline tips 1 and 2 from above. Two common methods of determining this perfect ΔV partition between stages are either
16498-573: The payload ratio (see ratios under performance), meaning the largest amount of payload is carried up to the required burnout velocity using the least amount of non-payload mass, which comprises everything else. This goal assumes that the cost of a rocket launch is proportional to the total liftoff mass of the rocket, which is a rule of thumb in rocket engineering. Here are a few quick rules and guidelines to follow in order to reach optimal staging: The payload ratio can be calculated for each individual stage, and when multiplied together in sequence, will yield
16644-402: The previous increment. The burnout velocity gradually converges towards an asymptotic value as the number of stages increases towards a very high number. In addition to diminishing returns in burnout velocity improvement, the main reason why real world rockets seldom use more than three stages is because of increase of weight and complexity in the system for each added stage, ultimately yielding
16790-542: The range safety system cross-strap wiring connecting each SRB Range Safety System (RSS) and the ET RSS with each other. The aft attachment points consist of three separate struts: upper, diagonal and lower. Each strut contains one bolt with an NSD pressure cartridge at each end. The upper strut also carries the umbilical interface between its SRB and the external tank and on to the orbiter. There are four booster separation motors (BSMs) on each end of each SRB. The BSMs separate
16936-415: The redundant NSDs to fire through a thin barrier seal down a flame tunnel. This ignites a pyro. booster charge, which is retained in the safe and arm device behind a perforated plate. The booster charge ignites the propellant in the igniter initiator; and combustion products of this propellant ignite the solid rocket motor initiator, which fires down the entire vertical length of the solid rocket motor igniting
17082-591: The remainder of the vehicle. Only then could any conceivable set of launch or post-liftoff abort procedures be contemplated. In addition, failure of an individual SRB's thrust output or ability to adhere to the designed performance profile was probably not survivable. The SRBs were the largest solid-propellant motors ever flown and the first of such large rockets designed for reuse. Each is 149.16 ft (45.46 m) long and 12.17 ft (3.71 m) in diameter. Each SRB weighed approximately 1,300,000 lb (590 t) at launch. The two SRBs constituted about 69% of
17228-493: The remaining 1st generation satellites on Falcon 9 rockets, with the first launch expected no earlier than summer 2022. On 20 April 2022 OneWeb announced a similar deal with NewSpace India Limited , the commercial arm of the Indian Space Research Organisation . OneWeb satellites were deployed by LVM3 both on 22 October 2022 and 26 March 2023 using a lightly modified version of the satellite dispenser previously used on Soyuz . The first batch of 36 OneWeb Gen-1 satellites weighing
17374-442: The required 90% thrust level will result in the SSMEs being commanded to the lift off position at T−3 seconds as well as the fire 1 command being issued to arm the SRBs. At T−3 seconds, the vehicle base bending load modes are allowed to initialize (referred to as the "twang", movement of approximately 25.5 in (650 mm) measured at the tip of the external tank, with movement towards the external tank). The fire 2 commands cause
17520-534: The revised time of 2015 for its launch on board an uprated GSLV rocket along with an Indian orbiter and rover . ISRO cancelled the Russian agreement and decided to go alone with its project with marginal changes. On 22 July 2019, the LVM3 M1 (GSLV Mk.III M1) rocket lifted off with 3850 kg Chandrayaan-2 Orbiter-Lander composite and successfully injected it into a parking orbit of 169.7 x 45,475 km. This marked
17666-427: The rocket system. Restricted rocket staging is based on the simplified assumption that each of the stages of the rocket system have the same specific impulse, structural ratio, and payload ratio, the only difference being the total mass of each increasing stage is less than that of the previous stage. Although this assumption may not be the ideal approach to yielding an efficient or optimal system, it greatly simplifies
17812-456: The same time. For example, the Space Shuttle has two Solid Rocket Boosters that burn simultaneously. Upon launch, the boosters ignite, and at the end of the stage, the two boosters are discarded while the external fuel tank is kept for another stage. Most quantitative approaches to the design of the rocket system's performance are focused on tandem staging, but the approach can be easily modified to include parallel staging. To begin with,
17958-416: The savings are so great that every rocket ever used to deliver a payload into orbit has had staging of some sort. One of the most common measures of rocket efficiency is its specific impulse, which is defined as the thrust per flow rate (per second) of propellant consumption: When rearranging the equation such that thrust is calculated as a result of the other factors, we have: These equations show that
18104-518: The shelf hardware that should be considered in the mid to late stages of the design, but for preliminary and conceptual design, a simpler approach can be taken. Assuming one engine for a rocket stage provides all of the total impulse for that particular segment, a mass fraction can be used to determine the mass of the system. The mass of the stage transfer hardware such as initiators and safe-and-arm devices are very small by comparison and can be considered negligible. For modern day solid rocket motors, it
18250-418: The solid rocket motor propellant along its entire surface area instantaneously. At T−0, the two SRBs are ignited, under command of the four onboard computers; separation of the four explosive bolts on each SRB is initiated; the two T-0 umbilicals (one on each side of the spacecraft) are retracted; the onboard master timing unit, event timer and mission event timers are started; the three SSMEs are at 100%; and
18396-414: The spent lower stages. A further advantage is that each stage can use a different type of rocket engine, each tuned for its particular operating conditions. Thus the lower-stage engines are designed for use at atmospheric pressure, while the upper stages can use engines suited to near vacuum conditions. Lower stages tend to require more structure than upper as they need to bear their own weight plus that of
18542-486: The stages above them. Optimizing the structure of each stage decreases the weight of the total vehicle and provides further advantage. The advantage of staging comes at the cost of the lower stages lifting engines which are not yet being used, as well as making the entire rocket more complex and harder to build than a single stage. In addition, each staging event is a possible point of launch failure, due to separation failure, ignition failure, or stage collision. Nevertheless,
18688-495: The switching valve closed when the valve was in the secondary position. When the valve was closed, a signal was sent to the APU controller, that inhibited the 100% APU speed control logic and enabled the 112% APU speed control logic. The 100-percent APU speed enabled one APU/HPU to supply sufficient operating hydraulic pressure to both servoactuators of that SRB. The APU 100-percent speed corresponded to 72,000 rpm, 110% to 79,200 rpm, and 112% to 80,640 rpm. The hydraulic pump speed
18834-468: The terms solid rocket motor and solid rocket booster are often used interchangeably, in technical use they have specific meanings. The term solid rocket motor applied to the propellant, case, igniter and nozzle. Solid rocket booster applied to the entire rocket assembly, which included the rocket motor as well as the recovery parachutes, electronic instrumentation, separation rockets, range safety destruct system, and thrust vector control. Each booster
18980-458: The test, CARE's heat shield experienced a peak temperature of around 1,000 °C (1,830 °F). ISRO downlinked launch telemetry during the ballistic coasting phase until the radio black-out to avoid data loss in the event of a failure. At an altitude of around 15 kilometres (9.3 mi), the module's apex cover separated and the parachutes were deployed. CARE splashed down in the Bay of Bengal near
19126-500: The test. A third test, ST-03, was conducted on 14 June 2015 to validate the changes from the sub-orbital test flight data. The second stage, designated L110 , is a liquid-fueled stage that is 21 metres (69 ft) tall and 4 metres (13 ft) wide, and contains 110 metric tons (240,000 lb) of unsymmetrical dimethylhydrazine (UDMH) and nitrogen tetroxide ( N 2 O 4 ). It is powered by two Vikas 2 engines , each generating 766 kilonewtons (172,000 lb f ) thrust, giving
19272-445: The thrust of the remaining stages to more easily accelerate the rocket to its final velocity and height. In serial or tandem staging schemes, the first stage is at the bottom and is usually the largest, the second stage and subsequent upper stages are above it, usually decreasing in size. In parallel staging schemes solid or liquid rocket boosters are used to assist with launch. These are sometimes referred to as "stage 0". In
19418-644: The total lift-off mass. The primary propellants were ammonium perchlorate ( oxidizer ) and atomized aluminum powder ( fuel ), and the total propellant for each solid rocket motor weighed approximately 1,100,000 lb (500 t) (see § Propellant ). The inert weight of each SRB was approximately 200,000 pounds (91 t). Primary elements of each booster were the motor (including case, propellant, igniter, and nozzle ), structure, separation systems, operational flight instrumentation, recovery avionics, pyrotechnics , deceleration system, thrust vector control system, and range safety destruct system. While
19564-406: The type of fuel and oxidizer combination being used. For example, a mixture ratio of a bipropellant could be adjusted such that it may not have the optimal specific impulse, but will result in fuel tanks of equal size. This would yield simpler and cheaper manufacturing, packing, configuring, and integrating of the fuel systems with the rest of the rocket, and can become a benefit that could outweigh
19710-459: The typical case, the first-stage and booster engines fire to propel the entire rocket upwards. When the boosters run out of fuel, they are detached from the rest of the rocket (usually with some kind of small explosive charge or explosive bolts ) and fall away. The first stage then burns to completion and falls off. This leaves a smaller rocket, with the second stage on the bottom, which then fires. Known in rocketry circles as staging , this process
19856-500: The use of lightweight materials. LVM3 currently has accumulated a total of 7 launches, as of 19 July 2023. Of these, all 7 have been successful, giving it a cumulative success rate of 100%. Multistage rocket By jettisoning stages when they run out of propellant, the mass of the remaining rocket is decreased. Each successive stage can also be optimized for its specific operating conditions, such as decreased atmospheric pressure at higher altitudes. This staging allows
20002-438: The use of lightweight materials. The stage also houses the flight computers and Redundant Strap Down Inertial Navigation System of the launch vehicle in its equipment bay. The digital control system of the launcher uses closed-loop guidance throughout the flight to ensure accurate injections of satellites into the target orbit. Communications system of the launch vehicle consisting of an S-Band system for telemetry downlink and
20148-404: The vehicle automatically adjusts its orientation in response to its dynamic control command inputs. The SRBs are jettisoned from the space shuttle at an altitude of about 146,000 ft (45 km). SRB separation is initiated when the three solid-rocket motor-chamber pressure transducers are processed in the redundancy-management middle-value select and the head-end chamber pressure of both SRBs
20294-502: The vehicle in all three axes (roll, pitch, and yaw). The ascent thrust vector control portion of the flight control system directed the thrust of the three shuttle main engines and the two SRB nozzles to control shuttle attitude and trajectory during lift-off and ascent. Commands from the guidance system were transmitted to the Ascent Thrust Vector Control (ATVC) drivers, which transmitted signals proportional to
20440-470: Was 3,600 rpm and supplied hydraulic pressure of 3,050 ± 50 psi (21.03 ± 0.34 MPa). A high pressure relief valve provided overpressure protection to the hydraulic system and relieved at 3,750 psi (25.9 MPa). The APUs/HPUs and hydraulic systems were reusable for 20 missions. Each SRB had two hydraulic gimbal servoactuators, to move the nozzle up/down and side-to-side. This provided thrust vectoring to help control
20586-508: Was attached to the external tank at the SRB's aft frame by two lateral sway braces and a diagonal attachment. The forward end of each SRB was attached to the external tank at the forward end of the SRB's forward skirt. On the launch pad, each booster also was attached to the mobile launcher platform at the aft skirt by four holddown studs, with frangible nuts that were severed at liftoff. The boosters were composed of seven individually manufactured steel segments. These were assembled in pairs by
20732-475: Was hot tested for 650 second duration. For the first 40 seconds of test, the engine was operated at 20.2 tonne thrust level, after this engine was operated at 20 tonne off-nominal zones and then for 435 seconds it was operated at 22.2 tonne thrust level. With this test, the 'E9' engine has been qualified for induction in flight. It is hoped that after introduction of this stage, GTO payload capacity can be raised to 6 tonnes. The uprated LVM3 with semi-cryogenic stage
20878-422: Was limited to 4 Gs for crew comfort and a 5-metre (16 ft) diameter payload fairing was used to be able to accommodate large modules like space station segments. Furthermore, a number of changes to make safety-critical subsystems reliable are planned for lower operating margins, redundancy, stringent qualification requirements, revaluation, and strengthening of components. Avionics improvement will incorporate
21024-515: Was proposed by medieval Korean engineer, scientist and inventor Ch'oe Mu-sŏn and developed by the Firearms Bureau (火㷁道監) during the 14th century. The rocket had the length of 15 cm and 13 cm; the diameter was 2.2 cm. It was attached to an arrow 110 cm long; experimental records show that the first results were around 200m in range. There are records that show Korea kept developing this technology until it came to produce
21170-456: Was reconceptualized as a more powerful launcher as the ISRO mandate changed. This increase in size allowed the launch of heavier communication and multipurpose satellites, human-rating to launch crewed missions, and future interplanetary exploration. Development of the LVM3 began in the early 2000s, with the first launch planned for 2009–2010. The unsuccessful launch of GSLV D3 , due to failure in
21316-417: Was terminated at 150 seconds after a leakage in a control system was detected. A second static fire test for the full duration was conducted on 8 September 2010. The cryogenic upper stage , designated C25 , is 4 metres (13 ft) in diameter and 13.5 metres (44 ft) long, and contains 28 metric tons (62,000 lb) of propellant LOX and LH 2 , pressurized by helium stored in submerged bottles. It
#448551