Misplaced Pages

MIM-104 Patriot

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A surface-to-air missile ( SAM ), also known as a ground-to-air missile ( GTAM ) or surface-to-air guided weapon ( SAGW ), is a missile designed to be launched from the ground or the sea to destroy aircraft or other missiles. It is one type of anti-aircraft system ; in modern armed forces, missiles have replaced most other forms of dedicated anti-aircraft weapons, with anti-aircraft guns pushed into specialized roles.

#414585

116-492: The MIM-104 Patriot is a mobile interceptor missile surface-to-air missile (SAM) system, the primary such system used by the United States Army and several allied states. It is manufactured by the U.S. defense contractor Raytheon and derives its name from the radar component of the weapon system. The AN/MPQ-53 at the heart of the system is known as the "Phased Array Tracking Radar to Intercept on Target," which

232-600: A "flak rocket" concept, which led Walter Dornberger to ask Wernher von Braun to prepare a study on a guided missile able to reach between 15,000 and 18,000 m (49,000 and 59,000 ft) altitude. Von Braun became convinced a better solution was a manned rocket interceptor, and said as much to the director of the T-Amt , Roluf Lucht , in July. The directors of the Luftwaffe flak arm were not interested in manned aircraft, and

348-594: A "hit" is essentially a fixed percentage per round. In order to attack a target, guns fire continually while the aircraft are in range in order to launch as many shells as possible, increasing the chance that one of these will end up within the lethal range. Against the Boeing B-17 , which operated just within the range of the numerous German eighty-eights , an average of 2,805 rounds had to be fired per bomber destroyed. Bombers flying at higher altitudes require larger guns and shells to reach them. This greatly increases

464-739: A 300 to 600 pounds (140 to 270 kg) warhead for a 30 to 60 percent kill probability. This weapon did not emerge for 16 years, when it entered operation as the RIM-8 Talos . Heavy shipping losses to kamikaze attacks during the Liberation of the Philippines and the Battle of Okinawa provided additional incentive for guided missile development. This led to the British Fairey Stooge and Brakemine efforts, and

580-532: A SAM system in earnest with the opening of the Cold War . Joseph Stalin was worried that Moscow would be subjected to American and British air raids , like those against Berlin , and, in 1951, he demanded that a missile system to counter a 900 bomber raid be built as quickly as possible. This led to the S-25 Berkut system ( NATO reporting name : SA-1 "Guild"), which was designed, developed and deployed in

696-407: A conventional war. Once a major group unto itself, medium-range designs have seen less development since the 1990s, as the focus has changed to unconventional warfare. Developments have also been made in onboard maneuverability. Israel's David's Sling Stunner missile is designed to intercept the newest generation of tactical ballistic missiles at low altitude. The multi-stage interceptor consists of

812-503: A coordinated, secure, integrated, mobile air defense system. The Patriot system is modular and highly mobile. A battery -sized element can be installed in less than an hour. All components, consisting of the fire control section (radar set, engagement control station, antenna mast group, electric power plant) and launchers, are truck- or trailer-mounted. The radar set and launchers (with missiles) are mounted on M860 semi-trailers, which are towed by Oshkosh M983 HEMTTs . Missile reloading

928-491: A definitive agreement to acquire Hinowa S.p.A., a privately held international company and manufacturer of track-based aerial work platforms, mini dumpers, lift trucks and undercarriages. Once complete, Hinowa will become part of the Oshkosh Access Equipment segment. The current and recent main defense products of Oshkosh Defense include the following: Products for these market segments are produced under

1044-692: A degree, leading to the introduction of the FIM-43 Redeye , SA-7 Grail and Blowpipe . Rapid improvement in the 1980s led to second generation designs, like the FIM-92 Stinger , 9K34 Strela-3 (SA-14), Igla-1 and Starstreak , with dramatically improved performance. By the 1990s to the 2010s, the Chinese had developed designs drawing influence from these, notably the FN-6 and the QW series . Through

1160-416: A drawing was presented, was by inventor Gustav Rasmus in 1931, who proposed a design that would home in on the sound of an aircraft's engines. During World War II , efforts were started to develop surface-to-air missiles as it was generally considered that flak was of little use against bombers of ever-increasing performance. The lethal radius of a flak shell is fairly small, and the chance of delivering

1276-581: A fire apparatus manufacturer in Appleton, Wisconsin , and JLG Industries , a manufacturer of lift equipment, including aerial lifts, boom lifts, scissor lifts, telehandlers and low-level access lifts. Based in Oshkosh, Wisconsin , the company employs approximately 15,000 people around the world at 130 facilities in 24 countries. It is organized in four primary business groups: access equipment, defense, fire and emergency, and commercial. Founded in 1917 as

SECTION 10

#1732765903415

1392-596: A firing battery an address on the battalion data network, and sends/receives data from across the battalion. It also "translates" data coming from the WCC to the DLT, facilitating communication with the launchers. Patriot's crew stations are referred to as Manstation 1 and 3 (MS1 and MS3). These are the stations where Patriot operators interface with the system. The manstations consist of a monochrome (green and black) screen surrounded by various Switch Indicators. Each manstation also has

1508-615: A full fuel tank. The EPP delivers its power to the Radar and ECS through cables stored in reels alongside the generators. It powers the AMG via a cable routed through the ECS. The M90x Launching Stations are remotely operated, self-contained units. The ECS controls operation of the launchers through each launcher's DLT, via fiber optic or VHF (SINCGARS) data link. Integral levelling equipment permits emplacement on slopes of up to 10 degrees. Each launcher

1624-467: A head-on approach at low speeds comparable to manned aircraft. These designs included the Feuerlilie, Schmetterling and Enzian. The second group were high-speed missiles, typically supersonic, that flew directly towards their targets from below. These included Wasserfall and Rheintochter. Both types used radio control for guidance, either by eye, or by comparing the returns of the missile and target on

1740-650: A higher performance seeker designed to better detect low radar cross-section targets. The GEM was used extensively in Operation Iraqi Freedom (OIF), during which air defense was highly successful. Just prior to OIF, it was decided to further upgrade the GEM and PAC-2 missiles. This upgrade program produced missiles known as the GEM-T and the GEM-C, the "T" designator referring to tactical ballistic missiles, and

1856-428: A moving dish. This characteristic gives the radar the ability to detect small, fast targets like ballistic missiles, or low radar cross-section targets such as stealth aircraft or cruise missiles . The power and agility of Patriot's radar is also highly resistant to countermeasures, including ECM , radar jamming, and use of RWR equipment. Patriot is capable of quickly changing frequencies to resist jamming. However,

1972-439: A part of their multi-layered air defence. SAM systems generally fall into two broad groups based on their guidance systems, those using radar and those using some other means. Longer range missiles generally use radar for early detection and guidance. Early SAM systems generally used tracking radars and fed guidance information to the missile using radio control concepts, referred to in the field as command guidance . Through

2088-625: A receiver, and a transmitter. The Modular Midcourse Package (MMP), which is located in the forward portion of the warhead section, consists of the navigational electronics and a missile-borne computer that computes the guidance and autopilot algorithms and provides steering commands according to a resident computer program. The warhead section, just aft of the guidance section, contains the proximity fuzed warhead, safety-and-arming device, fuzing circuits and antennas, link antenna switching circuits, auxiliary electronics, inertial sensor assembly, and signal data converter. The propulsion section consists of

2204-492: A rush program. Early units entered operational service on 7 May 1955, and the entire system ringing Moscow was completely activated by June 1956. The system failed, however, to detect, track, and intercept the only overflight of the Soviet capital Moscow by a U-2 reconnaissance plane on July 5, 1956. The S-25 was a static system, but efforts were also put into a smaller design that would be much more mobile. This emerged in 1957 as

2320-403: A second recertification, extending the operational life of the worldwide inventory of Patriot missiles from 30 to 45 years. There were more upgrades to PAC-2 systems throughout the 1990s and into the 21st century, mostly centering on software. The PAC-2 missiles were modified significantly—four separate variants became known collectively as guidance enhanced missiles (GEM) . The main upgrade to

2436-462: A separate tracking radar for attack. Short range systems are more likely to be entirely visual for detection. Hybrid systems are also common. The MIM-72 Chaparral was fired optically, but normally operated with a short range early warning radar that displayed targets to the operator. This radar, the FAAR , was taken into the field with a Gama Goat and set up behind the lines. Information was passed to

SECTION 20

#1732765903415

2552-522: A single radar screen. Development of all these systems was carried out at the same time, and the war ended before any of them was ready for combat use. The infighting between various groups in the military also delayed development. Some extreme fighter designs, like the Komet and Natter , also overlapped with SAMs in their intended uses. Albert Speer was especially supportive of missile development. In his opinion, had they been consistently developed from

2668-584: A solid-fuel, rocket motor booster, followed by an asymmetrical kill vehicle with advanced steering for super-maneuverability during the kill-stage. A three-pulse motor provides additional acceleration and maneuverability during the terminal phase. MANPAD systems first developed in the 1960s and proved themselves in battle during the 1970s. MANPADS normally have ranges on the order of 3 km (1.9 mi) and are effective against attack helicopters and aircraft making ground attacks. Against fixed wing aircraft, they can be very effective, forcing them to fly outside

2784-505: A traditional QWERTY keyboard and isometric stick, a tiny joystick that functions much like a PC mouse . It is through these switch indicators and the Patriot user interface software that the system is operated. With newer upgrades, the operator's monochrome screen and physical switches have been replaced with two 30 in (760 mm) touchscreen LCDs and a standard keyboard/mouse at both stations. The OE-349 Antenna Mast Group (AMG)

2900-519: A variation of the SARH technique, but based on laser illumination instead of radar. These have the advantage of being small and very fast acting, as well as highly accurate. A few older designs use purely optical tracking and command guidance, perhaps the best known example of this is the British Rapier system, which was initially an all-optical system with high accuracy. All SAM systems from

3016-522: Is a backronym for "Patriot". In 1984, the Patriot system began to replace the Nike Hercules system as the U.S. Army's primary high to medium air defense (HIMAD) system and the MIM-23 Hawk system as the U.S. Army's medium tactical air defense system. In addition to these roles, Patriot has been given a function in the U.S. Army's anti-ballistic missile (ABM) system. As of 2016, the system

3132-591: Is a bolt-on replacement for the current antenna, and is oriented toward the primary threat; two new rear panel arrays are a quarter the size of the main array and let the system look behind and to the sides, providing 360-degree coverage. The GaN AESA radar also has up to 50 percent less maintenance costs. Instead of shining a single transmitter through many lenses, the GaN array uses many smaller transmitters, each with its own control, increasing flexibility and allowing it to work even if some transmitters do not. In October 2017,

3248-631: Is a nearly total system redesign of the interceptor missiles, this time designed from the outset with the capability to engage and destroy tactical ballistic missiles. The Army plans to upgrade the Patriot system as part of the Integrated Air and Missile Defense system which will be designed to tie into a broader air defense architecture using an Integrated Battle Command System (IBCS). The Patriot system has four major operational functions: communications, command and control, radar surveillance, and missile guidance. The four functions combine to provide

3364-498: Is accomplished using a M985 HEMTT truck with a Hiab crane on the back. This crane is larger than the standard Grove cranes found on regular M977 HEMTT and M985 HEMTT cargo body trucks. The crane truck, known as a Guided Missile Transporter (GMT), removes spent missile canisters from the launcher and replaces them with fresh missiles. Because the crane nearly doubles the height of the HEMTT when not stowed, crews informally refer to it as

3480-567: Is due to improved rocket fuels and ever-smaller electronics in the guidance systems. Some very long-range systems remain, notably the Russian S-400 , which has a range of 400 km (250 mi). Medium-range designs, like the Rapier and 2K12 Kub , are specifically designed to be highly mobile with very fast, or zero, setup times. Many of these designs were mounted on armoured vehicles, allowing them to keep pace with mobile operations in

3596-619: Is expected that they would be more widely used against sea skimming missiles rather than aircraft . Virtually all surface warships can be armed with SAMs, and naval SAMs are a necessity for all front-line surface warships. Some warship types specialize in anti-air warfare e.g. Ticonderoga -class cruisers equipped with the Aegis combat system or Kirov -class cruisers with the S-300F Fort missile system. Modern Warships may carry all three types (from long-range to short-range) of SAMs as

MIM-104 Patriot - Misplaced Pages Continue

3712-590: Is expected to stay fielded until at least 2040. Patriot uses an advanced aerial interceptor missile and high-performance radar systems. Patriot was developed at Redstone Arsenal in Huntsville, Alabama , which had previously developed the Safeguard ABM system and its component Spartan and hypersonic speed Sprint missiles. The symbol for Patriot is a drawing of a Revolutionary War –era minuteman . The MIM-104 Patriot has been widely exported. Patriot

3828-1054: Is headquartered in McConnellsburg, Pennsylvania; the Defense division in Oshkosh, Wisconsin ; the Fire & Emergency division in Appleton, Wisconsin ; and the Commercial division in Dodge Center, Minnesota . Oshkosh products and services are sold in more than 150 countries around the globe. The company also maintains a global service network. Oshkosh Corp. manufactures, distributes, and services products under ten brands: Oshkosh Defense, JLG , Pierce , McNeilus , Jerr-Dan, Oshkosh Airport Products, Pratt Miller, Frontline Communications, London Machinery Inc., and IMT. Products include JLG and SkyTrak brand telehandlers , wheeled and tracked boom lifts , and other lifting equipment. In November 2022, Oshkosh announced it had entered into

3944-446: Is mounted on an M927 5-Ton Cargo Truck. It includes four 4 kW antennas in two pairs on remotely controlled masts. Emplacement of the AMG can have no greater than a 0.5-degree roll and a 10-degree crossroll. The antennas can be controlled in azimuth, and the masts can be elevated up to 100 feet 11 inches (30.76 m) above ground level. Mounted at the base of each pair of antennas are two high-power amplifiers associated with

4060-416: Is somewhat unusual in that it is a "detection-to-kill" system, meaning that a single unit performs all search, identification, track, and engagement functions. Most other SAM systems, by contrast, require several different radars to perform all functions necessary to detect and engage targets. The beam created by the Patriot's flat phased array radar is comparatively narrow and highly agile compared to that of

4176-522: Is the upgraded version of the GEM, and the GEM-T is the upgraded version of the PAC-2. The GEM+ entered service in November 2002. Surface-to-air missile The first attempt at SAM development took place during World War II , but no operational systems were introduced. Further development in the 1940s and 1950s led to operational systems being introduced by most major forces during the second half of

4292-421: Is trainable in azimuth and elevates to a fixed, elevated launch position. Precise aiming of the launcher before launch is not necessary; thus, no extra lags are introduced into system reaction time. Each launcher is capable of providing detailed diagnostics to the ECS via the data link. The launching station contains four major equipment subsystems: the launcher generator set, the launcher electronics module (LEM),

4408-680: The Chaparral via a data link . Likewise, the UK's Rapier system included a simple radar that displayed the rough direction of a target on a series of lamps arranged in a circle. The missile operator would point his telescope in that rough direction and then hunt for the target visually. Oshkosh Corporation Oshkosh Corporation , formerly Oshkosh Truck , is an American industrial company that designs and builds specialty trucks, military vehicles, truck bodies, airport fire apparatus, and access equipment. The corporation also owns Pierce Manufacturing ,

4524-653: The Israeli Air Defense Command . Israeli MIM-104D batteries shot down two Hamas UAVs during Operation Protective Edge in August 2014, and in September 2014, an Israeli Patriot battery shot down a Syrian Air Force Sukhoi Su-24 which had penetrated the airspace of the Golan Heights , achieving the system's first known shootdown of a crewed enemy aircraft. Prior to the Patriot, Raytheon

4640-568: The JTIDS or MIDS network. The AN/MPQ-53/65 Radar Set is a passive electronically scanned array radar equipped with IFF , electronic counter-countermeasure (ECCM), and track-via-missile (TVM) guidance subsystems. The AN/MPQ-53 Radar Set supports PAC-2 units, while the AN/MPQ-65 Radar Set supports PAC-2 and PAC-3 units. The main difference between these two radars is the addition of a second travelling wave tube (TWT), which gives

4756-567: The Nike Hercules , the first nuclear-armed SAM. The U.S. Army Air Forces had also considered collision-course weapons (like the German radio-controlled concepts) and launched Project Thumper in 1946. This was merged with another project, Wizard, and emerged as the CIM-10 Bomarc in 1959. The Bomarc had a range of over 500 km, but it was quite expensive and somewhat unreliable. Development of Oerlikon 's RSD 58 started in 1947, and

MIM-104 Patriot - Misplaced Pages Continue

4872-536: The RF seeker and electronic components. The Patriot guidance section consists primarily of the modular digital airborne guidance system (MDAGS). The MDAGS consists of a modular midcourse package that performs all of the required guidance functions from launch through midcourse and a terminal guidance section. The TVM seeker is mounted on the guidance section, extending into the radome. The seeker consists of an antenna mounted on an inertial platform, antenna control electronics,

4988-590: The Sea Slug . The Vietnam War was the first modern war in which guided antiaircraft missiles seriously challenged highly advanced supersonic jet aircraft. It would also be the first and only time that the latest and most modern air defense technologies of the Soviet Union and the most modern jet fighter planes and bombers of the United States confronted each other in combat (if one does not count

5104-457: The U.S. Navy 's SAM-N-2 Lark . The Lark ran into considerable difficulty and it never entered operational use. The end of the war led to the British efforts being used strictly for research and development throughout their lifetime. In the immediate post-war era, SAM developments were under way around the world, with several of these entering service in the early- and mid-1950s. Coming to

5220-403: The pulse-Doppler radar fuze, which was optimized for high-speed engagements, though it retained its old algorithm for aircraft engagements if necessary. Engagement procedures were optimized, changing the method of fire the system used to engage ballistic missiles. Instead of launching two missiles in an almost simultaneous salvo, a brief delay between 3 and 4 seconds was added, in order to allow

5336-452: The radome , guidance section, warhead section, propulsion section, and control actuator section. The radome is made of slip cast fused silica approximately 16.5 millimetres (0.65 in) thick, with a nickel alloy tip, and a composite base attachment ring bonded to the slip cast fused silica and protected by a molded silicone rubber ring. The radome provides an aerodynamic shape for the missile and microwave window and thermal protection for

5452-401: The rocket motor, external heat shield, and two external conduits. The rocket motor includes the case, nozzle assembly, propellant, liner and insulation, pyrogen igniter, and propulsion arming and firing unit. The casing of the motor is an integral structural element of the missile airframe. It contains a conventional, casebonded solid rocket propellant. The Control Actuator Section (CAS) is at

5568-427: The " Variants " section. The first seven of these are in the larger PAC-2 configuration of a single missile per canister, of which four can be placed on a launcher. PAC-3 missile canisters contain four missiles, so that sixteen rounds can be placed on a launcher. The missile canister serves as both the shipping and storage container and the launch tube. Patriot missiles are referred to as "certified rounds" as they leave

5684-424: The "C" designator referring to cruise missiles. These missiles were both given a totally new nose section, which was designed specifically to be more effective against low altitude, low RCS targets like cruise missiles. The GEM-T was given a new fuze which was further optimized against ballistic missiles and a new low noise oscillator which increases the seeker's sensitivity to low radar cross-section targets. The GEM-C

5800-826: The "scorpion tail". A standard M977 HEMTT with a regular-sized crane is sometimes referred to as the Large Repair Parts Transporter (LRPT). The heart of the Patriot battery is the fire control section, consisting of the AN/MPQ-53 or −65/65A Radar Set (RS), the AN/MSQ-104 or −132 Engagement Control Station (ECS), the OE-349 Antenna Mast Group (AMG), and the EPP-III Electric Power Plant (EPP). The system's missiles are transported on and launched from either

5916-427: The 1950s. Smaller systems, suitable for close-range work, evolved through the 1960s and 1970s, to modern systems that are man-portable. Shipborne systems followed the evolution of land-based models, starting with long-range weapons and steadily evolving toward smaller designs to provide a layered defence. This evolution of design increasingly pushed gun-based systems into the shortest-range roles. The American Nike Ajax

SECTION 50

#1732765903415

6032-489: The 1960s, the semi-active radar homing (SARH) concept became much more common. In SARH, the reflections of the tracking radar's broadcasts are picked up by a receiver in the missile, which homes in on this signal. SARH has the advantage of leaving most of the equipment on the ground, while also eliminating the need for the ground station to communicate with the missile after launch. Smaller missiles, especially MANPADS, generally use infrared homing guidance systems. These have

6148-534: The Army announced Raytheon's Lower-Tier Air and Missile Defense System (LTAMDS) radar had been selected as the Patriot system's new radar. Unlike the previous radar which could only watch one part of the sky at a time primarily to detect ballistic missiles, the LTAMDS has 360-degree coverage to detect low flying and maneuvering drones and cruise missiles. The design has one large main array flanked by two smaller arrays, with

6264-461: The ECS to Patriot's Launching Stations. It uses either a SINCGARS radio or fiber optic cables to transmit encrypted data between the ECS and the launchers. Through the DLT, the system operators can remotely emplace, slew or stow launchers, perform diagnostics on launchers or missiles, and fire missiles. The UHF communications array consists of three UHF radio "stacks" and their associated patching and encrypting equipment. These radios are connected to

6380-684: The M901 Launching Station (LS), which can carry up to four PAC-2 missiles; the M902 LS, with sixteen PAC-3 missiles; or the M903 LS, which can be configured to carry PAC-2, PAC-3, and MSE/SkyCeptor missiles in various combinations. A Patriot battalion is also equipped with the Information Coordination Central (ICC), a command station designed to coordinate the launches of a battalion and uplink Patriot to

6496-510: The MPQ-53 passive electronically scanned array radar and track-via-missile guidance. Full-scale development of the system began in 1976 and it was deployed in 1984. Patriot was used initially as an anti-aircraft system. In 1988, it received an upgrade providing limited capability against tactical ballistic missiles (TBM), designated PAC-1 (Patriot Advanced Capability 1). The most recent upgrade by manufacturer Lockheed Martin, designated PAC-3,

6612-552: The Oshkosh Common Council approved a proposal to sell part of the century -old Lake Shore Golf Course along the shore of Lake Butte des Morts to Oshkosh Corp. for its new headquarters. On November 22, 2017, the Oshkosh Corporation announced it would build the new headquarters on the golf course. The city plans to redevelop the rest of the golf course into a new public space. On February 7, 2018,

6728-498: The PAC-1 upgrade, was a software-only upgrade. The most significant aspects of this upgrade were changing the way the radar searched and the way the system defended its assets. Instead of searching low to the horizon, the top of the radar's search angle was lifted to near vertical (89 degrees) from the previous angle of 25 degrees. This was done as a counter to the steep parabolic trajectory of inbound ballistic missiles. The search beams of

6844-705: The Patriot firing battery, costing approximately US$ 6   million per unit. The ECS consists of a shelter mounted on the bed of an M927 5-Ton Cargo Truck or on the bed of a Light Medium Tactical Vehicle (LMTV) cargo truck. The main subcomponents of the ECS are the Weapons Control Computer (WCC), the Data Link Terminal (DLT), the UHF communications array, the Routing Logic Radio Interface Unit (RLRIU), and

6960-455: The Pierce, Oshkosh, Frontline and Jerr-Dan brands, and include pumpers , aerials , tankers , wildland fire appliances , Striker ARFF vehicles , airport crash trucks , snow plows , and various configurations of wreckers and recovery trucks, ambulances /medical vehicles, and police / homeland security vehicles. Oshkosh produces for the commercial/civil market a variety of products under

7076-619: The U.S. Army announced that the Family of Medium Tactical Vehicles A2 (FMTV A2) contract had been awarded to Oshkosh Defense. Oshkosh was already building the FMTV A1P2, having been awarded this contract in August 2009. As of August 2021, Oshkosh has built around 40,000 FMTVs for the US military and others. In February 2020, Oshkosh Corporation was named one of the 2020 World's Most Ethical Companies by Ethisphere . In February 2021, Oshkosh Defense

SECTION 60

#1732765903415

7192-594: The Wisconsin Duplex Auto Company, the company was created to build a severe-duty four-wheel-drive truck . After the first prototype was built, the company began to develop rapidly. This first four-wheel-drive truck, known today as "Old Betsy", is still owned by Oshkosh Corporation and housed in the new Global Headquarters building in Oshkosh. The vehicle still runs and is used frequently in demonstrations and parades. The first mass-produced truck

7308-679: The Yom Kippur War wherein IAF was challenged by Syrian SA-3s). The USAF responded to this threat with increasingly effective means. Early efforts to directly attack the missiles sites as part of Operation Spring High and Operation Iron Hand were generally unsuccessful, but the introduction of Wild Weasel aircraft carrying Shrike missiles and the Standard ARM missile changed the situation dramatically. Feint and counterfeint followed as each side introduced new tactics to try to gain

7424-532: The advantage of being "fire-and-forget", once launched they will home on the target on their own with no external signals needed. In comparison, SARH systems require the tracking radar to illuminate the target, which may require them to be exposed through the attack. Systems combining an infrared seeker as a terminal guidance system on a missile using SARH are also known, like the MIM-46 Mauler , but these are generally rare. Some newer short-range systems use

7540-429: The aft end of the missile. It receives commands from the missile autopilot and positions the fins. The missile fins steer and stabilize the missile in flight. A fin servo system positions the fins. The fin servo system consists of hydraulic actuators and valves and an electrohydraulic power supply. The electrohydraulic power consists of a battery, motor pump, oil reservoir, gas pressure bottle, and accumulator. Patriot

7656-457: The antennas and the radios in the co-located shelter. It is through these antennas that the ECS and ICC send their respective UHF "shots" to create the PADIL network. The polarity of each shot can be changed by adjusting the "feedhorn" to a vertical or horizontal position. This enables a greater chance of communication shots reaching their intended target when terrain obstacles may otherwise obscure

7772-460: The antennas of the OE-349 Antenna Mast Group, which are used to create UHF "shots" between sister Patriot batteries and their associated ICC. This creates a secure, real-time data network (known as PADIL, Patriot Data Information Link) that allows the ICC to centralize control of its subordinate firing batteries. The RLRIU functions as the primary router for all data coming into the ECS. The RLRIU gives

7888-409: The beam protocol while in "TBM search" was further modified. PAC-2 saw Patriot's first major missile upgrade, with the introduction of the MIM-104C, or PAC-2 missile. This missile was optimized for ballistic missile engagements. Major changes to the PAC-2 missile were the size of the projectiles in its blast-fragmentation warhead, changed from around 2 grams to around 45 grams, and the timing of

8004-461: The bomber remaining outside the range of the ship's antiaircraft guns , and the missiles themselves were too small and fast to be attacked effectively. To combat this threat, the U.S. Navy launched Operation Bumblebee to develop a ramjet-powered missile to destroy the launching aircraft at long range. The initial performance goal was to target an intercept at a horizontal range of 10 miles (16 km) and 30,000 feet (9,100 m) altitude, with

8120-450: The company designed and built the U-30 tow tractor , 45 of which were built for the U.S. Air Force to tow the Lockheed C-5 Galaxy transport aircraft. In 1976, the company won a U.S. Army contract to supply 744 M911 heavy equipment transporters , the first in a long line of U.S. Army contracts that now sees Oshkosh Defense as the sole supplier of medium and heavy tactical trucks to the U.S. Army and Marines. On August 25, 2015, Oshkosh

8236-634: The cost of the system, and (generally) slows the rate of fire. Faster aircraft fly out of range more quickly, reducing the number of rounds fired against them. Against late-war designs like the Boeing B-29 Superfortress or jet-powered designs like the Arado Ar 234 , flak would be essentially useless. This potential was already obvious by 1942, when Walther von Axthelm outlined the growing problems with flak defences that he predicted would soon be dealing with "aircraft speeds and flight altitudes [that] will gradually reach 1,000 km/h (620 mph) and between 10,000–15,000 m (33,000–49,000 ft)." This

8352-520: The effectiveness of North Vietnamese anti-aircraft artillery, which used data from S-75 radar stations However, the U.S states only 205 of those aircraft were lost to North Vietnamese surface-to-air missiles. All of these early systems were "heavyweight" designs with limited mobility and requiring considerable set-up time. However, they were also increasingly effective. By the early 1960s, the deployment of SAMs had rendered high-speed high-altitude flight in combat practically suicidal. The way to avoid this

8468-860: The evolution of SAMs, improvements were also being made to anti-aircraft artillery , but the missiles pushed them into ever shorter-range roles. By the 1980s, the only remaining widespread use was point-defense of airfields and ships, especially against cruise missiles . By the 1990s, even these roles were being encroached on by new MANPADS and similar short-range weapons, like the RIM-116 Rolling Airframe Missile . Surface-to-air missiles are classified by their guidance , mobility, altitude and range . Missiles able to fly longer distances are generally heavier, and therefore less mobile. This leads to three "natural" classes of SAM systems; heavy long-range systems that are fixed or semi-mobile, medium-range vehicle-mounted systems that can fire on

8584-435: The factory, and additional maintenance is not necessary on the missile prior to it being launched. The PAC-2 missile is 5.8 metres (19 ft 0 in) long, weighs about 900 kilograms (2,000 lb), and is propelled by a solid-fueled rocket motor. The PAC-2 family of missiles all have a fairly standard design, the only differences between the variants being certain internal components. They consist of (from front to rear)

8700-424: The famous S-75 Dvina (SA-2 "Guideline"), a portable system, with very high performance, that remained in operation into the 2000s. The Soviet Union remained at the forefront of SAM development throughout its history; and Russia has followed suit. The early British developments with Stooge and Brakemine were successful, but further development was curtailed in the post-war era. These efforts picked up again with

8816-503: The first example was a Royal Navy system known as the Holman Projector , used as a last-ditch weapon on smaller ships. The Germans also produced a similar short-range weapon known as Fliegerfaust , but it entered operation only on a very limited scale. The performance gap between this weapon and jet fighters of the post-war era was so great that such designs would not be effective. By the 1960s, technology had closed this gap to

8932-462: The first large-scale raids by the Allied air forces started. As the urgency of the problem grew, new designs were added, including Enzian and Rheintochter , as well as the unguided Taifun which was designed to be launched in waves. In general, these designs could be split into two groups. One set of designs would be boosted to altitude in front of the bombers and then flown towards them on

9048-476: The horizon. Because of this, it was necessary to retain the search functions for traditional atmospheric threats in a separate search program, which could be easily toggled by the operator based on the expected threat. The ballistic missile defense capability changed the way Patriot defended targets. Instead of being used as a system to defend a significant area against enemy air attack, it was now used to defend much smaller "point" targets, which needed to lie within

9164-410: The launcher mechanics assembly (LMA), and the launcher interconnection group (LIG). The generator set consists of a 15 kW, 400 Hz generator that powers the launcher. The LEM is used for the real-time implementation of launcher operations requested via data link from the ECS. The LMA physically erects and rotates the launcher's platform and its missiles. The LIG connects the missiles themselves to

9280-594: The launcher via the Launcher Missile Round Distributor (LMRD). The first fielded variant was the MIM-104A "Standard". It was optimized solely for engagements against aircraft and had very limited capability against ballistic missiles. It had a range of 70 km (43 mi), and a speed in excess of Mach 2. The MIM-104B "anti-standoff jammer" (ASOJ) is a missile designed to seek out and destroy ECM emitters. The MIM-104C PAC-2 missile

9396-607: The loss of three B-52s and several others damaged in a single mission. Dramatic changes followed, and by the end of the series, missions were carried out with additional chaff, ECM, Iron Hand, and other changes that dramatically changed the score. By the conclusion of the Linebacker II campaign, the shootdown rate of the S-75 against the B-52s was 7.52% (15 B-52s were shot down, 5 B-52s were heavily damaged for 266 missiles) During

9512-403: The main panel still focused on high-altitude threats and the side panels, which are half the size with twice the power of the previous radar set, able to detect slower threats from considerable distance. Raytheon was awarded a US$ 383   million contract to build the first six radars to enter service in 2022. The AN/MSQ-104 or AN/MSQ-132 Engagement Control Station (ECS) is the nerve center of

9628-443: The mid-1960s, almost all modern armed forces had short-range missiles mounted on trucks or light armour that could move with the armed forces they protected. Examples include the 2K12 Kub (SA-6) and 9K33 Osa (SA-8), MIM-23 Hawk , Rapier , Roland and Crotale . The introduction of sea-skimming missiles in the late 1960s and 1970s led to additional mid- and short-range designs for defence against these targets. The UK's Sea Cat

9744-455: The missile's envelope and thereby greatly reducing their effectiveness in ground-attack roles. MANPAD systems are sometimes used with vehicle mounts to improve maneuverability, like the Avenger system. These systems have encroached on the performance niche formerly filled by dedicated mid-range systems. Ship-based anti-aircraft missiles are also considered to be SAMs, although in practice it

9860-611: The move, and short-range man-portable air-defense systems (MANPADS). Modern long-range weapons include the MIM-104 Patriot and S-300 systems, which have effective ranges on the order of 150 km (93 mi) and offer relatively good mobility and short unlimbering times. These compare with older systems with similar or less range, like the MIM-14 Nike Hercules or S-75 Dvina , which required fixed sites of considerable size. Much of this performance increase

9976-627: The opening of the Cold War, following the "Stage Plan" of improving UK air defences with new radars, fighters and missiles. Two competing designs were proposed for "Stage 1", based on common radar and control units, and these emerged as the RAF's Bristol Bloodhound in 1958, and the Army's English Electric Thunderbird in 1959. A third design followed the American Bumblebee efforts in terms of role and timeline, and entered service in 1961 as

10092-578: The operator interface, calculates missile intercept algorithms, and provides limited fault diagnostics. It was designed as a 24-bit parallel militarized computer with fixed- and floating-point capability, organized in a multiprocessor configuration that operates at a maximum clock rate of 6 MHz . Compared to modern personal computers, this represents very limited processing power, so the computer has been upgraded several times during Patriot's service life. The latest variant fielded in 2013 has performance improved by several orders of magnitude. The DLT connects

10208-500: The operator. During the late 1980s, tests began to indicate that, although Patriot was certainly capable of intercepting inbound ballistic missiles, it was questionable whether the MIM-104A/B missile was capable of destroying them reliably. This necessitated the introduction of the PAC-2 missile and system upgrade. For the system, the PAC-2 upgrade was similar to the PAC-1 upgrade. Radar search algorithms were further optimized, and

10324-429: The original GEM missile was a new, faster proximity fuzed warhead. Tests had indicated that the fuze on the original PAC-2 missiles were detonating their warheads too late when engaging ballistic missiles with an extremely steep ingress, and as such it was necessary to shorten this fuze delay. The GEM missile was given a new "low noise " seeker head designed to reduce interference in front of the missile's radar seeker, and

10440-471: The radar can suffer from "blind spots." The Army is planning upgrades to the Patriot system's radar components, including a new digital processor that replaces the one used since the system's introduction. In 2017, the Patriot got a new AN/MPQ-65A active electronically scanned array (AESA) radar that has greater range and sharper discrimination. The main gallium nitride (GaN)-based AESA array measures 9 ft × 13 ft (2.7 m × 4.0 m),

10556-411: The radar were tightened, and while in "TBM search mode" the "flash," or the speed at which these beams were shot out, was increased significantly. While this increased the radar's detection capability against the ballistic missile threat set, it decreased the system's effectiveness against traditional atmospheric targets, as it reduced the detection range of the radar as well as the number of "flashes" at

10672-746: The resulting disagreements between the teams delayed serious consideration of a SAM for two years. Von Axthelm published his concerns in 1942, and the subject saw serious consideration for the first time; initial development programs for liquid- and solid-fuel rockets became part of the Flak Development Program of 1942. By this point serious studies by the Peenemünde team had been prepared, and several rocket designs had been proposed, including 1940's Feuerlilie , and 1941's Wasserfall and Henschel Hs 117 Schmetterling . None of these projects saw any real development until 1943, when

10788-584: The same conclusions as the Germans regarding flak, the U.S. Army started its Project Nike developments in 1944. Led by Bell Labs , the Nike Ajax was tested in production form in 1952, becoming the first operational SAM system when it was activated in March 1954. Concerns about Ajax's ability to deal with formations of aircraft led to greatly updated version of the same basic design entering service in 1958 as

10904-639: The second missile launched to discriminate a ballistic missile warhead in the aftermath of the explosion of the first. PAC-2 was first tested in 1987 and reached Army units in 1990, just in time for deployment to the Middle East for the Persian Gulf War . It was there that Patriot was first regarded as a successful ABM system and proof that ballistic missile defense was indeed possible. The complete study on its effectiveness remains classified. In April 2013, Raytheon received U.S. Army approval for

11020-502: The signal. The EPP-III Diesel-Electric Power Plant (EPP) is the power source for the ECS and Radar. The EPP consists of two 150 kilowatt diesel engines with 400 hertz, 3-phase generators that are interconnected through the power distribution unit. The generators are mounted on a trailer or modified M977 HEMTT . Each EPP has two 100-US-gallon (380 L) fuel tanks and a fuel distribution assembly with grounding equipment. Each diesel engine can operate for more than eight hours with

11136-418: The smallest to the largest generally include identified as friend or foe (IFF) systems to help identify the target before being engaged. While IFF is not as important with MANPADs, as the target is almost always visually identified prior to launch, most modern MANPADs do include it. Long-range systems generally use radar systems for target detection, and depending on the generation of system, may "hand off" to

11252-554: The start, the large scale bomber raids of 1944 would have been impossible. The British developed unguided antiaircraft rockets (operated under the name Z Battery ) close to the start of World War II , but the air superiority usually held by the Allies meant that the demand for similar weapons was not as acute. When several Allied ships were sunk in 1943 by Henschel Hs 293 and Fritz X glide bombs , Allied interest changed. These weapons were released from stand-off distances, with

11368-424: The system saw was the introduction of another missile type, designated MIM-104B and called "anti stand-off jammer" (ASOJ) by the Army. This variant is designed to help Patriot engage and destroy ECM aircraft at standoff ranges. It works similar to an anti-radiation missile in that it flies a highly lofted trajectory and then locates, homes in on , and destroys the most significant emitter in an area designated by

11484-647: The system's TBM "footprint". The footprint is the area on the ground that Patriot can defend against inbound ballistic missiles. During the 1980s, Patriot was upgraded in relatively minor ways, mostly via its software. The most significant of these was a special upgrade to discriminate and intercept artillery rockets in the vein of the multiple rocket launcher , which was seen as a significant threat from North Korea. This feature has not been used in combat and has since been deleted from U.S. Army Patriot systems, though it remains in South Korean systems. Another upgrade

11600-415: The two-person stations that serve as the system's human machine interface. The ECS is air conditioned, pressurized (to resist chemical/biological attack), and shielded against electromagnetic pulse (EMP) or other such electromagnetic interference. The ECS also contains several SINCGARS radios to facilitate voice communications. The WCC is the main computer within the Patriot system. This computer controls

11716-460: The upper hand. By the time of Operation Linebacker II in 1972, the Americans had gained critical information about the performance and operations of the S-75 (via Arab S-75 systems captured by Israel), and used these missions as a way to demonstrate the capability of strategic bombers to operate in a SAM saturated environment. Their first missions appeared to demonstrate the exact opposite, with

11832-544: The war, The Soviet Union supplied 7,658 SAMs to North Vietnam, and their defense forces conducted about 5,800 launches, usually in multiples of three. By the war's end, the U.S lost a total of 3,374 aircraft in combat operations. According to the North Vietnamese, 31% were shot down by S-75 missiles (1,046 aircraft, or 5.6 missiles per one kill); 60% were shot down by anti-aircraft guns; and 9% were shot down by MiG fighters. The S-75 missile system significantly improved

11948-402: The −65 radar increased search, detection, and tracking capability. The radar antenna array consists of over 5,000 elements that "deflect" the radar beam many times per second. The radar antenna array contains an IFF interrogator subsystem, a TVM array, and at least one "sidelobe canceller" (SLC), which is a small array designed to decrease interference that might affect the radar. Patriot's radar

12064-477: Was a closely held secret until 1955. Early versions of the missile were available for purchase as early as 1952, but never entered operational service. The RSD 58 used beam riding guidance, which has limited performance against high-speed aircraft, as the missile is unable to "lead" the target to a collision point. Examples were purchased by several nations for testing and training purposes, but no operational sales were made. The Soviet Union began development of

12180-659: Was an early example that was designed specifically to replace the Bofors 40 mm gun on its mount, and became the first operational point-defense SAM. The American RIM-7 Sea Sparrow quickly proliferated into a wide variety of designs fielded by most navies. Many of these are adapted from earlier mobile designs, but the special needs of the naval role has resulted in the continued existence of many custom missiles. As aircraft moved ever lower, and missile performance continued to improve, eventually it became possible to build an effective man-portable anti-aircraft missile. Known as MANPADS ,

12296-725: Was awarded the U.S. Postal Service 's Next Generation Delivery Vehicle (NGDV) mail truck contract for between 50,000 and 165,000 units over ten years, with production start targeted for 2023. The fleet will include low-emissions internal combustion engine vehicles as well as battery electric vehicles (BEVs) and could be worth over $ 6 billion. Oshkosh Corporation is headquartered in Oshkosh, Wisconsin. It has manufacturing operations in eight U.S. states and in Australia, Canada, China, France and Romania, and through investments in joint ventures in Mexico and Brazil. The Access Equipment division

12412-533: Was awarded the U.S. military's Joint Light Tactical Vehicle contract. The initial JLTV award is valued at $ 6.75 billion for up to 16,901 vehicles. The procurement objective for JLTV stands at 49,099 Army and 9,091 Marines, with the Navy and Air Force also having smaller requirements. The estimated program cost is $ 47.6 billion. JLTV will partially replace the AM General Humvee . On November 7, 2017,

12528-594: Was first introduced with a single missile type: the MIM-104A. This was the initial "Standard" missile, still known as "Standard" today. In Patriot's early days, the system was used exclusively as an anti-aircraft weapon, with no capability against ballistic missiles. This was remedied during the late 1980s when Patriot received its first major system overhaul with the introduction of the Patriot Advanced Capability missile and concurrent system upgrades. Patriot Advanced Capability (PAC-1), known today as

12644-689: Was involved in a number of surface to air missile programs, including FABMDS (Field Army Ballistic Missile Defense System), AADS-70 (Army Air-Defense System – 1970) and SAM-D (Surface-to-Air Missile – Development). In 1975, the SAM-D missile successfully engaged a drone at the White Sands Missile Range. In 1976, it was renamed the PATRIOT Air Defense Missile System. The MIM-104 (Mobile Interceptor Missile 104) Patriot combined several new technologies, including

12760-452: Was one of the first tactical systems in the U.S. Department of Defense (DoD) to employ lethal autonomy in combat. The system was successfully used against Iraqi missiles in the 2003 Iraq War , and has also been used by Saudi and Emirati forces in the Yemen conflict against Houthi missile attacks. The Patriot system achieved its first undisputed shootdowns of enemy aircraft in the service of

12876-401: Was proposed whereby a rocket would follow a searchlight beam onto a target. A selenium cell was mounted on the tip of each of the rocket's four tail fins, with the cells facing backwards. When one selenium cell was no longer in the light beam, it would be steered in the opposite direction back into the beam. The first historical mention of a concept and design of a surface-to-air missile in which

12992-595: Was seen generally; in November 1943 the Director of Gunnery Division of the Royal Navy concluded that guns would be useless against jets, stating "No projectile of which control is lost when it leaves the ship can be of any use to us in this matter." The first serious consideration of a SAM development project was a series of conversations that took place in Germany during 1941. In February, Friederich Halder proposed

13108-569: Was the 2-ton Model A, with seven produced in 1918. The 3.5-ton Model B and 5-ton Model F followed. The Model TR, introduced in 1933, was a diversification for the company and was the first rubber tired earthmover ever built. The model 50-50, introduced in 1955, was the first truck created specifically for the hauling of concrete. The first aircraft rescue and firefighting (ARFF) W2206 With rollover snow plows or snow blowers were delivered to all branches of US military for airfield snow removal. Oshkosh has also produced aircraft tow tractors, and in 1968

13224-587: Was the first Patriot missile that was optimized for ballistic missile engagements. The GEM series of missiles (MIM-104D/E) are further refinements of the PAC-2 missile. The PAC-3 missile is a new interceptor, featuring a Ka band active radar seeker, employing "hit-to-kill" interception, in contrast to previous interceptors' method of exploding in the vicinity of the target, destroying it with shrapnel, and several other enhancements which dramatically increase its lethality against ballistic missiles. The specific information for these different kinds of missiles are discussed in

13340-578: Was the first operational SAM system, and the Soviet Union's S-75 Dvina was the most-produced SAM system. Widely used modern examples include the Patriot and S-300 wide-area systems, SM-6 and MBDA Aster Missile naval missiles, and short-range man-portable systems like the Stinger and 9K38 Igla . The first known idea for a guided surface-to-air missile was in 1925, when a beam riding system

13456-524: Was to fly lower, below the line-of-sight of missile's radar systems. This demanded very different aircraft, like the F-111 , TSR-2 , and Panavia Tornado . Consequently, SAMs evolved rapidly in the 1960s. As their targets were now being forced to fly lower due to the presence of the larger missiles, engagements would necessarily be at short ranges, and occur quickly. Shorter ranges meant the missiles could be much smaller, which aided them in terms of mobility. By

#414585