The Leica M6 is a rangefinder camera manufactured by Leica from 1984 to 1998, followed by the M6 "TTL" manufactured from 1998 to 2002. In 2022, Leica introduced a new version of the M6, based on the technology of the Leica MP, but staying true to the design of the M6.
95-537: The M6 incorporates a light meter within the body dimensions established by the previous Leica M3 and Leica M4 models. The light meter was operated by depressing the shutter halfway, had no moving parts, and used LEDs to display readings in the viewfinder. Informally it is referred to as the M6 "Classic" to distinguish it from the "M6 TTL" models, and to indicate its "Classic" M3 dimensions. The top and bottom plates were made from lighter, cheaper magnesium alloy rather than
190-588: A photoresistor sensor whose electrical resistance changes proportionately to light exposure. These also require a battery to operate. Most modern light meters use silicon or CdS sensors. They indicate the exposure either with a needle galvanometer or on an LCD screen. Many modern consumer still and video cameras include a built-in meter that measures a scene-wide light level and are able to make an approximate measure of appropriate exposure based on that. Photographers working with controlled lighting and cinematographers use handheld light meters to precisely measure
285-752: A DC clamp meter or shunt and logged, graphed, or charted with a chart recorder or data logger. For optimum performance, a solar panel needs to be made of similar modules oriented in the same direction perpendicular to direct sunlight. Bypass diodes are used to circumvent broken or shaded panels and optimize output. These bypass diodes are usually placed along groups of solar cells to create a continuous flow. Electrical characteristics include nominal power (P MAX , measured in W ), open-circuit voltage (V OC ), short-circuit current (I SC , measured in amperes ), maximum power voltage (V MPP ), maximum power current (I MPP ), peak power ( watt-peak , W p ), and module efficiency (%). Open-circuit voltage or V OC
380-422: A certain lighting situation and film speed . Similarly, exposure meters are also used in the fields of cinematography and scenic design , in order to determine the optimum light level for a scene. Light meters also are used in the general field of architectural lighting design to verify proper installation and performance of a building lighting system, and in assessing the light levels for growing plants. If
475-549: A factor of 4 between 2004 and 2011. Module prices dropped by about 90% over the 2010s. In 2022, worldwide installed PV capacity increased to more than 1 terawatt (TW) covering nearly two percent of global electricity demand . After hydro and wind powers , PV is the third renewable energy source in terms of global capacity. In 2022, the International Energy Agency expected a growth by over 1 TW from 2022 to 2027. In some instances, PV has offered
570-456: A flat receptor with a reflected-light measurement of a uniformly illuminated flat surface of constant reflectance. Using values of 12.5 for K {\displaystyle K} and 250 for C {\displaystyle C} gives With a K {\displaystyle K} of 14, the reflectance would be 17.6%, close to that of a standard 18% neutral test card. In theory, an incident-light measurement should agree with
665-445: A flat subject. For determining practical photographic exposure, a hemispherical receptor has proven more effective. Don Norwood , inventor of incident-light exposure meter with a hemispherical receptor, thought that a sphere was a reasonable representation of a photographic subject. According to his patent ( Norwood 1938 ), the objective was to provide an exposure meter which is substantially uniformly responsive to light incident upon
760-910: A fraction of the emissions caused by fossil fuels . Photovoltaic systems have long been used in specialized applications as stand-alone installations and grid-connected PV systems have been in use since the 1990s. Photovoltaic modules were first mass-produced in 2000, when the German government funded a one hundred thousand roof program. Decreasing costs has allowed PV to grow as an energy source. This has been partially driven by massive Chinese government investment in developing solar production capacity since 2000, and achieving economies of scale . Improvements in manufacturing technology and efficiency have also led to decreasing costs. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity, have supported solar PV installations in many countries. Panel prices dropped by
855-520: A hemispherical receptor indicate "effective scene illuminance." It is commonly stated that reflected-light meters are calibrated to an 18% reflectance, but the calibration has nothing to do with reflectance, as should be evident from the exposure formulas. However, some notion of reflectance is implied by a comparison of incident- and reflected-light meter calibration. Combining the reflected-light and incident-light exposure equations and rearranging gives Reflectance R {\displaystyle R}
950-498: A hemispherical receptor when metering with an off-axis light source. In practice, additional complications may arise. Many neutral test cards are far from perfectly diffuse reflectors, and specular reflections can cause increased reflected-light meter readings that, if followed, would result in underexposure. It is possible that the neutral test card instructions include a correction for specular reflections. Light meters or light detectors are also used in illumination . Their purpose
1045-399: A light meter consists of a radiometer (the electronics/readout), a photo-diode or sensor (generates an output when exposed to electromagnetic radiation/light) a filter (used to modify the incoming light so only the desired portion of incoming radiation reaches the sensor) and a cosine correcting input optic (assures the sensor can see the light coming in from all directions accurately). When
SECTION 10
#17328023390851140-423: A light meter is giving its indications in luxes , it is called a " luxmeter ". The earliest exposure meters were called actinometers (not to be confused with the scientific instrument with the same name ), first developed in the late 1800s after commercial photographic plates became available with consistent sensitivity. These photographic actinometers used light-sensitive paper; the photographer would measure
1235-454: A meter; they need no battery to operate and this made them very convenient in completely mechanical cameras. Selenium sensors however cannot measure low light accurately (ordinary lightbulbs can take them close to their limits) and are altogether unable to measure very low light, such as candlelight, moonlight, starlight etc. Silicon sensors need an amplification circuit and require a power source such as batteries to operate. CdS light meters use
1330-449: A number of solar cells containing a semiconductor material. Copper solar cables connect modules (module cable), arrays (array cable), and sub-fields. Because of the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years. Cells require protection from the environment and are usually packaged tightly in solar modules. Photovoltaic module power
1425-586: A number of solar cells , which generate electrical power. PV installations may be ground-mounted, rooftop-mounted, wall-mounted or floating. The mount may be fixed or use a solar tracker to follow the sun across the sky. Photovoltaic technology helps to mitigate climate change because it emits much less carbon dioxide than fossil fuels . Solar PV has specific advantages as an energy source: once installed, its operation does not generate any pollution or any greenhouse gas emissions ; it shows scalability in respect of power needs and silicon has large availability in
1520-622: A number of photographs, for which the exposure was known, obtained under various conditions of subject manner and over a range of luminances. In practice, the variation of the calibration constants among manufacturers is considerably less than this statement might imply, and values have changed little since the early 1970s. ISO 2720:1974 recommends a range for K {\displaystyle K} of 10.6 to 13.4 with luminance in cd/m . Two values for K {\displaystyle K} are in common use: 12.5 ( Canon , Nikon , and Sekonic ) and 14 ( Minolta , Kenko , and Pentax );
1615-878: A panel can be expected to produce 400 kWh of energy per year. However, in Michigan, which receives only 1400 kWh/m /year, annual energy yield will drop to 280 kWh for the same panel. At more northerly European latitudes, yields are significantly lower: 175 kWh annual energy yield in southern England under the same conditions. Several factors affect a cell's conversion efficiency, including its reflectance , thermodynamic efficiency , charge carrier separation efficiency, charge carrier collection efficiency and conduction efficiency values. Because these parameters can be difficult to measure directly, other parameters are measured instead, including quantum efficiency , open-circuit voltage (V OC ) ratio, and § Fill factor . Reflectance losses are accounted for by
1710-578: A rather large amount of uncertainty. The values of human labor and water consumption, for example, are not precisely assessed due to the lack of systematic and accurate analyses in the scientific literature. One difficulty in determining effects due to PV is to determine if the wastes are released to the air, water, or soil during the manufacturing phase. Life-cycle assessments , which look at all different environment effects ranging from global warming potential , pollution, water depletion and others, are unavailable for PV. Instead, studies have tried to estimate
1805-452: A reflected-light measurement and an incident-light measurement is valid for any position of the light source. However, the response of a hemispherical receptor to an off-axis light source is approximately that of a cardioid rather than a cosine , so the 12% "reflectance" determined for an incident-light meter with a hemispherical receptor is valid only when the light source is on the receptor axis. Calibration of cameras with internal meters
1900-601: A reflected-light measurement of a test card of suitable reflectance that is perpendicular to the direction to the meter. However, a test card seldom is a uniform diffuser, so incident- and reflected-light measurements might differ slightly. In a typical scene, many elements are not flat and are at various orientations to the camera, so that for practical photography, a hemispherical receptor usually has proven more effective for determining exposure. Using values of 12.5 for K {\displaystyle K} and 330 for C {\displaystyle C} gives With
1995-520: A similar program with 539 residential PV systems installed. Since, many countries have continued to produce and finance PV systems in an exponential speed. Photovoltaics are best known as a method for generating electric power by using solar cells to convert energy from the sun into a flow of electrons by the photovoltaic effect . Solar cells produce direct current electricity from sunlight which can be used to power equipment or to recharge batteries . The first practical application of photovoltaics
SECTION 20
#17328023390852090-574: A simple rooftop system, some 90% of the energy cost is from silicon, with the remainder coming from the inverters and module frame. In an analysis by Alsema et al . from 1998, the energy payback time was higher than 10 years for the former system in 1997, while for a standard rooftop system the EPBT was calculated as between 3.5 and 8 years. The EPBT relates closely to the concepts of net energy gain (NEG) and energy returned on energy invested (EROI). They are both used in energy economics and refer to
2185-465: A slightly revised definition of reflectance, this result can be taken as indicating that the average scene reflectance is approximately 12%. A typical scene includes shaded areas as well as areas that receive direct illumination, and a wide-angle averaging reflected-light meter responds to these differences in illumination as well as differing reflectances of various scene elements. Average scene reflectance then would be where "effective scene illuminance"
2280-677: A structure of front electrode, anti-reflection film, n-layer, p-layer, and back electrode, with the sun hitting the front electrode. EPBT ranges from 1.7 to 2.7 years. The cradle to gate of CO 2 -eq/kWh ranges from 37.3 to 72.2 grams when installed in Southern Europe. Techniques to produce multi-crystalline silicon (multi-si) photovoltaic cells are simpler and cheaper than mono-si, however tend to make less efficient cells, an average of 13.2%. EPBT ranges from 1.5 to 2.6 years. The cradle to gate of CO 2 -eq/kWh ranges from 28.5 to 69 grams when installed in Southern Europe. Assuming that
2375-424: A wide-angle averaging reflected-light measurement may not indicate the correct exposure. To simulate an average scene, a substitute measurement sometimes is made of a neutral test card, or gray card . At best, a flat card is an approximation to a three-dimensional scene, and measurement of a test card may lead to underexposure unless adjustment is made. The instructions for a Kodak neutral test card recommend that
2470-401: Is around 18 grams (cradle to gate). CdTe has the fastest EPBT of all commercial PV technologies, which varies between 0.3 and 1.2 years. Third-generation PVs are designed to combine the advantages of both the first and second generation devices and they do not have Shockley-Queisser limit , a theoretical limit for first and second generation PV cells. The thickness of a third generation device
2565-424: Is covered by ISO 2721:1982 ; nonetheless, many manufacturers specify (though seldom state) exposure calibration in terms of K {\displaystyle K} , and many calibration instruments (e.g., Kyoritsu-Arrowin multi-function camera testers ) use the specified K {\displaystyle K} to set the test parameters. If a scene differs considerably from a statistically average scene,
2660-405: Is defined as A uniform perfect diffuser (one following Lambert's cosine law ) of luminance L {\displaystyle L} emits a flux density of π {\displaystyle \pi } L {\displaystyle L} ; reflectance then is Illuminance is measured with a flat receptor. It is straightforward to compare an incident-light measurement using
2755-435: Is due to its exposure to solar radiation as well as other external conditions. The degradation index, which is defined as the annual percentage of output power loss, is a key factor in determining the long-term production of a photovoltaic plant. To estimate this degradation, the percentage of decrease associated with each of the electrical parameters. The individual degradation of a photovoltaic module can significantly influence
2850-468: Is less than 1 μm. Two new promising thin film technologies are copper zinc tin sulfide (Cu 2 ZnSnS 4 or CZTS), zinc phosphide (Zn 3 P 2 ) and single-walled carbon nano-tubes (SWCNT). These thin films are currently only produced in the lab but may be commercialized in the future. The manufacturing of CZTS and (Zn 3 P 2 ) processes are expected to be similar to those of current thin film technologies of CIGS and CdTe, respectively. While
2945-456: Is measured under standard test conditions (STC) in "W p " ( watts peak ). The actual power output at a particular place may be less than or greater than this rated value, depending on geographical location, time of day, weather conditions, and other factors. Solar photovoltaic array capacity factors are typically under 25% when not coupled with storage, which is lower than many other industrial sources of electricity. Solar-cell efficiency
Leica M6 - Misplaced Pages Continue
3040-459: Is observed (which can last several months and up to two years), followed by a later stage in which the degradation stabilizes, being then comparable to that of crystalline silicon. Strong seasonal variations are also observed in such thin-film technologies because the influence of the solar spectrum is much greater. For example, for modules of amorphous silicon, micromorphic silicon or cadmium telluride, we are talking about annual degradation rates for
3135-402: Is processed from mined quartz until it is very pure (semi-conductor grade). This is melted down when small amounts of boron , a group III element, are added to make a p-type semiconductor rich in electron holes. Typically using a seed crystal, an ingot of this solution is grown from the liquid polycrystalline. The ingot may also be cast in a mold. Wafers of this semiconductor material are cut from
3230-437: Is required. Densitometers are used in photographic reproduction. In most cases, an incident-light meter will cause a medium tone to be recorded as a medium tone, and a reflected-light meter will cause whatever is metered to be recorded as a medium tone. What constitutes a "medium tone" depends on meter calibration and several other factors, including film processing or digital image conversion. Meter calibration establishes
3325-401: Is that measured by a meter with a hemispherical receptor. ISO 2720:1974 calls for reflected-light calibration to be measured by aiming the receptor at a transilluminated diffuse surface, and for incident-light calibration to be measured by aiming the receptor at a point source in a darkened room. For a perfectly diffusing test card and perfectly diffusing flat receptor, the comparison between
3420-535: Is the maximum voltage the module can produce when not connected to an electrical circuit or system. V OC can be measured with a voltmeter directly on an illuminated module's terminals or on its disconnected cable. The peak power rating, W p , is the maximum output under standard test conditions (not the maximum possible output). Typical modules, which could measure approximately 1 by 2 metres (3 ft × 7 ft), will be rated from as low as 75 W to as high as 600 W, depending on their efficiency. At
3515-433: Is the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell . The efficiency of the solar cells used in a photovoltaic system , in combination with latitude and climate, determines the annual energy output of the system. For example, a solar panel with 20% efficiency and an area of 1 m will produce 200 kWh/yr at Standard Test Conditions if exposed to
3610-401: Is to measure the illumination level in the interior and to switch off or reduce the output level of luminaires . This can greatly reduce the energy burden of the building by significantly increasing the efficiency of its lighting system. It is therefore recommended to use light meters in lighting systems, especially in rooms where one cannot expect users to pay attention to manually switching off
3705-488: Is to use a spot meter : a specialized reflected-light meter that measures light in a very tight cone , typically with a one degree circular angle of view . An experienced photographer can take multiple readings over the shadows, midrange, and highlights of the scene to determine optimal exposure, using systems like the Zone System . Many modern cameras include sophisticated multi-segment metering systems that measure
3800-815: The Greek φῶς ( phōs ) meaning "light", and from "volt", the unit of electromotive force, the volt , which in turn comes from the last name of the Italian physicist Alessandro Volta , inventor of the battery ( electrochemical cell ). The term "photovoltaic" has been in use in English since 1849. In 1989, the German Research Ministry initiated the first ever program to finance PV roofs (2200 roofs). A program led by Walter Sandtner in Bonn, Germany. In 1994, Japan followed in their footsteps and conducted
3895-411: The light sensitivity of the human eye , which can vary from person to person. Later meters removed the human element and relied on technologies incorporating selenium , CdS , and silicon photodetectors . Selenium and silicon light meters use sensors that are photovoltaic : they generate a voltage proportional to light exposure. Selenium sensors generate enough voltage for direct connection to
Leica M6 - Misplaced Pages Continue
3990-536: The luminance of different parts of the scene to determine the optimal exposure. When using a film whose spectral sensitivity is not a good match to that of the light meter, for example orthochromatic black-and-white or infrared film, the meter may require special filters and re-calibration to match the sensitivity of the film. There are other types of specialized photographic light meters. Flash meters are used in flash photography to verify correct exposure. Color meters are used where high fidelity in color reproduction
4085-682: The Earth's crust, although other materials required in PV system manufacture such as silver may constrain further growth in the technology. Other major constraints identified include competition for land use. The use of PV as a main source requires energy storage systems or global distribution by high-voltage direct current power lines causing additional costs, and also has a number of other specific disadvantages such as variable power generation which have to be balanced. Production and installation does cause some pollution and greenhouse gas emissions , though only
4180-524: The Standard Test Condition solar irradiance value of 1000 W/m for 2.74 hours a day. Usually solar panels are exposed to sunlight for longer than this in a given day, but the solar irradiance is less than 1000 W/m for most of the day. A solar panel can produce more when the Sun is high in Earth's sky and will produce less in cloudy conditions or when the Sun is low in the sky; usually
4275-476: The Sun is lower in the sky in the winter. Two location dependant factors that affect solar PV yield are the dispersion and intensity of solar radiation. These two variables can vary greatly between each country. The global regions that have high radiation levels throughout the year are the middle east, Northern Chile, Australia, China, and Southwestern USA. In a high-yield solar area like central Colorado, which receives annual insolation of 2000 kWh/m /year,
4370-479: The U.S. market are UL listed, meaning they have gone through testing to withstand hail. Potential-induced degradation (also called PID) is a potential-induced performance degradation in crystalline photovoltaic modules, caused by so-called stray currents. This effect may cause power loss of up to 30%. The largest challenge for photovoltaic technology is the purchase price per watt of electricity produced. Advancements in photovoltaic technologies have brought about
4465-877: The absorber layer of SWCNT PV is expected to be synthesized with CoMoCAT method. by Contrary to established thin films such as CIGS and CdTe, CZTS, Zn 3 P 2 , and SWCNT PVs are made from earth abundant, nontoxic materials and have the potential to produce more electricity annually than the current worldwide consumption. While CZTS and Zn 3 P 2 offer good promise for these reasons, the specific environmental implications of their commercial production are not yet known. Global warming potential of CZTS and Zn 3 P 2 were found 38 and 30 grams CO 2 -eq/kWh while their corresponding EPBT were found 1.85 and 0.78 years, respectively. Overall, CdTe and Zn 3 P 2 have similar environmental effects but can slightly outperform CIGS and CZTS. A study on environmental impacts of SWCNT PVs by Celik et al., including an existing 1% efficient device and
4560-409: The activation energy to decrease twenty-fold from 1.12 eV to 0.05 eV. Since the potential difference (E B ) is so low, the boron is able to thermally ionize at room temperatures. This allows for free energy carriers in the conduction and valence bands thereby allowing greater conversion of photons to electrons. The power output of a photovoltaic (PV) device decreases over time. This decrease
4655-419: The amount of sunlight available and the efficiency of the electrical grid) and on the type of system, namely the system's components. A 2015 review of EPBT estimates of first and second-generation PV suggested that there was greater variation in embedded energy than in efficiency of the cells implying that it was mainly the embedded energy that needs to reduce to have a greater reduction in EPBT. In general,
4750-406: The appropriate exposure for "average" scenes. An unusual scene with a preponderance of light colors or specular highlights would have a higher reflectance; a reflected-light meter taking a reading would incorrectly compensate for the difference in reflectance and lead to underexposure. Badly underexposed sunset photos are common exactly because of this effect: the brightness of the setting sun fools
4845-464: The bulk material with wire saws, and then go through surface etching before being cleaned. Next, the wafers are placed into a phosphorus vapor deposition furnace which lays a very thin layer of phosphorus, a group V element, which creates an n-type semiconducting surface. To reduce energy losses, an anti-reflective coating is added to the surface, along with electrical contacts. After finishing the cell, cells are connected via electrical circuit according to
SECTION 50
#17328023390854940-417: The camera's light meter and, unless the in-camera logic or the photographer take care to compensate, the picture will be grossly underexposed and dull. This pitfall (but not in the setting-sun case) is avoided by incident-light meters which measure the amount of light falling on the subject using a diffuser with a flat or (more commonly) hemispherical field of view placed on top of the light sensor. Because
5035-464: The cheapest source of electrical power in regions with a high solar potential, with a bid for pricing as low as 0.015 US$ / kWh in Qatar in 2023. In 2023, the International Energy Agency stated in its World Energy Outlook that '[f]or projects with low cost financing that tap high quality resources, solar PV is now the cheapest source of electricity in history. The term "photovoltaic" comes from
5130-406: The correct exposure settings by variable attenuation. One type of extinction meter contained a numbered or lettered row of neutral density filters of increasing density. The photographer would position the meter in front of their subject and note the filter with the greatest density that still allowed incident light to pass through. In another example, sold as Heyde's Aktino-Photometer starting from
5225-534: The cost of each device by both reducing material and energy consumption during manufacturing. The global market share of CdTe was 4.7% in 2008. This technology's highest power conversion efficiency is 21%. The cell structure includes glass substrate (around 2 mm), transparent conductor layer, CdS buffer layer (50–150 nm), CdTe absorber and a metal contact layer. CdTe PV systems require less energy input in their production than other commercial PV systems per unit electricity production. The average CO 2 -eq/kWh
5320-452: The difference between the energy expended to harvest an energy source and the amount of energy gained from that harvest. The NEG and EROI also take the operating lifetime of a PV system into account and a working life of 25 to 30 years is typically assumed. From these metrics, the Energy payback Time can be derived by calculation. PV systems using crystalline silicon, by far the majority of
5415-533: The difference between the two values is approximately 1 ⁄ 6 EV . The earliest calibration standards were developed for use with wide-angle averaging reflected-light meters ( Jones and Condit 1941 ). Although wide-angle average metering has largely given way to other metering sensitivity patterns (e.g., spot, center-weighted, and multi-segment), the values for K {\displaystyle K} determined for wide-angle averaging meters have remained. The incident-light calibration constant depends on
5510-486: The early 1900s, the photographer views the scene through an eyepiece and turns the meter to vary the effective density until the scene can no longer be seen. The letter or number corresponding to the filter strength causing the "extinction" of the scene was used as an index into a chart of appropriate aperture and shutter speed combinations for a given film speed . Extinction meters tended to provide inconsistent results because they depended on subjective interpretation and
5605-439: The electrical output of a PV system, the manufacturer must simply add more photovoltaic components. Because of this, economies of scale are important for manufacturers as costs decrease with increasing output. While there are many types of PV systems known to be effective, crystalline silicon PV accounted for around 90% of the worldwide production of PV in 2013. Manufacturing silicon PV systems has several steps. First, polysilicon
5700-409: The environmental impact of PV have focused on carbon dioxide equivalents per kWh or energy pay-back time (EPBT). The EPBT describes the timespan a PV system needs to operate in order to generate the same amount of energy that was used for its manufacture. Another study includes transport energy costs in the EPBT. The EPBT has also been defined completely differently as "the time needed to compensate for
5795-458: The filtration matches the human eyes' response. Photovoltaic Photovoltaics ( PV ) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect , a phenomenon studied in physics , photochemistry , and electrochemistry . The photovoltaic effect is commercially used for electricity generation and as photosensors . A photovoltaic system employs solar modules , each comprising
SECTION 60
#17328023390855890-432: The first years of between 3% and 4%. However, other technologies, such as CIGS, show much lower degradation rates, even in those early years. Overall the manufacturing process of creating solar photovoltaics is simple in that it does not require the culmination of many complex or moving parts. Because of the solid-state nature of PV systems, they often have relatively long lifetimes, anywhere from 10 to 30 years. To increase
5985-744: The following countries had a high-quality grid infrastructure as in Europe, in 2020 it was calculated it would take 1.28 years in Ottawa , Canada, for a rooftop photovoltaic system to produce the same amount of energy as required to manufacture the silicon in the modules in it (excluding the silver, glass, mounts and other components), 0.97 years in Catania , Italy , and 0.4 years in Jaipur , India. Outside of Europe, where net grid efficiencies are lower, it would take longer. This ' energy payback time ' can be seen as
6080-540: The heavier machined brass of the M3 and M4. The M6 and M6 TTL are mechanical cameras; all functions except the light meter work without batteries, unlike the succeeding M7 , which needs electrical power to operate properly. The Leica M6 has more special editions than any other M cameras as of 2013. The following list includes some, but not all Leica M6 Special Editions: Mechanical | Mechanical TTL | Electronic Controlled Shutter TTL This article
6175-444: The impact and potential impact of various types of PV, but these estimates are usually restricted to simply assessing energy costs of the manufacture and/or transport , because these are new technologies and the total environmental impact of their components and disposal methods are unknown, even for commercially available first generation solar cells , let alone experimental prototypes with no commercial viability. Thus, estimates of
6270-415: The incident-light exposure equation: where Determination of calibration constants has been largely subjective; ISO 2720:1974 states that The constants K {\displaystyle K} and C {\displaystyle C} shall be chosen by statistical analysis of the results of a large number of tests carried out to determine the acceptability to a large number of observers, of
6365-520: The incident-light reading is independent of the subject's reflectance, it is less likely to lead to incorrect exposures for subjects with unusual average reflectance. Taking an incident-light reading requires placing the meter at the subject's position and pointing it in the general direction of the camera, something not always achievable in practice, e.g., in landscape photography where the subject distance approaches infinity. Another way to avoid under- or over-exposure for subjects with unusual reflectance
6460-553: The indicated exposure be increased by 1 ⁄ 2 step for a frontlighted scene in sunlight. The instructions also recommend that the test card be held vertically and faced in a direction midway between the Sun and the camera; similar directions are also given in the Kodak Professional Photoguide . The combination of exposure increase and the card orientation gives recommended exposures that are reasonably close to those given by an incident-light meter with
6555-411: The junction temperature. The values of these parameters, which can be found in any data sheet of the photovoltaic module, are the following: Techniques for estimating these coefficients from experimental data can be found in the literature. The ability of solar modules to withstand damage by rain, hail , heavy snow load, and cycles of heat and cold varies by manufacturer, although most solar panels on
6650-439: The light falling on various parts of their subjects and use suitable lighting to produce the desired exposure levels. Exposure meters generally are sorted into reflected-light or incident-light types, depending on the method used to measure the scene. Reflected-light meters measure the light reflected by the scene to be photographed. All in-camera meters are reflected-light meters. Reflected-light meters are calibrated to show
6745-497: The lights. Examples include hallways, stairs, and big halls. There are, however, significant obstacles to overcome in order to achieve a successful implementation of light meters in lighting systems, of which user acceptance is by far the most formidable. Unexpected or too frequent switching and too bright or too dark rooms are very annoying and disturbing for users of the rooms. Therefore, different switching algorithms have been developed: In Scientific Research & Development uses,
6840-437: The module changes as lighting, temperature and load conditions change, so there is never one specific voltage at which the module operates. Performance varies depending on geographic location, time of day, the day of the year, amount of solar irradiance , direction and tilt of modules, cloud cover, shading, soiling , state of charge, and temperature. Performance of a module or panel can be measured at different time intervals with
6935-419: The most important component of solar panels, which accounts for much of the energy use and greenhouse gas emissions, is the refining of the polysilicon. As to how much percentage of the EPBT this silicon depends on the type of system. A fully autarkic system requires additional components ('Balance of System', the power inverters , storage, etc.) which significantly increase the energy cost of manufacture, but in
7030-399: The number and type of light sources; when each receptor is pointed at a small light source, a hemispherical receptor with C {\displaystyle C} = 330 will indicate an exposure approximately 0.40 step greater than that indicated by a flat receptor with C {\displaystyle C} = 250. With a slightly revised definition of illuminance, measurements with
7125-458: The overall performance of the plant. There are several studies dealing with the power degradation analysis of modules based on different photovoltaic technologies available in the literature. According to a recent study, the degradation of crystalline silicon modules is very regular, oscillating between 0.8% and 1.0% per year. On the other hand, if we analyze the performance of thin-film photovoltaic modules, an initial period of strong degradation
7220-462: The performance of a complete string. Furthermore, not all modules in the same installation decrease their performance at exactly the same rate. Given a set of modules exposed to long-term outdoor conditions, the individual degradation of the main electrical parameters and the increase in their dispersion must be considered. As each module tends to degrade differently, the behavior of the modules will be increasingly different over time, negatively affecting
7315-567: The photographic subject from practically all directions which would result in the reflection of light to the camera or other photographic register. and the meter provided for "measurement of the effective illumination obtaining at the position of the subject." With a hemispherical receptor, ISO 2720:1974 recommends a range for C {\displaystyle C} of 320 to 540 with illuminance in lux; in practice, values typically are between 320 (Minolta) and 340 (Sekonic). The relative responses of flat and hemispherical receptors depend upon
7410-570: The portion of time during the useful lifetime of the module in which the energy production is polluting. At best, this means that a 30-year old panel has produced clean energy for 97% of its lifetime, or that the silicon in the modules in a solar panel produce 97% less greenhouse gas emissions than a coal-fired plant for the same amount of energy (assuming and ignoring many things). Some studies have looked beyond EPBT and GWP to other environmental effects. In one such study, conventional energy mix in Greece
7505-443: The power output of a solar cell and the working temperature of its junction depends on the semiconductor material, and is due to the influence of T on the concentration, lifetime, and mobility of the intrinsic carriers, i.e., electrons and gaps. inside the photovoltaic cell. Temperature sensitivity is usually described by temperature coefficients, each of which expresses the derivative of the parameter to which it refers with respect to
7600-406: The process of "doping" the silicon substrate to lower the activation energy thereby making the panel more efficient in converting photons to retrievable electrons. Chemicals such as boron (p-type) are applied into the semiconductor crystal in order to create donor and acceptor energy levels substantially closer to the valence and conductor bands. In doing so, the addition of boron impurity allows
7695-483: The production process itself will not become more efficient in the future. Nonetheless, the energy payback time has shortened significantly over the last years, as crystalline silicon cells became ever more efficient in converting sunlight, while the thickness of the wafer material was constantly reduced and therefore required less silicon for its manufacture. Within the last ten years, the amount of silicon used for solar cells declined from 16 to 6 grams per watt-peak . In
7790-479: The p–n junction also influences the main electrical parameters: the short circuit current ISC, the open circuit voltage VOC and the maximum power Pmax. In general, it is known that VOC shows a significant inverse correlation with T, while for ISC this correlation is direct, but weaker, so that this increase does not compensate for the decrease in VOC. As a consequence, Pmax decreases when T increases. This correlation between
7885-544: The quantum efficiency value, as they affect "external quantum efficiency". Recombination losses are accounted for by the quantum efficiency, V OC ratio, and fill factor values. Resistive losses are predominantly accounted for by the fill factor value, but also contribute to the quantum efficiency and V OC ratio values. Module performance is generally rated under standard test conditions (STC): irradiance of 1,000 W/m , solar spectrum of AM 1.5 and module temperature at 25 °C. The actual voltage and current output of
7980-529: The relationship between subject lighting and recommended camera settings. The calibration of photographic light meters is covered by ISO 2720:1974 . For reflected-light meters, camera settings are related to ISO speed and subject luminance by the reflected-light exposure equation: N 2 t = L S K {\displaystyle {\frac {N^{2}}{t}}={\frac {LS}{K}}} where For incident-light meters, camera settings are related to ISO speed and subject illuminance by
8075-539: The same period, the thickness of a c-Si wafer was reduced from 300 μm, or microns , to about 160–190 μm. The sawing techniques that slice crystalline silicon ingots into wafers have also improved by reducing the kerf loss and making it easier to recycle the silicon sawdust. Crystalline silicon modules are the most extensively studied PV type in terms of LCA since they are the most commonly used. Mono-crystalline silicon photovoltaic systems (mono-si) have an average efficiency of 14.0%. The cells tend to follow
8170-460: The specific application and prepared for shipping and installation. Solar photovoltaic power is not entirely "clean energy": production produces greenhouse gas emissions, materials used to build the cells are potentially unsustainable and will run out eventually, the technology uses toxic substances which cause pollution, and there are no viable technologies for recycling solar waste. Data required to investigate their impact are sometimes affected by
8265-470: The systems in practical use, have such a high EPBT because silicon is produced by the reduction of high-grade quartz sand in electric furnaces . This coke-fired smelting process occurs at high temperatures of more than 1000 °C and is very energy intensive, using about 11 kilowatt-hours (kWh) per produced kilogram of silicon. The energy requirements of this process makes the energy cost per unit of silicon produced relatively inelastic, which means that
8360-407: The time of testing, the test modules are binned according to their test results, and a typical manufacturer might rate their modules in 5 W increments, and either rate them at +/- 3%, +/-5%, +3/-0% or +5/-0%. The performance of a photovoltaic (PV) module depends on the environmental conditions, mainly on the global incident irradiance G in the plane of the module. However, the temperature T of
8455-403: The time required for the paper to darken to a control value, providing an input to a mechanical calculation of shutter speed and aperture for a given plate number. They were popular between approximately 1890 and 1920. The next exposure meters, developed at about the same time but not displacing actinometers in popularity until the 1920s and 1930s, are known as extinction meters , evaluating
8550-411: The total renewable- and non-renewable primary energy required during the life cycle of a PV system" in another study, which also included installation costs. This energy amortization, given in years, is also referred to as break-even energy payback time . The lower the EPBT, the lower the environmental cost of solar power . The EPBT depends vastly on the location where the PV system is installed (e.g.
8645-461: The type of light receptor. Two receptor types are common: flat ( cosine -responding) and hemispherical ( cardioid -responding). With a flat receptor, ISO 2720:1974 recommends a range for C {\displaystyle C} of 240 to 400 with illuminance in lux ; a value of 250 is commonly used. A flat receptor typically is used for measurement of lighting ratios, for measurement of illuminance, and occasionally, for determining exposure for
8740-417: The word light meter or photometer is used in place of radiometer or optometer, or it is often assumed the system was configured to see only visible light. Visible light sensors are often called illuminance or photometric sensors because they have been filtered to be sensitive only to 400-700 nanometers (nm) mimicking the human eyes' sensitivity to light. How accurately the meter measures often depends on how well
8835-467: Was compared to multi-si PV and found a 95% overall reduction in effects including carcinogens, eco-toxicity, acidification, eutrophication, and eleven others. Cadmium telluride (CdTe) is one of the fastest-growing thin film based solar cells which are collectively known as second-generation devices. This new thin-film device also shares similar performance restrictions ( Shockley-Queisser efficiency limit ) as conventional Si devices but promises to lower
8930-574: Was originally based on " Leica M6 " in Camerapedia, retrieved at an unknown date under the GNU Free Documentation License . Light meter A light meter (or illuminometer ) is a device used to measure the amount of light. In photography , an exposure meter is a light meter coupled to either a digital or analog calculator which displays the correct shutter speed and f-number for optimum exposure , given
9025-567: Was to power orbiting satellites and other spacecraft , but today the majority of photovoltaic modules are used for grid-connected systems for power generation. In this case an inverter is required to convert the DC to AC . There is also a smaller market for stand alone systems for remote dwellings, boats , recreational vehicles , electric cars , roadside emergency telephones, remote sensing , and cathodic protection of pipelines . Photovoltaic power generation employs solar modules composed of
#84915