Lubbock Avalanche-Journal is a newspaper based in Lubbock, Texas , United States. It is owned by Gannett .
136-455: The Lubbock Avalanche was founded in 1900 by John James Dillard and Thad Tubbs. According to Dillard, the name " Avalanche " was chosen due to his desire that the newspaper surprise the citizens of Lubbock. The newspaper was sold to James Lorenzo Dow in 1908. In 1922, the Avalanche became a daily newspaper (except for Mondays) and a year later added a morning edition. In 1926, the owners of
272-729: A tsunami . Earthquakes can trigger landslides . Earthquakes' occurrence is influenced by tectonic movements along faults, including normal, reverse (thrust), and strike-slip faults, with energy release and rupture dynamics governed by the elastic-rebound theory . Efforts to manage earthquake risks involve prediction, forecasting, and preparedness, including seismic retrofitting and earthquake engineering to design structures that withstand shaking. The cultural impact of earthquakes spans myths, religious beliefs, and modern media, reflecting their profound influence on human societies. Similar seismic phenomena, known as marsquakes and moonquakes , have been observed on other celestial bodies, indicating
408-424: A critical temperature gradient. Large, angular snow crystals are indicators of weak snow, because such crystals have fewer bonds per unit volume than small, rounded crystals that pack tightly together. Consolidated snow is less likely to slough than loose powdery layers or wet isothermal snow; however, consolidated snow is a necessary condition for the occurrence of slab avalanches , and persistent instabilities within
544-571: A depth of less than 70 km (43 mi) are classified as "shallow-focus" earthquakes, while those with a focal depth between 70 and 300 km (43 and 186 mi) are commonly termed "mid-focus" or "intermediate-depth" earthquakes. In subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, deep-focus earthquakes may occur at much greater depths (ranging from 300 to 700 km (190 to 430 mi)). These seismically active areas of subduction are known as Wadati–Benioff zones . Deep-focus earthquakes occur at
680-488: A depth where the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep-focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure. Earthquakes often occur in volcanic regions and are caused there, both by tectonic faults and the movement of magma in volcanoes . Such earthquakes can serve as an early warning of volcanic eruptions, as during
816-559: A drag force that was proportional to the square of the speed of its flow: He and others subsequently derived other formulae that take other factors into account, with the Voellmy-Salm-Gubler and the Perla-Cheng-McClung models becoming most widely used as simple tools to model flowing (as opposed to powder snow) avalanches. Since the 1990s many more sophisticated models have been developed. In Europe much of
952-475: A few exceptions to this: Supershear earthquake ruptures are known to have propagated at speeds greater than the S wave velocity. These have so far all been observed during large strike-slip events. The unusually wide zone of damage caused by the 2001 Kunlun earthquake has been attributed to the effects of the sonic boom developed in such earthquakes. Slow earthquake ruptures travel at unusually low velocities. A particularly dangerous form of slow earthquake
1088-463: A fracture at the bottom called the stauchwall. The crown and flank fractures are vertical walls in the snow delineating the snow that was entrained in the avalanche from the snow that remained on the slope. Slabs can vary in thickness from a few centimetres to three metres. Slab avalanches account for around 90% of avalanche-related fatalities. The largest avalanches form turbulent suspension currents known as powder snow avalanches or mixed avalanches,
1224-450: A kind of gravity current . These consist of a powder cloud, which overlies a dense avalanche. They can form from any type of snow or initiation mechanism, but usually occur with fresh dry powder. They can exceed speeds of 300 km/h (190 mph), and masses of 1,000,000 tons; their flows can travel long distances along flat valley bottoms and even uphill for short distances. In contrast to powder snow avalanches, wet snow avalanches are
1360-607: A long term, lasting from days to years. Experts interpret the recorded data and are able to recognize upcoming ruptures in order to initiate appropriate measures. Such systems (e.g. the monitoring of the Weissmies glacier in Switzerland ) can recognize events several days in advance. Modern radar technology enables the monitoring of large areas and the localization of avalanches at any weather condition, by day and by night. Complex alarm systems are able to detect avalanches within
1496-411: A low velocity suspension of snow and water, with the flow confined to the track surface (McClung, 1999, p. 108). The low speed of travel is due to the friction between the sliding surface of the track and the water saturated flow. Despite the low speed of travel (≈10–40 km/h), wet snow avalanches are capable of generating powerful destructive forces, due to the large mass and density. The body of
SECTION 10
#17328016393541632-400: A number of methods including hand-tossed charges, helicopter-dropped bombs, Gazex concussion lines, and ballistic projectiles launched by air cannons and artillery. Passive preventive systems such as snow fences and light walls can be used to direct the placement of snow. Snow builds up around the fence, especially the side that faces the prevailing winds . Downwind of the fence, snow build-up
1768-612: A particular location in the Earth is the average rate of seismic energy release per unit volume. One of the most devastating earthquakes in recorded history was the 1556 Shaanxi earthquake , which occurred on 23 January 1556 in Shaanxi , China. More than 830,000 people died. Most houses in the area were yaodongs —dwellings carved out of loess hillsides—and many victims were killed when these structures collapsed. The 1976 Tangshan earthquake , which killed between 240,000 and 655,000 people,
1904-413: A persistent weakness in the snowpack. When a slab lying on top of a persistent weakness is loaded by a force greater than the strength of the slab and persistent weak layer, the persistent weak layer can fail and generate an avalanche. Any wind stronger than a light breeze can contribute to a rapid accumulation of snow on sheltered slopes downwind. Wind slabs form quickly and, if present, weaker snow below
2040-400: A point significantly above the freezing point of water, may cause avalanche formation at any time of year. Persistent cold temperatures can either prevent new snow from stabilizing or destabilize the existing snowpack. Cold air temperatures on the snow surface produce a temperature gradient in the snow, because the ground temperature at the base of the snowpack is usually around 0 °C, and
2176-412: A point with only a small amount of snow moving initially; this is typical of wet snow avalanches or avalanches in dry unconsolidated snow. However, if the snow has sintered into a stiff slab overlying a weak layer, then fractures can propagate very rapidly, so that a large volume of snow, possibly thousands of cubic metres, can start moving almost simultaneously. A snowpack will fail when the load exceeds
2312-592: A short time in order to close (e.g. roads and rails) or evacuate (e.g. construction sites) endangered areas. An example of such a system is installed on the only access road of Zermatt in Switzerland. Two radars monitor the slope of a mountain above the road. The system automatically closes the road by activating several barriers and traffic lights within seconds such that no people are harmed. Avalanche accidents are broadly differentiated into 2 categories: accidents in recreational settings, and accidents in residential, industrial, and transportation settings. This distinction
2448-765: A single rupture) are approximately 1,000 km (620 mi). Examples are the earthquakes in Alaska (1957) , Chile (1960) , and Sumatra (2004) , all in subduction zones. The longest earthquake ruptures on strike-slip faults, like the San Andreas Fault ( 1857 , 1906 ), the North Anatolian Fault in Turkey ( 1939 ), and the Denali Fault in Alaska ( 2002 ), are about half to one third as long as
2584-417: A start zone where the avalanche originates, a track along which the avalanche flows, and a runout zone where the avalanche comes to rest. The debris deposit is the accumulated mass of the avalanched snow once it has come to rest in the run-out zone. For the image at left, many small avalanches form in this avalanche path every year, but most of these avalanches do not run the full vertical or horizontal length of
2720-415: A storm. Daytime exposure to sunlight will rapidly destabilize the upper layers of the snowpack if the sunlight is strong enough to melt the snow, thereby reducing its hardness. During clear nights, the snowpack can re-freeze when ambient air temperatures fall below freezing, through the process of long-wave radiative cooling, or both. Radiative heat loss occurs when the night air is significantly cooler than
2856-412: A sufficient quantity of airborne snow, this portion of the avalanche can become separated from the bulk of the avalanche and travel a greater distance as a powder snow avalanche. Scientific studies using radar , following the 1999 Galtür avalanche disaster , confirmed the hypothesis that a saltation layer forms between the surface and the airborne components of an avalanche, which can also separate from
SECTION 20
#17328016393542992-653: A suspended sentence. The small Austrian village of Galtür was hit by the Galtür avalanche in 1999. The village was thought to be in a safe zone but the avalanche was exceptionally large and flowed into the village. Thirty-one people died. On 1 December 2000, the Glory Bowl Avalanche formed on Mt. Glory which is located within the Teton Mountain Range in Wyoming, United States. Joel Roof
3128-727: A three-month period throughout the Alps in Austria, France, Switzerland, Italy and Germany. This series of avalanches killed around 265 people and was termed the Winter of Terror . A mountain climbing camp on Lenin Peak, in what is now Kyrgyzstan, was wiped out in 1990 when an earthquake triggered a large avalanche that overran the camp. Forty-three climbers were killed. In 1993, the Bayburt Üzengili avalanche killed 60 individuals in Üzengili in
3264-413: A variety of factors such as the snow's shear strength (which is itself dependent upon crystal form) and the configuration of layers and inter-layer interfaces. The snowpack on slopes with sunny exposures is strongly influenced by sunshine . Diurnal cycles of thawing and refreezing can stabilize the snowpack by promoting settlement. Strong freeze-thaw cycles result in the formation of surface crusts during
3400-403: Is a rigid fence-like structure ( snow fence ) and may be constructed of steel , wood or pre-stressed concrete . They usually have gaps between the beams and are built perpendicular to the slope, with reinforcing beams on the downhill side. Rigid barriers are often considered unsightly, especially when many rows must be built. They are also expensive and vulnerable to damage from falling rocks in
3536-525: Is a theory that earthquakes can recur in a regular pattern. Earthquake clustering has been observed, for example, in Parkfield, California where a long-term research study is being conducted around the Parkfield earthquake cluster. An aftershock is an earthquake that occurs after a previous earthquake, the mainshock. Rapid changes of stress between rocks, and the stress from the original earthquake are
3672-410: Is called the hypocenter or focus, while the ground level directly above it is the epicenter . Earthquakes are primarily caused by geological faults , but also by volcanic activity , landslides, and other seismic events. The frequency, type, and size of earthquakes in an area define its seismic activity, reflecting the average rate of seismic energy release. Significant historical earthquakes include
3808-579: Is called the Starting Point and typically occurs on a 30–45 degree slope. The body of the pathway is called the Track of the avalanche and usually occurs on a 20–30 degree slope. When the avalanche loses its momentum and eventually stops it reaches the Runout Zone. This usually occurs when the slope has reached a steepness that is less than 20 degrees. These degrees are not consistently true due to
3944-524: Is converted into heat generated by friction. Therefore, earthquakes lower the Earth's available elastic potential energy and raise its temperature, though these changes are negligible compared to the conductive and convective flow of heat out from the Earth's deep interior. There are three main types of fault, all of which may cause an interplate earthquake : normal, reverse (thrust), and strike-slip. Normal and reverse faulting are examples of dip-slip, where
4080-424: Is critically sensitive to small variations within the narrow range of meteorological conditions that allow for the accumulation of snow into a snowpack. Among the critical factors controlling snowpack evolution are: heating by the sun, radiational cooling , vertical temperature gradients in standing snow, snowfall amounts, and snow types. Generally, mild winter weather will promote the settlement and stabilization of
4216-400: Is divided into 754 Flinn–Engdahl regions (F-E regions), which are based on political and geographical boundaries as well as seismic activity. More active zones are divided into smaller F-E regions whereas less active zones belong to larger F-E regions. Standard reporting of earthquakes includes its magnitude , date and time of occurrence, geographic coordinates of its epicenter , depth of
Lubbock Avalanche-Journal - Misplaced Pages Continue
4352-408: Is flat enough to hold snow but steep enough to ski has the potential to generate an avalanche, regardless of the angle. The snowpack is composed of ground-parallel layers that accumulate over the winter. Each layer contains ice grains that are representative of the distinct meteorological conditions during which the snow formed and was deposited. Once deposited, a snow layer continues to evolve under
4488-470: Is lessened. This is caused by the loss of snow at the fence that would have been deposited and the pickup of the snow that is already there by the wind, which was depleted of snow at the fence. When there is a sufficient density of trees , they can greatly reduce the strength of avalanches. They hold snow in place and when there is an avalanche, the impact of the snow against the trees slows it down. Trees can either be planted or they can be conserved, such as in
4624-504: Is motivated by the observed difference in the causes of avalanche accidents in the two settings. In the recreational setting most accidents are caused by the people involved in the avalanche. In a 1996 study, Jamieson et al. (pages 7–20) found that 83% of all avalanches in the recreational setting were caused by those who were involved in the accident . In contrast, all the accidents in the residential, industrial, and transportation settings were due to spontaneous natural avalanches. Because of
4760-545: Is probably a statistical fluctuation rather than a systematic trend. More detailed statistics on the size and frequency of earthquakes is available from the United States Geological Survey. A recent increase in the number of major earthquakes has been noted, which could be explained by a cyclical pattern of periods of intense tectonic activity, interspersed with longer periods of low intensity. However, accurate recordings of earthquakes only began in
4896-423: Is proportional to the area of the fault that ruptures and the stress drop. Therefore, the longer the length and the wider the width of the faulted area, the larger the resulting magnitude. The most important parameter controlling the maximum earthquake magnitude on a fault, however, is not the maximum available length, but the available width because the latter varies by a factor of 20. Along converging plate margins,
5032-402: Is sufficiently unsettled and cold enough for precipitated snow to accumulate into a seasonal snowpack. Continentality , through its potentiating influence on the meteorological extremes experienced by snowpacks, is an important factor in the evolution of instabilities, and consequential occurrence of avalanches faster stabilization of the snowpack after storm cycles. The evolution of the snowpack
5168-410: Is the tsunami earthquake , observed where the relatively low felt intensities, caused by the slow propagation speed of some great earthquakes, fail to alert the population of the neighboring coast, as in the 1896 Sanriku earthquake . During an earthquake, high temperatures can develop at the fault plane, increasing pore pressure and consequently vaporization of the groundwater already contained within
5304-509: The 1556 Shaanxi earthquake in China, with over 830,000 fatalities, and the 1960 Valdivia earthquake in Chile, the largest ever recorded at 9.5 magnitude. Earthquakes result in various effects, such as ground shaking and soil liquefaction , leading to significant damage and loss of life. When the epicenter of a large earthquake is located offshore, the seabed may be displaced sufficiently to cause
5440-400: The 1980 eruption of Mount St. Helens . Earthquake swarms can serve as markers for the location of the flowing magma throughout the volcanoes. These swarms can be recorded by seismometers and tiltmeters (a device that measures ground slope) and used as sensors to predict imminent or upcoming eruptions. A tectonic earthquake begins as an area of initial slip on the fault surface that forms
5576-587: The 2004 Indian Ocean earthquake is simultaneously one of the deadliest earthquakes in history. Earthquakes that caused the greatest loss of life, while powerful, were deadly because of their proximity to either heavily populated areas or the ocean, where earthquakes often create tsunamis that can devastate communities thousands of kilometers away. Regions most at risk for great loss of life include those where earthquakes are relatively rare but powerful, and poor regions with lax, unenforced, or nonexistent seismic building codes. Tectonic earthquakes occur anywhere on
Lubbock Avalanche-Journal - Misplaced Pages Continue
5712-499: The Himalayan Mountains . With the rapid growth of mega-cities such as Mexico City, Tokyo, and Tehran in areas of high seismic risk , some seismologists are warning that a single earthquake may claim the lives of up to three million people. While most earthquakes are caused by the movement of the Earth's tectonic plates , human activity can also produce earthquakes. Activities both above ground and below may change
5848-550: The I Leon Kruczkowski High School in Tychy and individuals associated with the school's sports club. Earthquake An earthquake – also called a quake , tremor , or temblor – is the shaking of the Earth 's surface resulting from a sudden release of energy in the lithosphere that creates seismic waves . Earthquakes can range in intensity , from those so weak they cannot be felt, to those violent enough to propel objects and people into
5984-520: The Lubbock Avalanche-Journal include CBS Evening News anchor Scott Pelley . Avalanche An avalanche is a rapid flow of snow down a slope , such as a hill or mountain. Avalanches can be triggered spontaneously, by factors such as increased precipitation or snowpack weakening, or by external means such as humans, other animals, and earthquakes . Primarily composed of flowing snow and air, large avalanches have
6120-412: The Lubbock Avalanche-Journal infuriated farmers, who blockaded the newspaper's delivery docks with their tractors. The unsigned editorial accused farmers of using the "anti-social tactics of union goons." Farmers demanded an apology and formed a tractor blockade, preventing trucks from delivering newspapers. Editor Jay Harris spoke with the farmers and indicated the editorial was not intended to imply that
6256-694: The Rogers Pass avalanche in British Columbia , Canada. During World War I , an estimated 40,000 to 80,000 soldiers died as a result of avalanches during the mountain campaign in the Alps at the Austrian-Italian front, many of which were caused by artillery fire. Some 10,000 men, from both sides, died in avalanches in December 1916. In the northern hemisphere winter of 1950–1951 approximately 649 avalanches were recorded in
6392-802: The Whittenburg family in Amarillo acquired the Avalanche-Journal , after their Panhandle Publishing Company was merged with Globe-News company. In 1972, both The Avalanche-Journal and The Amarillo Globe-News were acquired by Morris Communications of Augusta , Georgia . On Tuesday, May 12, 1970, the day after a massive F5 tornado had devastated much of downtown Lubbock—including the Avalanche-Journal building at 8th Street and Avenue J—the newspaper managed to publish an eight-page edition by dictating reports to its sister paper,
6528-502: The angle of repose , depends on a variety of factors, such as crystal form and moisture content. Some forms of drier and colder snow will only stick to shallower slopes, while wet and warm snow can bond to very steep surfaces. In coastal mountains, such as the Cordillera del Paine region of Patagonia , deep snowpacks collect on vertical and even overhanging rock faces. The slope angle that can allow moving snow to accelerate depends on
6664-496: The avalanche dam on Mount Stephen in Kicking Horse Pass , have been constructed to protect people and property by redirecting the flow of avalanches. Deep debris deposits from avalanches will collect in catchments at the terminus of a run out, such as gullies and river beds. Slopes flatter than 25 degrees or steeper than 60 degrees typically have a lower incidence of avalanches. Human-triggered avalanches have
6800-426: The brittle-ductile transition zone and upwards by the ground surface. The mechanics of this process are poorly understood because it is difficult either to recreate such rapid movements in a laboratory or to record seismic waves close to a nucleation zone due to strong ground motion. In most cases, the rupture speed approaches, but does not exceed, the shear wave (S wave) velocity of the surrounding rock. There are
6936-413: The least principal stress. Strike-slip faulting is intermediate between the other two types described above. This difference in stress regime in the three faulting environments can contribute to differences in stress drop during faulting, which contributes to differences in the radiated energy, regardless of fault dimensions. For every unit increase in magnitude, there is a roughly thirty-fold increase in
SECTION 50
#17328016393547072-553: The 20th century and has been inferred for older anomalous clusters of large earthquakes in the Middle East. It is estimated that around 500,000 earthquakes occur each year, detectable with current instrumentation. About 100,000 of these can be felt. Minor earthquakes occur very frequently around the world in places like California and Alaska in the U.S., as well as in El Salvador, Mexico, Guatemala, Chile, Peru, Indonesia,
7208-433: The 21st century. Seismic waves travel through the Earth's interior and can be recorded by seismometers at great distances. The surface-wave magnitude was developed in the 1950s as a means to measure remote earthquakes and to improve the accuracy for larger events. The moment magnitude scale not only measures the amplitude of the shock but also takes into account the seismic moment (total rupture area, average slip of
7344-399: The Earth's core was located in 1913 by Beno Gutenberg . S waves and later arriving surface waves do most of the damage compared to P waves. P waves squeeze and expand the material in the same direction they are traveling, whereas S waves shake the ground up and down and back and forth. Earthquakes are not only categorized by their magnitude but also by the place where they occur. The world
7480-484: The Earth. Also, the depth of the hypocenter can be computed roughly. P wave speed S waves speed As a consequence, the first waves of a distant earthquake arrive at an observatory via the Earth's mantle. On average, the kilometer distance to the earthquake is the number of seconds between the P- and S wave times 8. Slight deviations are caused by inhomogeneities of subsurface structure. By such analysis of seismograms,
7616-594: The Globe-News, in Amarillo, Texas. That morning a print run of 60,000 copies bearing the page-one headline "Twister Smashes Lubbock, 20 Dead, Hundreds Injured," the first printed news of the storm, went out from Amarillo, 100 miles north of Lubbock. The May 13 edition, listing names of the known dead, was published in the same manner, and by May 14 The Avalanche-Journal was again printed locally. During strikes over crop support prices in 1977, an editorial published in
7752-509: The Khumbu Icefall), triggering a movement of broken ice chunks. The resulting movement is more analogous to a rockfall or a landslide than a snow avalanche. They are typically very difficult to predict and almost impossible to mitigate. As an avalanche moves down a slope it follows a certain pathway that is dependent on the slope's degree of steepness and the volume of snow/ice involved in the mass movement . The origin of an avalanche
7888-573: The Philippines, Iran, Pakistan, the Azores in Portugal, Turkey, New Zealand, Greece, Italy, India, Nepal, and Japan. Larger earthquakes occur less frequently, the relationship being exponential ; for example, roughly ten times as many earthquakes larger than magnitude 4 occur than earthquakes larger than magnitude 5. In the (low seismicity) United Kingdom, for example, it has been calculated that
8024-517: The SAMOS-AT avalanche simulation software and the RAMMS software. Preventative measures are employed in areas where avalanches pose a significant threat to people, such as ski resorts , mountain towns, roads, and railways. There are several ways to prevent avalanches and lessen their power and develop preventative measures to reduce the likelihood and size of avalanches by disrupting the structure of
8160-473: The United States. In 2001 it was reported that globally an average of 150 people die each year from avalanches. Three of the deadliest recorded avalanches have killed over a thousand people each. Doug Fesler and Jill Fredston developed a conceptual model of the three primary elements of avalanches: terrain, weather, and snowpack. Terrain describes the places where avalanches occur, weather describes
8296-586: The air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume. In its most general sense, the word earthquake is used to describe any seismic event that generates seismic waves. Earthquakes can occur naturally or be induced by human activities, such as mining , fracking , and nuclear tests . The initial point of rupture
SECTION 60
#17328016393548432-408: The ambient air temperature can be much colder. When a temperature gradient greater than 10 °C change per vertical meter of snow is sustained for more than a day, angular crystals called depth hoar or facets begin forming in the snowpack because of rapid moisture transport along the temperature gradient. These angular crystals, which bond poorly to one another and the surrounding snow, often become
8568-426: The avalanche's path to slow it down. Finally, along transportation corridors, large shelters, called snow sheds , can be built directly in the slide path of an avalanche to protect traffic from avalanches. Warning systems can detect avalanches which develop slowly, such as ice avalanches caused by icefalls from glaciers. Interferometric radars, high-resolution cameras, or motion sensors can monitor instable areas over
8704-463: The average recurrences are: an earthquake of 3.7–4.6 every year, an earthquake of 4.7–5.5 every 10 years, and an earthquake of 5.6 or larger every 100 years. This is an example of the Gutenberg–Richter law . The number of seismic stations has increased from about 350 in 1931 to many thousands today. As a result, many more earthquakes are reported than in the past, but this is because of
8840-404: The brittle crust. Thus, earthquakes with magnitudes much larger than 8 are not possible. In addition, there exists a hierarchy of stress levels in the three fault types. Thrust faults are generated by the highest, strike-slip by intermediate, and normal faults by the lowest stress levels. This can easily be understood by considering the direction of the greatest principal stress, the direction of
8976-401: The building of a ski resort, to reduce the strength of avalanches. In turn, socio-environmental changes can influence the occurrence of damaging avalanches: some studies linking changes in land-use/land-cover patterns and the evolution of snow avalanche damage in mid latitude mountains show the importance of the role played by vegetation cover, that is at the root of the increase of damage when
9112-432: The bulk of the avalanche. Driving an avalanche is the component of the avalanche's weight parallel to the slope; as the avalanche progresses any unstable snow in its path will tend to become incorporated, so increasing the overall weight. This force will increase as the steepness of the slope increases, and diminish as the slope flattens. Resisting this are a number of components that are thought to interact with each other:
9248-435: The capability to capture and move ice, rocks, and trees. Avalanches occur in two general forms, or combinations thereof: slab avalanches made of tightly packed snow, triggered by a collapse of an underlying weak snow layer, and loose snow avalanches made of looser snow. After being set off, avalanches usually accelerate rapidly and grow in mass and volume as they capture more snow. If an avalanche moves fast enough, some of
9384-566: The cause of other earthquakes in the past century. A Columbia University paper suggested that the 8.0 magnitude 2008 Sichuan earthquake was induced by loading from the Zipingpu Dam , though the link has not been conclusively proved. The instrumental scales used to describe the size of an earthquake began with the Richter scale in the 1930s. It is a relatively simple measurement of an event's amplitude, and its use has become minimal in
9520-409: The depths, crystal forms, and layering of the seasonal snowpack. Slab avalanches are formed frequently in snow that has been deposited, or redeposited by wind. They have the characteristic appearance of a block (slab) of snow cut out from its surroundings by fractures. Elements of slab avalanches include a crown fracture at the top of the start zone, flank fractures on the sides of the start zones, and
9656-693: The difference in the causes of avalanche accidents, and the activities pursued in the two settings, avalanche and disaster management professionals have developed two related preparedness, rescue, and recovery strategies for each of the settings. Two avalanches occurred in March 1910 in the Cascade and Selkirk Mountain ranges; on 1 March the Wellington avalanche killed 96 in Washington state , United States. Three days later 62 railroad workers were killed in
9792-529: The dip angle of the rupture plane is very shallow, typically about 10 degrees. Thus, the width of the plane within the top brittle crust of the Earth can reach 50–100 km (31–62 mi) (such as in Japan, 2011 , or in Alaska, 1964 ), making the most powerful earthquakes possible. The majority of tectonic earthquakes originate in the Ring of Fire at depths not exceeding tens of kilometers. Earthquakes occurring at
9928-678: The displacement along the fault is in the direction of dip and where movement on them involves a vertical component. Many earthquakes are caused by movement on faults that have components of both dip-slip and strike-slip; this is known as oblique slip. The topmost, brittle part of the Earth's crust, and the cool slabs of the tectonic plates that are descending into the hot mantle, are the only parts of our planet that can store elastic energy and release it in fault ruptures. Rocks hotter than about 300 °C (572 °F) flow in response to stress; they do not rupture in earthquakes. The maximum observed lengths of ruptures and mapped faults (which may break in
10064-439: The distance from the earthquake and the underlying rock or soil makeup. The first scale for measuring earthquake magnitudes was developed by Charles Francis Richter in 1935. Subsequent scales ( seismic magnitude scales ) have retained a key feature, where each unit represents a ten-fold difference in the amplitude of the ground shaking and a 32-fold difference in energy. Subsequent scales are also adjusted to have approximately
10200-554: The early 1900s, so it is too early to categorically state that this is the case. Most of the world's earthquakes (90%, and 81% of the largest) take place in the 40,000-kilometre-long (25,000 mi), horseshoe-shaped zone called the circum-Pacific seismic belt, known as the Pacific Ring of Fire , which for the most part bounds the Pacific plate . Massive earthquakes tend to occur along other plate boundaries too, such as along
10336-532: The early 20th century, notably the work of Professor Lagotala in preparation for the 1924 Winter Olympics in Chamonix . His method was developed by A. Voellmy and popularised following the publication in 1955 of his Ueber die Zerstoerungskraft von Lawinen (On the Destructive Force of Avalanches). Voellmy used a simple empirical formula, treating an avalanche as a sliding block of snow moving with
10472-403: The earth where there is sufficient stored elastic strain energy to drive fracture propagation along a fault plane . The sides of a fault move past each other smoothly and aseismically only if there are no irregularities or asperities along the fault surface that increases the frictional resistance. Most fault surfaces do have such asperities, which leads to a form of stick-slip behavior . Once
10608-426: The earthquakes strike a fault in clusters, each triggered by the shaking or stress redistribution of the previous earthquakes. Similar to aftershocks but on adjacent segments of fault, these storms occur over the course of years, with some of the later earthquakes as damaging as the early ones. Such a pattern was observed in the sequence of about a dozen earthquakes that struck the North Anatolian Fault in Turkey in
10744-504: The energy released. For instance, an earthquake of magnitude 6.0 releases approximately 32 times more energy than a 5.0 magnitude earthquake and a 7.0 magnitude earthquake releases 1,000 times more energy than a 5.0 magnitude earthquake. An 8.6-magnitude earthquake releases the same amount of energy as 10,000 atomic bombs of the size used in World War II . This is so because the energy released in an earthquake, and thus its magnitude,
10880-532: The fact that each avalanche is unique depending on the stability of the snowpack that it was derived from as well as the environmental or human influences that triggered the mass movement. People caught in avalanches can die from suffocation , trauma, or hypothermia . From "1950–1951 to 2020–2021" there were 1,169 people who died in avalanches in the United States. For the 11-year period ending April 2006, 445 people died in avalanches throughout North America. On average, 28 people die in avalanches every winter in
11016-458: The fact that no single earthquake in the sequence is the main shock, so none has a notably higher magnitude than another. An example of an earthquake swarm is the 2004 activity at Yellowstone National Park . In August 2012, a swarm of earthquakes shook Southern California 's Imperial Valley , showing the most recorded activity in the area since the 1970s. Sometimes a series of earthquakes occur in what has been called an earthquake storm , where
11152-492: The farmers were goons. In 2008, The Avalanche-Journal led an investigation into the 1985 rape conviction of Tim Cole , a Texas Tech University student who had died in prison in 1999 at the age of thirty-nine. The A-J's three-part series on Cole's exoneration in light of DNA evidence, "Hope Deferred," helped prompt a legislative ruling in Texas permitting posthumous pardons, and on March 1, 2010, Governor Rick Perry granted
11288-462: The fault has locked, continued relative motion between the plates leads to increasing stress and, therefore, stored strain energy in the volume around the fault surface. This continues until the stress has risen sufficiently to break through the asperity, suddenly allowing sliding over the locked portion of the fault, releasing the stored energy . This energy is released as a combination of radiated elastic strain seismic waves , frictional heating of
11424-411: The fault plane that holds it in place, and fluids can exert a lubricating effect. As thermal overpressurization may provide positive feedback between slip and strength fall at the fault plane, a common opinion is that it may enhance the faulting process instability. After the mainshock, the pressure gradient between the fault plane and the neighboring rock causes a fluid flow that increases pore pressure in
11560-418: The fault surface, and cracking of the rock, thus causing an earthquake. This process of gradual build-up of strain and stress punctuated by occasional sudden earthquake failure is referred to as the elastic-rebound theory . It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth or
11696-541: The fault, and rigidity of the rock). The Japan Meteorological Agency seismic intensity scale , the Medvedev–Sponheuer–Karnik scale , and the Mercalli intensity scale are based on the observed effects and are related to the intensity of shaking. The shaking of the earth is a common phenomenon that has been experienced by humans from the earliest of times. Before the development of strong-motion accelerometers,
11832-452: The flow of a wet snow avalanche can plough through soft snow, and can scour boulders, earth, trees, and other vegetation; leaving exposed and often scored ground in the avalanche track. Wet snow avalanches can be initiated from either loose snow releases, or slab releases, and only occur in snowpacks that are water saturated and isothermally equilibrated to the melting point of water. The isothermal characteristic of wet snow avalanches has led to
11968-417: The focus. Once the rupture has been initiated, it begins to propagate away from the focus, spreading out along the fault surface. Lateral propagation will continue until either the rupture reaches a barrier, such as the end of a fault segment, or a region on the fault where there is insufficient stress to allow continued rupture. For larger earthquakes, the depth extent of rupture will be constrained downwards by
12104-406: The force that "pushes" the rock mass during the faulting. In the case of normal faults, the rock mass is pushed down in a vertical direction, thus the pushing force ( greatest principal stress) equals the weight of the rock mass itself. In the case of thrusting, the rock mass "escapes" in the direction of the least principal stress, namely upward, lifting the rock mass, and thus, the overburden equals
12240-460: The friction between the avalanche and the surface beneath; friction between the air and snow within the fluid; fluid-dynamic drag at the leading edge of the avalanche; shear resistance between the avalanche and the air through which it is passing, and shear resistance between the fragments within the avalanche itself. An avalanche will continue to accelerate until the resistance exceeds the forward force. Attempts to model avalanche behaviour date from
12376-470: The greatest incidence when the snow's angle of repose is between 35 and 45 degrees; the critical angle, the angle at which human-triggered avalanches are most frequent, is 38 degrees. When the incidence of human triggered avalanches is normalized by the rates of recreational use, however, hazard increases uniformly with slope angle, and no significant difference in hazard for a given exposure direction can be found. The rule of thumb is: A slope that
12512-866: The ground surface beneath the snowpack influences the stability of the snowpack, either being a source of strength or weakness. Avalanches are unlikely to form in very thick forests, but boulders and sparsely distributed vegetation can create weak areas deep within the snowpack through the formation of strong temperature gradients. Full-depth avalanches (avalanches that sweep a slope virtually clean of snow cover) are more common on slopes with smooth ground, such as grass or rock slabs. Generally speaking, avalanches follow drainages down-slope, frequently sharing drainage features with summertime watersheds. At and below tree line , avalanche paths through drainages are well defined by vegetation boundaries called trim lines , which occur where avalanches have removed trees and prevented regrowth of large vegetation. Engineered drainages, such as
12648-508: The influence of the meteorological conditions that prevail after deposition. For an avalanche to occur, it is necessary that a snowpack have a weak layer (or instability) below a slab of cohesive snow. In practice the formal mechanical and structural factors related to snowpack instability are not directly observable outside of laboratories, thus the more easily observed properties of the snow layers (e.g. penetration resistance, grain size, grain type, temperature) are used as index measurements of
12784-410: The intensity of a seismic event was estimated based on the observed effects. Magnitude and intensity are not directly related and calculated using different methods. The magnitude of an earthquake is a single value that describes the size of the earthquake at its source. Intensity is the measure of shaking at different locations around the earthquake. Intensity values vary from place to place, depending on
12920-476: The lengths along subducting plate margins, and those along normal faults are even shorter. Normal faults occur mainly in areas where the crust is being extended such as a divergent boundary . Earthquakes associated with normal faults are generally less than magnitude 7. Maximum magnitudes along many normal faults are even more limited because many of them are located along spreading centers, as in Iceland, where
13056-413: The likelihood of an avalanche. Observation and experience has shown that newly fallen snow requires time to bond with the snow layers beneath it, especially if the new snow falls during very cold and dry conditions. If ambient air temperatures are cold enough, shallow snow above or around boulders, plants, and other discontinuities in the slope, weakens from rapid crystal growth that occurs in the presence of
13192-450: The local humidity, water vapour flux, temperature and heat flux. The top of the snowpack is also extensively influenced by incoming radiation and the local air flow. One of the aims of avalanche research is to develop and validate computer models that can describe the evolution of the seasonal snowpack over time. A complicating factor is the complex interaction of terrain and weather, which causes significant spatial and temporal variability of
13328-402: The main causes of these aftershocks, along with the crust around the ruptured fault plane as it adjusts to the effects of the mainshock. An aftershock is in the same region as the main shock but always of a smaller magnitude, however, they can still be powerful enough to cause even more damage to buildings that were already previously damaged from the mainshock. If an aftershock is larger than
13464-414: The mainshock, the aftershock is redesignated as the mainshock and the original main shock is redesignated as a foreshock . Aftershocks are formed as the crust around the displaced fault plane adjusts to the effects of the mainshock. Earthquake swarms are sequences of earthquakes striking in a specific area within a short period. They are different from earthquakes followed by a series of aftershocks by
13600-526: The mechanical properties of the snow (e.g. tensile strength , friction coefficients, shear strength , and ductile strength ). This results in two principal sources of uncertainty in determining snowpack stability based on snow structure: First, both the factors influencing snow stability and the specific characteristics of the snowpack vary widely within small areas and time scales, resulting in significant difficulty extrapolating point observations of snow layers across different scales of space and time. Second,
13736-421: The meteorological conditions that create the snowpack, and snowpack describes the structural characteristics of snow that make avalanche formation possible. Avalanche formation requires a slope shallow enough for snow to accumulate but steep enough for the snow to accelerate once set in motion by the combination of mechanical failure (of the snowpack) and gravity. The angle of the slope that can hold snow, called
13872-414: The new snow has insufficient time to bond to underlying snow layers. Rain has a similar effect. In the short term, rain causes instability because, like a heavy snowfall, it imposes an additional load on the snowpack and once rainwater seeps down through the snow, acts as a lubricant, reducing the natural friction between snow layers that holds the snowpack together. Most avalanches happen during or soon after
14008-427: The night and of unstable surface snow during the day. Slopes in the lee of a ridge or of another wind obstacle accumulate more snow and are more likely to include pockets of deep snow, wind slabs , and cornices , all of which, when disturbed, may result in avalanche formation. Conversely, the snowpack on a windward slope is often much shallower than on a lee slope. Avalanches and avalanche paths share common elements:
14144-407: The path. The frequency with which avalanches form in a given area is known as the return period . The start zone of an avalanche must be steep enough to allow snow to accelerate once set in motion, additionally convex slopes are less stable than concave slopes because of the disparity between the tensile strength of snow layers and their compressive strength . The composition and structure of
14280-414: The prevention of development in these areas. To mitigate the effect of avalanches the construction of artificial barriers can be very effective in reducing avalanche damage. There are several types: One kind of barrier ( snow net ) uses a net strung between poles that are anchored by guy wires in addition to their foundations. These barriers are similar to those used for rockslides . Another type of barrier
14416-550: The protective forest is deforested (because of demographic growth, intensive grazing and industrial or legal causes), and at the root of the decrease of damage because of the transformation of a traditional land-management system based on overexploitation into a system based on land marginalization and reforestation, something that has happened mainly since the mid-20th century in mountain environments of developed countries. In many areas, regular avalanche tracks can be identified and precautions can be taken to minimize damage, such as
14552-460: The province of Bayburt , Turkey . A large avalanche in Montroc, France , in 1999, 300,000 cubic metres of snow slid on a 30° slope, achieving a speed in the region of 100 km/h (62 mph). It killed 12 people in their chalets under 100,000 tons of snow, 5 meters (16 feet) deep. The mayor of Chamonix was convicted of second-degree murder for not evacuating the area, but received
14688-804: The recent work was carried out as part of the SATSIE (Avalanche Studies and Model Validation in Europe) research project supported by the European Commission which produced the leading-edge MN2L model, now in use with the Service Restauration des Terrains en Montagne (Mountain Rescue Service) in France, and D2FRAM (Dynamical Two-Flow-Regime Avalanche Model), which was still undergoing validation as of 2007. Other known models are
14824-409: The relationship between readily observable snowpack characteristics and the snowpack's critical mechanical properties has not been completely developed. While the deterministic relationship between snowpack characteristics and snowpack stability is still a matter of ongoing scientific study, there is a growing empirical understanding of the snow composition and deposition characteristics that influence
14960-403: The rival Lubbock Daily Journal , editor Charles A. Guy and partner Dorrance Roderick, bought The Avalanche to form The Lubbock Avalanche-Journal. The pair partnered with Houston Harte and Bernard Hanks, later of Harte Hanks , as well as J. Lindsay Nunn of The Amarillo Daily News and Post . In 1928, Guy, Roderick, and Nunn bought control of the Avalanche-Journal from Harte and Hanks. Guy
15096-530: The rock. In the coseismic phase, such an increase can significantly affect slip evolution and speed, in the post-seismic phase it can control the Aftershock sequence because, after the main event, pore pressure increase slowly propagates into the surrounding fracture network. From the point of view of the Mohr-Coulomb strength theory , an increase in fluid pressure reduces the normal stress acting on
15232-437: The rupture of geological faults but also by other events such as volcanic activity, landslides, mine blasts, fracking and nuclear tests . An earthquake's point of initial rupture is called its hypocenter or focus. The epicenter is the point at ground level directly above the hypocenter. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time. The seismicity at
15368-522: The same numeric value within the limits of the scale. Although the mass media commonly reports earthquake magnitudes as "Richter magnitude" or "Richter scale", standard practice by most seismological authorities is to express an earthquake's strength on the moment magnitude scale, which is based on the actual energy released by an earthquake, the static seismic moment. Every earthquake produces different types of seismic waves, which travel through rock with different velocities: Propagation velocity of
15504-458: The secondary term of isothermal slides found in the literature (for example in Daffern, 1999, p. 93). At temperate latitudes wet snow avalanches are frequently associated with climatic avalanche cycles at the end of the winter season, when there is significant daytime warming. An ice avalanche occurs when a large piece of ice, such as from a serac or calving glacier, falls onto ice (such as
15640-464: The seismic waves through solid rock ranges from approx. 3 km/s (1.9 mi/s) up to 13 km/s (8.1 mi/s), depending on the density and elasticity of the medium. In the Earth's interior, the shock- or P waves travel much faster than the S waves (approx. relation 1.7:1). The differences in travel time from the epicenter to the observatory are a measure of the distance and can be used to image both sources of earthquakes and structures within
15776-416: The slab may not have time to adjust to the new load. Even on a clear day, wind can quickly load a slope with snow by blowing snow from one place to another. Top-loading occurs when wind deposits snow from the top of a slope; cross-loading occurs when wind deposits snow parallel to the slope. When a wind blows over the top of a mountain, the leeward, or downwind, side of the mountain experiences top-loading, from
15912-413: The snow may mix with the air, forming a powder snow avalanche . Though they appear to share similarities, avalanches are distinct from slush flows , mudslides , rock slides , and serac collapses. They are also different from large scale movements of ice . Avalanches can happen in any mountain range that has an enduring snowpack. They are most frequent in winter or spring, but may occur at any time of
16048-429: The snowpack can hide below well-consolidated surface layers. Uncertainty associated with the empirical understanding of the factors influencing snow stability leads most professional avalanche workers to recommend conservative use of avalanche terrain relative to current snowpack instability. Avalanches only occur in a standing snowpack. Typically winter seasons at high latitudes, high altitudes, or both have weather that
16184-423: The snowpack, and the heat stored in the snow is re-radiated into the atmosphere. When a slab avalanche forms, the slab disintegrates into increasingly smaller fragments as the snow travels downhill. If the fragments become small enough the outer layer of the avalanche, called a saltation layer, takes on the characteristics of a fluid . When sufficiently fine particles are present they can become airborne and, given
16320-460: The snowpack, such as melting due to solar radiation, is the second-largest cause of natural avalanches. Other natural causes include rain, earthquakes, rockfall, and icefall. Artificial triggers of avalanches include skiers, snowmobiles, and controlled explosive work. Contrary to popular belief, avalanches are not triggered by loud sound; the pressure from sound is orders of magnitude too small to trigger an avalanche. Avalanche initiation can start at
16456-479: The snowpack, while passive measures reinforce and stabilize the snowpack in situ . The simplest active measure is repeatedly traveling on a snowpack as snow accumulates; this can be by means of boot-packing, ski-cutting, or machine grooming . Explosives are used extensively to prevent avalanches, by triggering smaller avalanches that break down instabilities in the snowpack, and removing overburden that can result in larger avalanches. Explosive charges are delivered by
16592-402: The snowpack; conversely, very cold, windy, or hot weather will weaken the snowpack. At temperatures close to the freezing point of water, or during times of moderate solar radiation, a gentle freeze-thaw cycle will take place. The melting and refreezing of water in the snow strengthens the snowpack during the freezing phase and weakens it during the thawing phase. A rapid rise in temperature, to
16728-557: The state's first posthumous pardon to Cole. The Avalanche-Journal launched a full-color lifestyle publication, Lubbock Magazine , in April 2008. The magazine is published eight times a year. In February 2011, The Avalanche-Journal became the first media company on the South Plains to launch an application for the iPad. In 2017, Morris Communications sold its newspapers to GateHouse Media . Journalists who got their start at
16864-401: The strength. The load is straightforward; it is the weight of the snow. However, the strength of the snowpack is much more difficult to determine and is extremely heterogeneous. It varies in detail with properties of the snow grains, size, density, morphology, temperature, water content; and the properties of the bonds between the grains. These properties may all metamorphose in time according to
17000-422: The stresses and strains on the crust, including building reservoirs, extracting resources such as coal or oil, and injecting fluids underground for waste disposal or fracking . Most of these earthquakes have small magnitudes. The 5.7 magnitude 2011 Oklahoma earthquake is thought to have been caused by disposing wastewater from oil production into injection wells , and studies point to the state's oil industry as
17136-490: The surrounding fracture networks; such an increase may trigger new faulting processes by reactivating adjacent faults, giving rise to aftershocks. Analogously, artificial pore pressure increase, by fluid injection in Earth's crust, may induce seismicity . Tides may trigger some seismicity . Most earthquakes form part of a sequence, related to each other in terms of location and time. Most earthquake clusters consist of small tremors that cause little to no damage, but there
17272-443: The thickness of the brittle layer is only about six kilometres (3.7 mi). Reverse faults occur in areas where the crust is being shortened such as at a convergent boundary . Reverse faults, particularly those along convergent boundaries, are associated with the most powerful earthquakes (called megathrust earthquakes ) including almost all of those of magnitude 8 or more. Megathrust earthquakes are responsible for about 90% of
17408-421: The top to the bottom of that lee slope. When the wind blows across a ridge that leads up the mountain, the leeward side of the ridge is subject to cross-loading. Cross-loaded wind-slabs are usually difficult to identify visually. Snowstorms and rainstorms are important contributors to avalanche danger. Heavy snowfall will cause instability in the existing snowpack, both because of the additional weight and because
17544-461: The total seismic moment released worldwide. Strike-slip faults are steep structures where the two sides of the fault slip horizontally past each other; transform boundaries are a particular type of strike-slip fault. Strike-slip faults, particularly continental transforms , can produce major earthquakes up to about magnitude 8. Strike-slip faults tend to be oriented near vertically, resulting in an approximate width of 10 km (6.2 mi) within
17680-505: The universality of such events beyond Earth. An earthquake is the shaking of the surface of Earth resulting from a sudden release of energy in the lithosphere that creates seismic waves . Earthquakes may also be referred to as quakes , tremors , or temblors . The word tremor is also used for non-earthquake seismic rumbling . In its most general sense, an earthquake is any seismic event—whether natural or caused by humans—that generates seismic waves. Earthquakes are caused mostly by
17816-436: The vast improvement in instrumentation, rather than an increase in the number of earthquakes. The United States Geological Survey (USGS) estimates that, since 1900, there have been an average of 18 major earthquakes (magnitude 7.0–7.9) and one great earthquake (magnitude 8.0 or greater) per year, and that this average has been relatively stable. In recent years, the number of major earthquakes per year has decreased, though this
17952-449: The warmer months. In addition to industrially manufactured barriers, landscaped barriers, called avalanche dams stop or deflect avalanches with their weight and strength. These barriers are made out of concrete, rocks, or earth. They are usually placed right above the structure, road, or railway that they are trying to protect, although they can also be used to channel avalanches into other barriers. Occasionally, earth mounds are placed in
18088-483: The year. In mountainous areas, avalanches are among the most serious natural hazards to life and property, so great efforts are made in avalanche control . There are many classification systems for the different forms of avalanches. Avalanches can be described by their size, destructive potential, initiation mechanism, composition, and dynamics . Most avalanches occur spontaneously during storms under increased load due to snowfall and/or erosion . Metamorphic changes in
18224-407: Was named editor and publisher in 1931 of The Avalanche-Journal , a position he held until 1972. Other journalists to serve as editor were Jay Harris, Burle Pettit, Randy Sanders, Terry Greenberg, James Bennett, Jill Nevels-Haun and Adam Young. The Amarillo Globe-News Publishing Company, headed by Eugene A. Howe and Wilbur C. Hawk, would later own the majority of The Avalanche-Journal . In 1951,
18360-464: Was snowboarding recreationally in this backcountry, bowl-shaped run and triggered the avalanche. He was carried nearly 2,000 feet to the base of the mountain and was not successfully rescued. On 28 January 2003, the Tatra Mountains avalanche swept away nine out of a thirteen-member group heading to the summit of Rysy in the Tatra Mountains . The participants of the trip were students from
18496-641: Was the deadliest of the 20th century. The 1960 Chilean earthquake is the largest earthquake that has been measured on a seismograph, reaching 9.5 magnitude on 22 May 1960. Its epicenter was near Cañete, Chile. The energy released was approximately twice that of the next most powerful earthquake, the Good Friday earthquake (27 March 1964), which was centered in Prince William Sound , Alaska. The ten largest recorded earthquakes have all been megathrust earthquakes ; however, of these ten, only
#353646