Misplaced Pages

Langwieser Viaduct

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Langwieser Viaduct (or Langwies Viaduct; German : Langwieser Viadukt ) is a single track reinforced concrete railway bridge spanning the Plessur River and the Sapünerbach, near Langwies , in the Canton of Graubünden , Switzerland .

#304695

65-533: It was designed by Hermann Schürch and constructed between 1912 and 1914 by Eduard Züblin for the Chur–Arosa railway. At the time of its completion, the Langwieser Viaduct was the first railway bridge anywhere in the world made of concrete to possess a span of 100 meters, as well as the first railway bridge of such a scale to be made of concrete . Presently, the Langwieser Viaduct is owned and used by

130-434: A body-centered cubic (bcc) crystal structure . As it cools further to 1394 °C, it changes to its γ-iron allotrope, a face-centered cubic (fcc) crystal structure, or austenite . At 912 °C and below, the crystal structure again becomes the bcc α-iron allotrope. The physical properties of iron at very high pressures and temperatures have also been studied extensively, because of their relevance to theories about

195-430: A nuclear spin (− 1 ⁄ 2 ). The nuclide Fe theoretically can undergo double electron capture to Cr, but the process has never been observed and only a lower limit on the half-life of 4.4×10 years has been established. Fe is an extinct radionuclide of long half-life (2.6 million years). It is not found on Earth, but its ultimate decay product is its granddaughter, the stable nuclide Ni . Much of

260-499: A supernova for their formation, involving rapid neutron capture by starting Fe nuclei. In the far future of the universe, assuming that proton decay does not occur, cold fusion occurring via quantum tunnelling would cause the light nuclei in ordinary matter to fuse into Fe nuclei. Fission and alpha-particle emission would then make heavy nuclei decay into iron, converting all stellar-mass objects to cold spheres of pure iron. Iron's abundance in rocky planets like Earth

325-455: A 100 metres (330 ft) long arch , with a rise of 42 metres (138 ft); at the time of its completion, it possessed the largest span of any railway bridge in the world. The Langwieser Viaduct has a total of 13 openings. The rail carriers have a plate beam cross section rigidly connected with the carriers. The only divisions are between the main arch and the two foreshore areas; these separations are constructed as double piers. The plans for

390-454: A distorted sodium chloride structure. The binary ferrous and ferric halides are well-known. The ferrous halides typically arise from treating iron metal with the corresponding hydrohalic acid to give the corresponding hydrated salts. Iron reacts with fluorine, chlorine, and bromine to give the corresponding ferric halides, ferric chloride being the most common. Ferric iodide is an exception, being thermodynamically unstable due to

455-553: A macroscopic piece of iron will have a nearly zero overall magnetic field. Application of an external magnetic field causes the domains that are magnetized in the same general direction to grow at the expense of adjacent ones that point in other directions, reinforcing the external field. This effect is exploited in devices that need to channel magnetic fields to fulfill design function, such as electrical transformers , magnetic recording heads, and electric motors . Impurities, lattice defects , or grain and particle boundaries can "pin"

520-475: A mixture of O 2 /Ar. Iron(IV) is a common intermediate in many biochemical oxidation reactions. Numerous organoiron compounds contain formal oxidation states of +1, 0, −1, or even −2. The oxidation states and other bonding properties are often assessed using the technique of Mössbauer spectroscopy . Many mixed valence compounds contain both iron(II) and iron(III) centers, such as magnetite and Prussian blue ( Fe 4 (Fe[CN] 6 ) 3 ). The latter

585-471: A result, mercury is traded in standardized 76 pound flasks (34 kg) made of iron. Iron is by far the most reactive element in its group; it is pyrophoric when finely divided and dissolves easily in dilute acids, giving Fe . However, it does not react with concentrated nitric acid and other oxidizing acids due to the formation of an impervious oxide layer, which can nevertheless react with hydrochloric acid . High-purity iron, called electrolytic iron ,

650-455: A type of rock consisting of repeated thin layers of iron oxides alternating with bands of iron-poor shale and chert . The banded iron formations were laid down in the time between 3,700  million years ago and 1,800  million years ago . Materials containing finely ground iron(III) oxides or oxide-hydroxides, such as ochre , have been used as yellow, red, and brown pigments since pre-historical times. They contribute as well to

715-435: A very large coordination and organometallic chemistry : indeed, it was the discovery of an iron compound, ferrocene , that revolutionalized the latter field in the 1950s. Iron is sometimes considered as a prototype for the entire block of transition metals, due to its abundance and the immense role it has played in the technological progress of humanity. Its 26 electrons are arranged in the configuration [Ar]3d 4s , of which

SECTION 10

#1732775348305

780-695: Is a metal that belongs to the first transition series and group 8 of the periodic table . It is, by mass, the most common element on Earth , forming much of Earth's outer and inner core . It is the fourth most abundant element in the Earth's crust , being mainly deposited by meteorites in its metallic state. Extracting usable metal from iron ores requires kilns or furnaces capable of reaching 1,500 °C (2,730 °F), about 500 °C (932 °F) higher than that required to smelt copper . Humans started to master that process in Eurasia during

845-646: Is also rarely found in basalts that have formed from magmas that have come into contact with carbon-rich sedimentary rocks, which have reduced the oxygen fugacity sufficiently for iron to crystallize. This is known as telluric iron and is described from a few localities, such as Disko Island in West Greenland, Yakutia in Russia and Bühl in Germany. Ferropericlase (Mg,Fe)O , a solid solution of periclase (MgO) and wüstite (FeO), makes up about 20% of

910-407: Is considered to be resistant to rust, due to its oxide layer. Iron forms various oxide and hydroxide compounds ; the most common are iron(II,III) oxide (Fe 3 O 4 ), and iron(III) oxide (Fe 2 O 3 ). Iron(II) oxide also exists, though it is unstable at room temperature. Despite their names, they are actually all non-stoichiometric compounds whose compositions may vary. These oxides are

975-499: Is due to its abundant production during the runaway fusion and explosion of type Ia supernovae , which scatters the iron into space. Metallic or native iron is rarely found on the surface of the Earth because it tends to oxidize. However, both the Earth's inner and outer core , which together account for 35% of the mass of the whole Earth, are believed to consist largely of an iron alloy, possibly with nickel . Electric currents in

1040-474: Is experimentally well defined for pressures less than 50 GPa. For greater pressures, published data (as of 2007) still varies by tens of gigapascals and over a thousand kelvin. Below its Curie point of 770 °C (1,420 °F; 1,040 K), α-iron changes from paramagnetic to ferromagnetic : the spins of the two unpaired electrons in each atom generally align with the spins of its neighbors, creating an overall magnetic field . This happens because

1105-443: Is in Earth's crust only amounts to about 5% of the overall mass of the crust and is thus only the fourth most abundant element in that layer (after oxygen , silicon , and aluminium ). Most of the iron in the crust is combined with various other elements to form many iron minerals . An important class is the iron oxide minerals such as hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and siderite (FeCO 3 ), which are

1170-401: Is not like that of Mn with its weak, spin-forbidden d–d bands, because Fe has higher positive charge and is more polarizing, lowering the energy of its ligand-to-metal charge transfer absorptions. Thus, all the above complexes are rather strongly colored, with the single exception of the hexaquo ion – and even that has a spectrum dominated by charge transfer in the near ultraviolet region. On

1235-407: Is possible, but nonetheless the sequence does effectively end at Ni because conditions in stellar interiors cause the competition between photodisintegration and the alpha process to favor photodisintegration around Ni. This Ni, which has a half-life of about 6 days, is created in quantity in these stars, but soon decays by two successive positron emissions within supernova decay products in

1300-548: Is somewhat different). Pieces of magnetite with natural permanent magnetization ( lodestones ) provided the earliest compasses for navigation. Particles of magnetite were extensively used in magnetic recording media such as core memories , magnetic tapes , floppies , and disks , until they were replaced by cobalt -based materials. Iron has four stable isotopes : Fe (5.845% of natural iron), Fe (91.754%), Fe (2.119%) and Fe (0.282%). Twenty-four artificial isotopes have also been created. Of these stable isotopes, only Fe has

1365-442: Is such a strong oxidizing agent that it oxidizes ammonia to nitrogen (N 2 ) and water to oxygen: The pale-violet hex aquo complex [Fe(H 2 O) 6 ] is an acid such that above pH 0 it is fully hydrolyzed: As pH rises above 0 the above yellow hydrolyzed species form and as it rises above 2–3, reddish-brown hydrous iron(III) oxide precipitates out of solution. Although Fe has a d configuration, its absorption spectrum

SECTION 20

#1732775348305

1430-502: Is supposed to have an orthorhombic or a double hcp structure. (Confusingly, the term "β-iron" is sometimes also used to refer to α-iron above its Curie point, when it changes from being ferromagnetic to paramagnetic, even though its crystal structure has not changed. ) The inner core of the Earth is generally presumed to consist of an iron- nickel alloy with ε (or β) structure. The melting and boiling points of iron, along with its enthalpy of atomization , are lower than those of

1495-418: Is thus very important economically, and iron is the cheapest metal, with a price of a few dollars per kilogram or pound. Pristine and smooth pure iron surfaces are a mirror-like silvery-gray. Iron reacts readily with oxygen and water to produce brown-to-black hydrated iron oxides , commonly known as rust . Unlike the oxides of some other metals that form passivating layers, rust occupies more volume than

1560-451: Is used as the traditional "blue" in blueprints . Iron is the first of the transition metals that cannot reach its group oxidation state of +8, although its heavier congeners ruthenium and osmium can, with ruthenium having more difficulty than osmium. Ruthenium exhibits an aqueous cationic chemistry in its low oxidation states similar to that of iron, but osmium does not, favoring high oxidation states in which it forms anionic complexes. In

1625-437: Is used in chemical actinometry and along with its sodium salt undergoes photoreduction applied in old-style photographic processes. The dihydrate of iron(II) oxalate has a polymeric structure with co-planar oxalate ions bridging between iron centres with the water of crystallisation located forming the caps of each octahedron, as illustrated below. Iron(III) complexes are quite similar to those of chromium (III) with

1690-568: The 2nd millennium BC and the use of iron tools and weapons began to displace copper alloys – in some regions, only around 1200 BC. That event is considered the transition from the Bronze Age to the Iron Age . In the modern world , iron alloys, such as steel , stainless steel , cast iron and special steels , are by far the most common industrial metals, due to their mechanical properties and low cost. The iron and steel industry

1755-589: The Rhaetian Railway ; it remains the biggest bridge on the company's network. It has also been listed as a Swiss heritage site of national significance in light of its status as a pioneering reinforced concrete structure. The Langwieser Viaduct is located on the Rhaetian Railway's metre gauge line from Chur to the holiday and recreation resort of Arosa (the Chur–Arosa line). It carries

1820-527: The article wizard to submit a draft for review, or request a new article . Search for " Hermann Schürch " in existing articles. Look for pages within Misplaced Pages that link to this title . Other reasons this message may be displayed: If a page was recently created here, it may not be visible yet because of a delay in updating the database; wait a few minutes or try the purge function . Titles on Misplaced Pages are case sensitive except for

1885-399: The carpenter Richard Coray of Trin . Structurally, the Langwieser Viaduct possesses a high level of efficiency, when validated during its final loading test, it demonstrated a deflection of less than 1 mm even when was loaded by a steam locomotive and three heavily laiden freight cars. The materials used for building the Langwieser Viaduct were determined by several criteria. Stone

1950-432: The supernova remnant gas cloud, first to radioactive Co, and then to stable Fe. As such, iron is the most abundant element in the core of red giants , and is the most abundant metal in iron meteorites and in the dense metal cores of planets such as Earth . It is also very common in the universe, relative to other stable metals of approximately the same atomic weight . Iron is the sixth most abundant element in

2015-491: The trans - chlorohydridobis(bis-1,2-(diphenylphosphino)ethane)iron(II) complex is used as a starting material for compounds with the Fe( dppe ) 2 moiety . The ferrioxalate ion with three oxalate ligands displays helical chirality with its two non-superposable geometries labelled Λ (lambda) for the left-handed screw axis and Δ (delta) for the right-handed screw axis, in line with IUPAC conventions. Potassium ferrioxalate

Langwieser Viaduct - Misplaced Pages Continue

2080-466: The universe , and the most common refractory element. Although a further tiny energy gain could be extracted by synthesizing Ni , which has a marginally higher binding energy than Fe, conditions in stars are unsuitable for this process. Element production in supernovas greatly favor iron over nickel, and in any case, Fe still has a lower mass per nucleon than Ni due to its higher fraction of lighter protons. Hence, elements heavier than iron require

2145-570: The 3d and 4s electrons are relatively close in energy, and thus a number of electrons can be ionized. Iron forms compounds mainly in the oxidation states +2 ( iron(II) , "ferrous") and +3 ( iron(III) , "ferric"). Iron also occurs in higher oxidation states , e.g., the purple potassium ferrate (K 2 FeO 4 ), which contains iron in its +6 oxidation state. The anion [FeO 4 ] with iron in its +7 oxidation state, along with an iron(V)-peroxo isomer, has been detected by infrared spectroscopy at 4 K after cocondensation of laser-ablated Fe atoms with

2210-603: The Earth's surface. Items made of cold-worked meteoritic iron have been found in various archaeological sites dating from a time when iron smelting had not yet been developed; and the Inuit in Greenland have been reported to use iron from the Cape York meteorite for tools and hunting weapons. About 1 in 20 meteorites consist of the unique iron-nickel minerals taenite (35–80% iron) and kamacite (90–95% iron). Native iron

2275-427: The Langwieser Viaduct was the longest railway bridge anywhere in the world. Simultaneously, a "little brother" of the Langwieser Viaduct, the 139 metres (456 ft) long Gründjitobel Viaduct , was built about 1.8 kilometres (1.1 mi) downstream. The Langwieser Viaduct possesses a length of 284 metres (932 ft), a width of 3.7 metres (12 ft), and a rise of 42 metres (138 ft). The main span consists of

2340-438: The Langwieser Viaduct were largely the work of Hermann Schürch , while the chief engineer and the building contractor for its construction was Eduard Züblin . The static computations were performed by Karl Arnstein. During its construction, an extensive timber falsework was assembled on site to temporarily support the bridge. The falsework, which used 800 cubic metres of wood, was regarded as an achievement in itself, produced by

2405-522: The Langwieser Viaduct's construction, considerably more than the 4,861 cubic meters originally projected, which has been attributed to the need to better establish its foundations. In addition, the concrete was combined with 250 tons of steel, which reinforces and supports the structure. The final cost of the Langwieser Viaduct's construction was around 625,000 CHF, discounting reinforcement. [REDACTED] Media related to Langwieser Viadukt at Wikimedia Commons Hermann Sch%C3%BCrch From Misplaced Pages,

2470-450: The brown deposits present in a sizeable number of streams. Due to its electronic structure, iron has a very large coordination and organometallic chemistry. Many coordination compounds of iron are known. A typical six-coordinate anion is hexachloroferrate(III), [FeCl 6 ] , found in the mixed salt tetrakis(methylammonium) hexachloroferrate(III) chloride . Complexes with multiple bidentate ligands have geometric isomers . For example,

2535-709: The color of various rocks and clays , including entire geological formations like the Painted Hills in Oregon and the Buntsandstein ("colored sandstone", British Bunter ). Through Eisensandstein (a jurassic 'iron sandstone', e.g. from Donzdorf in Germany) and Bath stone in the UK, iron compounds are responsible for the yellowish color of many historical buildings and sculptures. The proverbial red color of

2600-464: The cores of the Earth and other planets. Above approximately 10 GPa and temperatures of a few hundred kelvin or less, α-iron changes into another hexagonal close-packed (hcp) structure, which is also known as ε-iron . The higher-temperature γ-phase also changes into ε-iron, but does so at higher pressure. Some controversial experimental evidence exists for a stable β phase at pressures above 50 GPa and temperatures of at least 1500 K. It

2665-401: The domains in the new positions, so that the effect persists even after the external field is removed – thus turning the iron object into a (permanent) magnet . Similar behavior is exhibited by some iron compounds, such as the ferrites including the mineral magnetite , a crystalline form of the mixed iron(II,III) oxide Fe 3 O 4 (although the atomic-scale mechanism, ferrimagnetism ,

Langwieser Viaduct - Misplaced Pages Continue

2730-479: The earlier 3d elements from scandium to chromium , showing the lessened contribution of the 3d electrons to metallic bonding as they are attracted more and more into the inert core by the nucleus; however, they are higher than the values for the previous element manganese because that element has a half-filled 3d sub-shell and consequently its d-electrons are not easily delocalized. This same trend appears for ruthenium but not osmium . The melting point of iron

2795-406: The exception of iron(III)'s preference for O -donor instead of N -donor ligands. The latter tend to be rather more unstable than iron(II) complexes and often dissociate in water. Many Fe–O complexes show intense colors and are used as tests for phenols or enols . For example, in the ferric chloride test , used to determine the presence of phenols, iron(III) chloride reacts with a phenol to form

2860-463: The first character; please check alternative capitalizations and consider adding a redirect here to the correct title. If the page has been deleted, check the deletion log , and see Why was the page I created deleted? Retrieved from " https://en.wikipedia.org/wiki/Hermann_Schürch " Iron Iron is a chemical element ; it has the symbol Fe (from Latin ferrum  'iron') and atomic number 26. It

2925-907: The 💕 Look for Hermann Schürch on one of Misplaced Pages's sister projects : [REDACTED] Wiktionary (dictionary) [REDACTED] Wikibooks (textbooks) [REDACTED] Wikiquote (quotations) [REDACTED] Wikisource (library) [REDACTED] Wikiversity (learning resources) [REDACTED] Commons (media) [REDACTED] Wikivoyage (travel guide) [REDACTED] Wikinews (news source) [REDACTED] Wikidata (linked database) [REDACTED] Wikispecies (species directory) Misplaced Pages does not have an article with this exact name. Please search for Hermann Schürch in Misplaced Pages to check for alternative titles or spellings. You need to log in or create an account and be autoconfirmed to create new articles. Alternatively, you can use

2990-462: The global stock of iron in use in society is 2,200 kg per capita. More-developed countries differ in this respect from less-developed countries (7,000–14,000 vs 2,000 kg per capita). Ocean science demonstrated the role of the iron in the ancient seas in both marine biota and climate. Iron shows the characteristic chemical properties of the transition metals , namely the ability to form variable oxidation states differing by steps of one and

3055-453: The liquid outer core are believed to be the origin of the Earth's magnetic field . The other terrestrial planets ( Mercury , Venus , and Mars ) as well as the Moon are believed to have a metallic core consisting mostly of iron. The M-type asteroids are also believed to be partly or mostly made of metallic iron alloy. The rare iron meteorites are the main form of natural metallic iron on

3120-446: The literature, this mineral phase of the lower mantle is also often called magnesiowüstite. Silicate perovskite may form up to 93% of the lower mantle, and the magnesium iron form, (Mg,Fe)SiO 3 , is considered to be the most abundant mineral in the Earth, making up 38% of its volume. While iron is the most abundant element on Earth, most of this iron is concentrated in the inner and outer cores. The fraction of iron that

3185-407: The major ores of iron . Many igneous rocks also contain the sulfide minerals pyrrhotite and pentlandite . During weathering , iron tends to leach from sulfide deposits as the sulfate and from silicate deposits as the bicarbonate. Both of these are oxidized in aqueous solution and precipitate in even mildly elevated pH as iron(III) oxide . Large deposits of iron are banded iron formations ,

3250-775: The metal and thus flakes off, exposing more fresh surfaces for corrosion. Chemically, the most common oxidation states of iron are iron(II) and iron(III) . Iron shares many properties of other transition metals, including the other group 8 elements , ruthenium and osmium . Iron forms compounds in a wide range of oxidation states , −4 to +7. Iron also forms many coordination compounds ; some of them, such as ferrocene , ferrioxalate , and Prussian blue have substantial industrial, medical, or research applications. The body of an adult human contains about 4 grams (0.005% body weight) of iron, mostly in hemoglobin and myoglobin . These two proteins play essential roles in oxygen transport by blood and oxygen storage in muscles . To maintain

3315-612: The meteorites Semarkona and Chervony Kut, a correlation between the concentration of Ni, the granddaughter of Fe, and the abundance of the stable iron isotopes provided evidence for the existence of Fe at the time of formation of the Solar System . Possibly the energy released by the decay of Fe, along with that released by Al , contributed to the remelting and differentiation of asteroids after their formation 4.6 billion years ago. The abundance of Ni present in extraterrestrial material may bring further insight into

SECTION 50

#1732775348305

3380-559: The necessary levels, human iron metabolism requires a minimum of iron in the diet. Iron is also the metal at the active site of many important redox enzymes dealing with cellular respiration and oxidation and reduction in plants and animals. At least four allotropes of iron (differing atom arrangements in the solid) are known, conventionally denoted α , γ , δ , and ε . The first three forms are observed at ordinary pressures. As molten iron cools past its freezing point of 1538 °C, it crystallizes into its δ allotrope, which has

3445-436: The orbitals of those two electrons (d z and d x − y ) do not point toward neighboring atoms in the lattice, and therefore are not involved in metallic bonding. In the absence of an external source of magnetic field, the atoms get spontaneously partitioned into magnetic domains , about 10 micrometers across, such that the atoms in each domain have parallel spins, but some domains have other orientations. Thus

3510-539: The origin and early history of the Solar System . The most abundant iron isotope Fe is of particular interest to nuclear scientists because it represents the most common endpoint of nucleosynthesis . Since Ni (14 alpha particles ) is easily produced from lighter nuclei in the alpha process in nuclear reactions in supernovae (see silicon burning process ), it is the endpoint of fusion chains inside extremely massive stars . Although adding more alpha particles

3575-444: The other hand, the pale green iron(II) hexaquo ion [Fe(H 2 O) 6 ] does not undergo appreciable hydrolysis. Carbon dioxide is not evolved when carbonate anions are added, which instead results in white iron(II) carbonate being precipitated out. In excess carbon dioxide this forms the slightly soluble bicarbonate, which occurs commonly in groundwater, but it oxidises quickly in air to form iron(III) oxide that accounts for

3640-581: The oxidizing power of Fe and the high reducing power of I : Ferric iodide, a black solid, is not stable in ordinary conditions, but can be prepared through the reaction of iron pentacarbonyl with iodine and carbon monoxide in the presence of hexane and light at the temperature of −20 °C, with oxygen and water excluded. Complexes of ferric iodide with some soft bases are known to be stable compounds. The standard reduction potentials in acidic aqueous solution for some common iron ions are given below: The red-purple tetrahedral ferrate (VI) anion

3705-497: The past work on isotopic composition of iron has focused on the nucleosynthesis of Fe through studies of meteorites and ore formation. In the last decade, advances in mass spectrometry have allowed the detection and quantification of minute, naturally occurring variations in the ratios of the stable isotopes of iron. Much of this work is driven by the Earth and planetary science communities, although applications to biological and industrial systems are emerging. In phases of

3770-414: The principal ores for the production of iron (see bloomery and blast furnace). They are also used in the production of ferrites , useful magnetic storage media in computers, and pigments. The best known sulfide is iron pyrite (FeS 2 ), also known as fool's gold owing to its golden luster. It is not an iron(IV) compound, but is actually an iron(II) polysulfide containing Fe and S 2 ions in

3835-484: The railway line over the Plessur River valley, immediately up the line from Langwies station. While most of the line's bridges are composed from locally-source stone, a decision that had been a specified preference of the route's chief engineer Gustav Bener, this was not possible at the location of the Langwieser Viaduct. The soil lacked sufficient bearing capacity, comprising high levels of gravel and sand, and

3900-437: The second half of the 3d transition series, vertical similarities down the groups compete with the horizontal similarities of iron with its neighbors cobalt and nickel in the periodic table, which are also ferromagnetic at room temperature and share similar chemistry. As such, iron, cobalt, and nickel are sometimes grouped together as the iron triad . Unlike many other metals, iron does not form amalgams with mercury . As

3965-564: The surface of Mars is derived from an iron oxide-rich regolith . Significant amounts of iron occur in the iron sulfide mineral pyrite (FeS 2 ), but it is difficult to extract iron from it and it is therefore not exploited. In fact, iron is so common that production generally focuses only on ores with very high quantities of it. According to the International Resource Panel 's Metal Stocks in Society report ,

SECTION 60

#1732775348305

4030-419: The track between Chur and Arosa due to the predominantly challenging terrain present. Erected between 1912 and 1914, the Langwieser Viaduct was the world's first railway bridge to be constructed of reinforced concrete , and at that time represented a significant breakthrough; furthermore, it was one of the only structures of its size to be constructed entirely out of ferroconcrete . At the time of its erection,

4095-455: The volume of the lower mantle of the Earth, which makes it the second most abundant mineral phase in that region after silicate perovskite (Mg,Fe)SiO 3 ; it also is the major host for iron in the lower mantle. At the bottom of the transition zone of the mantle, the reaction γ- (Mg,Fe) 2 [SiO 4 ] ↔ (Mg,Fe)[SiO 3 ] + (Mg,Fe)O transforms γ-olivine into a mixture of silicate perovskite and ferropericlase and vice versa. In

4160-480: Was a generally very difficult to build a bridge upon; it did not allow for suitable foundations upon which to build a stone bridge. The line from Chur to Arosa was the last of the railway lines in the Rhaetian Railway's so-called core network to be constructed. During its building, the Arosa line pioneered the use of numerous new construction methods and techniques. A total of 19 tunnels and 52 bridges are present along

4225-420: Was not a realistic choice due to unfavourable local geology, the foundations for a heavy structure were impractical. Furthermore, while iron was a technical possibility, the challenges of transporting the material to the construction site caused it to be deemed unfeasible as well, leaving concrete as the only possible alternative available during this era. A total of 7,469 cubic meters of concrete were used during

#304695