Misplaced Pages

Molecule

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

According to ancient and medieval science , aether ( / ˈ iː θ ər / , alternative spellings include æther , aither , and ether ), also known as the fifth element or quintessence , is the material that fills the region of the universe beyond the terrestrial sphere . The concept of aether was used in several theories to explain several natural phenomena, such as the propagation of light and gravity. In the late 19th century, physicists postulated that aether permeated space, providing a medium through which light could travel in a vacuum , but evidence for the presence of such a medium was not found in the Michelson–Morley experiment , and this result has been interpreted to mean that no luminiferous aether exists.

#25974

127-485: A molecule is a group of two or more atoms that are held together by attractive forces known as chemical bonds ; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics , organic chemistry , and biochemistry , the distinction from ions is dropped and molecule is often used when referring to polyatomic ions . A molecule may be homonuclear , that is, it consists of atoms of one chemical element , e.g. two atoms in

254-431: A nucleus of protons and generally neutrons , surrounded by an electromagnetically bound swarm of electrons . The chemical elements are distinguished from each other by the number of protons that are in their atoms. For example, any atom that contains 11 protons is sodium , and any atom that contains 29 protons is copper . Atoms with the same number of protons but a different number of neutrons are called isotopes of

381-440: A plane , e.g. graphene ; or three-dimensionally e.g. diamond , quartz , sodium chloride . The theme of repeated unit-cellular-structure also holds for most metals which are condensed phases with metallic bonding . Thus solid metals are not made of molecules. In glasses , which are solids that exist in a vitreous disordered state, the atoms are held together by chemical bonds with no presence of any definable molecule, nor any of

508-508: A burnt (black) visage"). In Plato 's Timaeus (58d) speaking about air, Plato mentions that "there is the most translucent kind which is called by the name of aether (αἰθήρ)" but otherwise he adopted the classical system of four elements. Aristotle , who had been Plato's student at the Academy , agreed on this point with his former mentor, emphasizing additionally that fire has sometimes been mistaken for aether. However, in his Book On

635-568: A certain number of these atoms united by attraction to form a single molecule . In coordination with these concepts, in 1833 the French chemist Marc Antoine Auguste Gaudin presented a clear account of Avogadro's hypothesis, regarding atomic weights, by making use of "volume diagrams", which clearly show both semi-correct molecular geometries, such as a linear water molecule, and correct molecular formulas, such as H 2 O: In 1917, an unknown American undergraduate chemical engineer named Linus Pauling

762-410: A deficit or a surplus of electrons are called ions . Electrons that are farthest from the nucleus may be transferred to other nearby atoms or shared between atoms. By this mechanism, atoms are able to bond into molecules and other types of chemical compounds like ionic and covalent network crystals . By definition, any two atoms with an identical number of protons in their nuclei belong to

889-422: A different way, is internal conversion —a process that produces high-speed electrons that are not beta rays, followed by production of high-energy photons that are not gamma rays. A few large nuclei explode into two or more charged fragments of varying masses plus several neutrons, in a decay called spontaneous nuclear fission . Each radioactive isotope has a characteristic decay time period—the half-life —that

1016-399: A dimension of a few angstroms (Å) to several dozen Å, or around one billionth of a meter. Single molecules cannot usually be observed by light (as noted above), but small molecules and even the outlines of individual atoms may be traced in some circumstances by use of an atomic force microscope . Some of the largest molecules are macromolecules or supermolecules . The smallest molecule

1143-429: A distance instead of action through direct contact. Newton also explained this changing rarity and density of aether in his letter to Robert Boyle in 1679. He illustrated aether and its field around objects in this letter as well and used this as a way to inform Robert Boyle about his theory. Although Newton eventually changed his theory of gravitation to one involving force and the laws of motion, his starting point for

1270-456: A finite set of orbits, and could jump between these orbits only in discrete changes of energy corresponding to absorption or radiation of a photon. This quantization was used to explain why the electrons' orbits are stable and why elements absorb and emit electromagnetic radiation in discrete spectra. Bohr's model could only predict the emission spectra of hydrogen, not atoms with more than one electron. Back in 1815, William Prout observed that

1397-529: A form of light but made of negatively charged particles because they can be deflected by electric and magnetic fields. He measured these particles to be at least a thousand times lighter than hydrogen (the lightest atom). He called these new particles corpuscles but they were later renamed electrons since these are the particles that carry electricity. Thomson also showed that electrons were identical to particles given off by photoelectric and radioactive materials. Thomson explained that an electric current

SECTION 10

#1732780944026

1524-419: A fractional electric charge. Protons are composed of two up quarks (each with charge + ⁠ 2 / 3 ⁠ ) and one down quark (with a charge of − ⁠ 1 / 3 ⁠ ). Neutrons consist of one up quark and two down quarks. This distinction accounts for the difference in mass and charge between the two particles. The quarks are held together by the strong interaction (or strong force), which

1651-484: A given accuracy in measuring a position one could only obtain a range of probable values for momentum, and vice versa. Thus, the planetary model of the atom was discarded in favor of one that described atomic orbital zones around the nucleus where a given electron is most likely to be found. This model was able to explain observations of atomic behavior that previous models could not, such as certain structural and spectral patterns of atoms larger than hydrogen. Though

1778-435: A graphical type of formula called a structural formula may be needed. Structural formulas may in turn be represented with a one-dimensional chemical name, but such chemical nomenclature requires many words and terms which are not part of chemical formulas. Molecules have fixed equilibrium geometries—bond lengths and angles— about which they continuously oscillate through vibrational and rotational motions. A pure substance

1905-451: A mathematical function that characterises the probability that an electron appears to be at a particular location when its position is measured. Only a discrete (or quantized ) set of these orbitals exist around the nucleus, as other possible wave patterns rapidly decay into a more stable form. Orbitals can have one or more ring or node structures, and differ from each other in size, shape and orientation. Each atomic orbital corresponds to

2032-534: A medium that "flows" continually downward toward the Earth's surface and is partially absorbed and partially diffused. This "circulation" of aether is what he associated the force of gravity with to help explain the action of gravity in a non-mechanical fashion. This theory described different aether densities, creating an aether density gradient. His theory also explains that aether was dense within objects and rare without them. As particles of denser aether interacted with

2159-436: A molecule is inherently an operational definition. Philosophically, therefore, a molecule is not a fundamental entity (in contrast, for instance, to an elementary particle ); rather, the concept of a molecule is the chemist's way of making a useful statement about the strengths of atomic-scale interactions in the world that we observe. Atom Atoms are the basic particles of the chemical elements . An atom consists of

2286-415: A particular energy level of the electron. The electron can change its state to a higher energy level by absorbing a photon with sufficient energy to boost it into the new quantum state. Likewise, through spontaneous emission , an electron in a higher energy state can drop to a lower energy state while radiating the excess energy as a photon. These characteristic energy values, defined by the differences in

2413-465: A pool. Later, when it was proved that the nature of light wave is transverse instead of longitudinal, Huygens' theory was replaced by subsequent theories proposed by Maxwell , Einstein and de Broglie , which rejected the existence and necessity of aether to explain the various optical phenomena. These theories were supported by the results of the Michelson–Morley experiment in which evidence for

2540-401: A regular arrangement of molecules (as in a crystal). Microwave spectroscopy commonly measures changes in the rotation of molecules, and can be used to identify molecules in outer space. Infrared spectroscopy measures the vibration of molecules, including stretching, bending or twisting motions. It is commonly used to identify the kinds of bonds or functional groups in molecules. Changes in

2667-552: A series of experiments in which they bombarded thin foils of metal with a beam of alpha particles . They did this to measure the scattering patterns of the alpha particles. They spotted a small number of alpha particles being deflected by angles greater than 90°. This shouldn't have been possible according to the Thomson model of the atom, whose charges were too diffuse to produce a sufficiently strong electric field. The deflections should have all been negligible. Rutherford proposed that

SECTION 20

#1732780944026

2794-519: A set of atomic numbers, from the single-proton element hydrogen up to the 118-proton element oganesson . All known isotopes of elements with atomic numbers greater than 82 are radioactive, although the radioactivity of element 83 ( bismuth ) is so slight as to be practically negligible. About 339 nuclides occur naturally on Earth , of which 251 (about 74%) have not been observed to decay, and are referred to as " stable isotopes ". Only 90 nuclides are stable theoretically , while another 161 (bringing

2921-472: A short-ranged attractive potential called the residual strong force . At distances smaller than 2.5 fm this force is much more powerful than the electrostatic force that causes positively charged protons to repel each other. Atoms of the same element have the same number of protons, called the atomic number . Within a single element, the number of neutrons may vary, determining the isotope of that element. The total number of protons and neutrons determine

3048-440: A size that is too small to be measured using available techniques. It was the lightest particle with a positive rest mass measured, until the discovery of neutrino mass. Under ordinary conditions, electrons are bound to the positively charged nucleus by the attraction created from opposite electric charges. If an atom has more or fewer electrons than its atomic number, then it becomes respectively negatively or positively charged as

3175-469: A theory proposed by Johann II Bernoulli , who was recognized in 1736 with the prize of the French Academy. In his theory, all space is permeated by aether containing "excessively small whirlpools". These whirlpools allow for aether to have a certain elasticity, transmitting vibrations from the corpuscular packets of light as they travel through. This theory of luminiferous aether would influence

3302-432: A tiny atomic nucleus , and are collectively called nucleons . The radius of a nucleus is approximately equal to 1.07 A 3 {\displaystyle 1.07{\sqrt[{3}]{A}}}   femtometres , where A {\displaystyle A} is the total number of nucleons. This is much smaller than the radius of the atom, which is on the order of 10  fm. The nucleons are bound together by

3429-470: A whole; a charged atom is called an ion . Electrons have been known since the late 19th century, mostly thanks to J.J. Thomson ; see history of subatomic physics for details. Protons have a positive charge and a mass of 1.6726 × 10  kg . The number of protons in an atom is called its atomic number . Ernest Rutherford (1919) observed that nitrogen under alpha-particle bombardment ejects what appeared to be hydrogen nuclei. By 1920 he had accepted that

3556-499: Is 29.5% nitrogen and 70.5% oxygen. Adjusting these figures, in nitrous oxide there is 80 g of oxygen for every 140 g of nitrogen, in nitric oxide there is about 160 g of oxygen for every 140 g of nitrogen, and in nitrogen dioxide there is 320 g of oxygen for every 140 g of nitrogen. 80, 160, and 320 form a ratio of 1:2:4. The respective formulas for these oxides are N 2 O , NO , and NO 2 . In 1897, J. J. Thomson discovered that cathode rays are not

3683-427: Is 88.1% tin and 11.9% oxygen, and the other is a white powder that is 78.7% tin and 21.3% oxygen. Adjusting these figures, in the grey powder there is about 13.5 g of oxygen for every 100 g of tin, and in the white powder there is about 27 g of oxygen for every 100 g of tin. 13.5 and 27 form a ratio of 1:2. Dalton concluded that in the grey oxide there is one atom of oxygen for every atom of tin, and in

3810-401: Is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are termed shared pairs or bonding pairs , and the stable balance of attractive and repulsive forces between atoms, when they share electrons, is termed covalent bonding . Ionic bonding is a type of chemical bond that involves the electrostatic attraction between oppositely charged ions, and

3937-408: Is a measure of the distance out to which the electron cloud extends from the nucleus. This assumes the atom to exhibit a spherical shape, which is only obeyed for atoms in vacuum or free space. Atomic radii may be derived from the distances between two nuclei when the two atoms are joined in a chemical bond . The radius varies with the location of an atom on the atomic chart, the type of chemical bond,

Molecule - Misplaced Pages Continue

4064-453: Is a very simple type of chemical formula. It is the simplest integer ratio of the chemical elements that constitute it. For example, water is always composed of a 2:1 ratio of hydrogen to oxygen atoms, and ethanol (ethyl alcohol) is always composed of carbon, hydrogen, and oxygen in a 2:6:1 ratio. However, this does not determine the kind of molecule uniquely – dimethyl ether has the same ratios as ethanol, for instance. Molecules with

4191-573: Is affected by the ratio of protons to neutrons, and also by the presence of certain "magic numbers" of neutrons or protons that represent closed and filled quantum shells. These quantum shells correspond to a set of energy levels within the shell model of the nucleus; filled shells, such as the filled shell of 50 protons for tin, confers unusual stability on the nuclide. Of the 251 known stable nuclides, only four have both an odd number of protons and odd number of neutrons: hydrogen-2 ( deuterium ), lithium-6 , boron-10 , and nitrogen-14 . ( Tantalum-180m

4318-432: Is called a negative ion (or anion). Conversely, if it has more protons than electrons, it has a positive charge, and is called a positive ion (or cation). The electrons of an atom are attracted to the protons in an atomic nucleus by the electromagnetic force . The protons and neutrons in the nucleus are attracted to each other by the nuclear force . This force is usually stronger than the electromagnetic force that repels

4445-435: Is composed of molecules with the same average geometrical structure. The chemical formula and the structure of a molecule are the two important factors that determine its properties, particularly its reactivity . Isomers share a chemical formula but normally have very different properties because of their different structures. Stereoisomers , a particular type of isomer, may have very similar physico-chemical properties and at

4572-481: Is derived from French molécule (1678), from Neo-Latin molecula , diminutive of Latin moles "mass, barrier". The word, which until the late 18th century was used only in Latin form, became popular after being used in works of philosophy by Descartes . The definition of the molecule has evolved as knowledge of the structure of molecules has increased. Earlier definitions were less precise, defining molecules as

4699-504: Is determined by the amount of time needed for half of a sample to decay. This is an exponential decay process that steadily decreases the proportion of the remaining isotope by 50% every half-life. Hence after two half-lives have passed only 25% of the isotope is present, and so forth. Aether (classical element) The word αἰθήρ ( aithḗr ) in Homeric Greek means "pure, fresh air" or "clear sky". In Greek mythology , it

4826-484: Is essential for the understanding of the chemical bond. The simplest of molecules is the hydrogen molecule-ion , H 2 , and the simplest of all the chemical bonds is the one-electron bond . H 2 is composed of two positively charged protons and one negatively charged electron , which means that the Schrödinger equation for the system can be solved more easily due to the lack of electron–electron repulsion. With

4953-438: Is higher than its proton number, so Rutherford hypothesized that the surplus weight was carried by unknown particles with no electric charge and a mass equal to that of the proton. In 1928, Walter Bothe observed that beryllium emitted a highly penetrating, electrically neutral radiation when bombarded with alpha particles. It was later discovered that this radiation could knock hydrogen atoms out of paraffin wax . Initially it

5080-438: Is in the nucleus. Protons have a positive electric charge and neutrons have no charge, so the nucleus is positively charged. The electrons are negatively charged, and this opposing charge is what binds them to the nucleus. If the numbers of protons and electrons are equal, as they normally are, then the atom is electrically neutral as a whole. If an atom has more electrons than protons, then it has an overall negative charge, and

5207-429: Is mediated by gluons . The protons and neutrons, in turn, are held to each other in the nucleus by the nuclear force , which is a residuum of the strong force that has somewhat different range-properties (see the article on the nuclear force for more). The gluon is a member of the family of gauge bosons , which are elementary particles that mediate physical forces. All the bound protons and neutrons in an atom make up

Molecule - Misplaced Pages Continue

5334-481: Is not based on these old concepts. In the early 19th century, the scientist John Dalton found evidence that matter really is composed of discrete units, and so applied the word atom to those units. In the early 1800s, John Dalton compiled experimental data gathered by him and other scientists and discovered a pattern now known as the " law of multiple proportions ". He noticed that in any group of chemical compounds which all contain two particular chemical elements,

5461-502: Is odd-odd and observationally stable, but is predicted to decay with a very long half-life.) Also, only four naturally occurring, radioactive odd-odd nuclides have a half-life over a billion years: potassium-40 , vanadium-50 , lanthanum-138 , and lutetium-176 . Most odd-odd nuclei are highly unstable with respect to beta decay , because the decay products are even-even, and are therefore more strongly bound, due to nuclear pairing effects . The large majority of an atom's mass comes from

5588-477: Is required to bring them together. It is this energy-releasing process that makes nuclear fusion in stars a self-sustaining reaction. For heavier nuclei, the binding energy per nucleon begins to decrease. That means that a fusion process producing a nucleus that has an atomic number higher than about 26, and a mass number higher than about 60, is an endothermic process . Thus, more massive nuclei cannot undergo an energy-producing fusion reaction that can sustain

5715-455: Is responsible for most of the physical changes observed in nature. Chemistry is the science that studies these changes. The basic idea that matter is made up of tiny indivisible particles is an old idea that appeared in many ancient cultures. The word atom is derived from the ancient Greek word atomos , which means "uncuttable". But this ancient idea was based in philosophical reasoning rather than scientific reasoning. Modern atomic theory

5842-421: Is that an accelerating charged particle radiates electromagnetic radiation, causing the particle to lose kinetic energy. Circular motion counts as acceleration, which means that an electron orbiting a central charge should spiral down into that nucleus as it loses speed. In 1913, the physicist Niels Bohr proposed a new model in which the electrons of an atom were assumed to orbit the nucleus but could only do so in

5969-553: Is the diatomic hydrogen (H 2 ), with a bond length of 0.74 Å. Effective molecular radius is the size a molecule displays in solution. The table of permselectivity for different substances contains examples. The chemical formula for a molecule uses one line of chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, and plus (+) and minus (−) signs. These are limited to one typographic line of symbols, which may include subscripts and superscripts. A compound's empirical formula

6096-470: Is the mass loss and c is the speed of light . This deficit is part of the binding energy of the new nucleus, and it is the non-recoverable loss of the energy that causes the fused particles to remain together in a state that requires this energy to separate. The fusion of two nuclei that create larger nuclei with lower atomic numbers than iron and nickel —a total nucleon number of about 60—is usually an exothermic process that releases more energy than

6223-460: Is the passing of electrons from one atom to the next, and when there was no current the electrons embedded themselves in the atoms. This in turn meant that atoms were not indivisible as scientists thought. The atom was composed of electrons whose negative charge was balanced out by some source of positive charge to create an electrically neutral atom. Ions, Thomson explained, must be atoms which have an excess or shortage of electrons. The electrons in

6350-614: Is the primary interaction occurring in ionic compounds . The ions are atoms that have lost one or more electrons (termed cations ) and atoms that have gained one or more electrons (termed anions ). This transfer of electrons is termed electrovalence in contrast to covalence . In the simplest case, the cation is a metal atom and the anion is a nonmetal atom, but these ions can be of a more complicated nature, e.g. molecular ions like NH 4 or SO 4 . At normal temperatures and pressures, ionic bonding mostly creates solids (or occasionally liquids) without separate identifiable molecules, but

6477-533: The Avogadro constant using three different methods, all involving liquid phase systems. First, he used a gamboge soap-like emulsion, second by doing experimental work on Brownian motion , and third by confirming Einstein's theory of particle rotation in the liquid phase. In 1927, the physicists Fritz London and Walter Heitler applied the new quantum mechanics to the deal with the saturable, nondynamic forces of attraction and repulsion, i.e., exchange forces, of

SECTION 50

#1732780944026

6604-491: The Schroedinger equation , which describes electrons as three-dimensional waveforms rather than points in space. A consequence of using waveforms to describe particles is that it is mathematically impossible to obtain precise values for both the position and momentum of a particle at a given point in time. This became known as the uncertainty principle , formulated by Werner Heisenberg in 1927. In this concept, for

6731-438: The hydrostatic equilibrium of a star. The electrons in an atom are attracted to the protons in the nucleus by the electromagnetic force . This force binds the electrons inside an electrostatic potential well surrounding the smaller nucleus, which means that an external source of energy is needed for the electron to escape. The closer an electron is to the nucleus, the greater the attractive force. Hence electrons bound near

6858-472: The nuclide . The number of neutrons relative to the protons determines the stability of the nucleus, with certain isotopes undergoing radioactive decay . The proton, the electron, and the neutron are classified as fermions . Fermions obey the Pauli exclusion principle which prohibits identical fermions, such as multiple protons, from occupying the same quantum state at the same time. Thus, every proton in

6985-682: The oxygen molecule (O 2 ); or it may be heteronuclear , a chemical compound composed of more than one element, e.g. water (two hydrogen atoms and one oxygen atom; H 2 O). In the kinetic theory of gases , the term molecule is often used for any gaseous particle regardless of its composition. This relaxes the requirement that a molecule contains two or more atoms, since the noble gases are individual atoms. Atoms and complexes connected by non-covalent interactions , such as hydrogen bonds or ionic bonds , are typically not considered single molecules. Concepts similar to molecules have been discussed since ancient times, but modern investigation into

7112-415: The philosopher's stone itself. With the 18th century physics developments , physical models known as "aether theories" made use of a similar concept for the explanation of the propagation of electromagnetic and gravitational forces. As early as the 1670s, Newton used the idea of aether to help match observations to strict mechanical rules of his physics. The early modern aether had little in common with

7239-399: The wave theory of light proposed by Christiaan Huygens , in which light traveled in the form of longitudinal waves via an "omnipresent, perfectly elastic medium having zero density, called aether". At the time, it was thought that in order for light to travel through a vacuum, there must have been a medium filling the void through which it could propagate, as sound through air or ripples in

7366-517: The 'surface' of these particles is not sharply defined. The neutron was discovered in 1932 by the English physicist James Chadwick . In the Standard Model of physics, electrons are truly elementary particles with no internal structure, whereas protons and neutrons are composite particles composed of elementary particles called quarks . There are two types of quarks in atoms, each having

7493-475: The Chemical Bond" in which he used quantum mechanics to calculate properties and structures of molecules, such as angles between bonds and rotation about bonds. On these concepts, Pauling developed hybridization theory to account for bonds in molecules such as CH 4 , in which four sp³ hybridised orbitals are overlapped by hydrogen 's 1s orbital, yielding four sigma (σ) bonds . The four bonds are of

7620-516: The Heavens he introduced a new "first" element to the system of the classical elements of Ionian philosophy . He noted that the four terrestrial classical elements were subject to change and naturally moved linearly. The first element however, located in the celestial regions and heavenly bodies, moved circularly and had none of the qualities the terrestrial classical elements had. It was neither hot nor cold, neither wet nor dry. With this addition

7747-399: The aether of classical elements from which the name was borrowed. These aether theories are considered to be scientifically obsolete, as the development of special relativity showed that Maxwell's equations do not require the aether for the transmission of these forces. Einstein noted that his own model which replaced these theories could itself be thought of as an aether, as it implied that

SECTION 60

#1732780944026

7874-472: The aether was "subtler than light". Fludd cites the 3rd-century view of Plotinus , concerning the aether as penetrative and non-material. Quintessence (𝓠) is the Latinate name of the fifth element used by medieval alchemists for a medium similar or identical to that thought to make up the heavenly bodies. It was noted that there was very little presence of quintessence within the terrestrial sphere. Due to

8001-399: The amount of Element A per measure of Element B will differ across these compounds by ratios of small whole numbers. This pattern suggested that each element combines with other elements in multiples of a basic unit of weight, with each element having a unit of unique weight. Dalton decided to call these units "atoms". For example, there are two types of tin oxide : one is a grey powder that

8128-441: The arrangements of electrons yield absorption or emission lines in ultraviolet, visible or near infrared light, and result in colour. Nuclear resonance spectroscopy measures the environment of particular nuclei in the molecule, and can be used to characterise the numbers of atoms in different positions in a molecule. The study of molecules by molecular physics and theoretical chemistry is largely based on quantum mechanics and

8255-444: The atom logically had to be balanced out by a commensurate amount of positive charge, but Thomson had no idea where this positive charge came from, so he tentatively proposed that it was everywhere in the atom, the atom being in the shape of a sphere. This was the mathematically simplest hypothesis to fit the available evidence, or lack thereof. Following from this, Thomson imagined that the balance of electrostatic forces would distribute

8382-422: The atomic mass unit (for example the mass of a nitrogen-14 is roughly 14 Da), but this number will not be exactly an integer except (by definition) in the case of carbon-12. The heaviest stable atom is lead-208, with a mass of 207.976 6521  Da . As even the most massive atoms are far too light to work with directly, chemists instead use the unit of moles . One mole of atoms of any element always has

8509-491: The atomic weights of many elements were multiples of hydrogen's atomic weight, which is in fact true for all of them if one takes isotopes into account. In 1898, J. J. Thomson found that the positive charge of a hydrogen ion is equal to the negative charge of an electron, and these were then the smallest known charged particles. Thomson later found that the positive charge in an atom is a positive multiple of an electron's negative charge. In 1913, Henry Moseley discovered that

8636-413: The center of the potential well require more energy to escape than those at greater separations. Electrons, like other particles, have properties of both a particle and a wave . The electron cloud is a region inside the potential well where each electron forms a type of three-dimensional standing wave —a wave form that does not move relative to the nucleus. This behavior is defined by an atomic orbital ,

8763-478: The chemical elements, at least one stable isotope exists. As a rule, there is only a handful of stable isotopes for each of these elements, the average being 3.1 stable isotopes per element. Twenty-six " monoisotopic elements " have only a single stable isotope, while the largest number of stable isotopes observed for any element is ten, for the element tin . Elements 43 , 61 , and all elements numbered 83 or higher have no stable isotopes. Stability of isotopes

8890-422: The classical element. This idea relates to the hypothetical form of dark energy postulated as an explanation of observations of an accelerating universe. It has also been called a fifth fundamental force . The motion of light was a long-standing investigation in physics for hundreds of years before the 20th century. The use of aether to describe this motion was popular during the 17th and 18th centuries, including

9017-453: The core of the Sun protons require energies of 3 to 10 keV to overcome their mutual repulsion—the coulomb barrier —and fuse together into a single nucleus. Nuclear fission is the opposite process, causing a nucleus to split into two smaller nuclei—usually through radioactive decay. The nucleus can also be modified through bombardment by high energy subatomic particles or photons. If this modifies

9144-483: The development of fast digital computers, approximate solutions for more complicated molecules became possible and are one of the main aspects of computational chemistry . When trying to define rigorously whether an arrangement of atoms is sufficiently stable to be considered a molecule, IUPAC suggests that it "must correspond to a depression on the potential energy surface that is deep enough to confine at least one vibrational state". This definition does not depend on

9271-512: The electrons throughout the sphere in a more or less even manner. Thomson's model is popularly known as the plum pudding model , though neither Thomson nor his colleagues used this analogy. Thomson's model was incomplete, it was unable to predict any other properties of the elements such as emission spectra and valencies . It was soon rendered obsolete by the discovery of the atomic nucleus . Between 1908 and 1913, Ernest Rutherford and his colleagues Hans Geiger and Ernest Marsden performed

9398-403: The empty space between objects had its own physical properties. Despite the early modern aether models being superseded by general relativity, occasionally some physicists have attempted to reintroduce the concept of aether in an attempt to address perceived deficiencies in current physical models. One proposed model of dark energy has been named " quintessence " by its proponents, in honor of

9525-506: The energies of the quantum states, are responsible for atomic spectral lines . The amount of energy needed to remove or add an electron—the electron binding energy —is far less than the binding energy of nucleons . For example, it requires only 13.6 eV to strip a ground-state electron from a hydrogen atom, compared to 2.23  million eV for splitting a deuterium nucleus. Atoms are electrically neutral if they have an equal number of protons and electrons. Atoms that have either

9652-671: The energies of the recoiling charged particles, he deduced that the radiation was actually composed of electrically neutral particles which could not be massless like the gamma ray, but instead were required to have a mass similar to that of a proton. Chadwick now claimed these particles as Rutherford's neutrons. In 1925, Werner Heisenberg published the first consistent mathematical formulation of quantum mechanics ( matrix mechanics ). One year earlier, Louis de Broglie had proposed that all particles behave like waves to some extent, and in 1926 Erwin Schroedinger used this idea to develop

9779-433: The frequencies of X-ray emissions from an excited atom were a mathematical function of its atomic number and hydrogen's nuclear charge. In 1919 Rutherford bombarded nitrogen gas with alpha particles and detected hydrogen ions being emitted from the gas, and concluded that they were produced by alpha particles hitting and splitting the nuclei of the nitrogen atoms. These observations led Rutherford to conclude that

9906-464: The heavenly bodies. The viewpoint of Leucippus and Empedocles, along with the aether, was accepted by Aristotle and passed to medieval and renaissance Europe. In a more concrete manner, however, the concept of aggregates or units of bonded atoms, i.e. "molecules", traces its origins to Robert Boyle 's 1661 hypothesis, in his famous treatise The Sceptical Chymist , that matter is composed of clusters of particles and that chemical change results from

10033-588: The hydrogen molecule. Their valence bond treatment of this problem, in their joint paper, was a landmark in that it brought chemistry under quantum mechanics. Their work was an influence on Pauling, who had just received his doctorate and visited Heitler and London in Zürich on a Guggenheim Fellowship . Subsequently, in 1931, building on the work of Heitler and London and on theories found in Lewis' famous article, Pauling published his ground-breaking article "The Nature of

10160-416: The hydrogen nucleus is a distinct particle within the atom and named it proton . Neutrons have no electrical charge and have a mass of 1.6749 × 10  kg . Neutrons are the heaviest of the three constituent particles, but their mass can be reduced by the nuclear binding energy . Neutrons and protons (collectively known as nucleons ) have comparable dimensions—on the order of 2.5 × 10  m —although

10287-445: The hydrogen nucleus is a singular particle with a positive charge equal to the electron's negative charge. He named this particle " proton " in 1920. The number of protons in an atom (which Rutherford called the " atomic number " ) was found to be equal to the element's ordinal number on the periodic table and therefore provided a simple and clear-cut way of distinguishing the elements from each other. The atomic weight of each element

10414-735: The laws governing their structure and properties. In practice, however, this distinction is vague. In molecular sciences, a molecule consists of a stable system ( bound state ) composed of two or more atoms. Polyatomic ions may sometimes be usefully thought of as electrically charged molecules. The term unstable molecule is used for very reactive species, i.e., short-lived assemblies ( resonances ) of electrons and nuclei , such as radicals , molecular ions , Rydberg molecules , transition states , van der Waals complexes , or systems of colliding atoms as in Bose–Einstein condensate . Molecules as components of matter are common. They also make up most of

10541-527: The low presence of quintessence, earth could be affected by what takes place within the heavenly bodies. This theory was developed in the 14th century text The testament of Lullius , attributed to Ramon Llull . The use of quintessence became popular within medieval alchemy. Quintessence stemmed from the medieval elemental system, which consisted of the four classical elements, and aether, or quintessence, in addition to two chemical elements representing metals: sulphur , "the stone which burns", which characterized

10668-403: The mass of a neutral carbon-12 ( C isotope ) atom. For network solids , the term formula unit is used in stoichiometric calculations. For molecules with a complicated 3-dimensional structure, especially involving atoms bonded to four different substituents, a simple molecular formula or even semi-structural chemical formula may not be enough to completely specify the molecule. In this case,

10795-400: The minerals that make up the substance of the Earth, sand, clay, pebbles, rocks, boulders, bedrock , the molten interior , and the core of the Earth . All of these contain many chemical bonds, but are not made of identifiable molecules. No typical molecule can be defined for salts nor for covalent crystals , although these are often composed of repeating unit cells that extend either in

10922-473: The motion of aether was conclusively absent. The results of the experiment influenced many physicists of the time and contributed to the eventual development of Einstein's theory of special relativity . In 1682, Jakob Bernoulli formulated the theory that the hardness of the bodies depended on the pressure of the aether. Aether has been used in various gravitational theories as a medium to help explain gravitation and what causes it. A few years later, aether

11049-432: The mutual repulsion of the protons requires an increasing proportion of neutrons to maintain the stability of the nucleus. The number of protons and neutrons in the atomic nucleus can be modified, although this can require very high energies because of the strong force. Nuclear fusion occurs when multiple atomic particles join to form a heavier nucleus, such as through the energetic collision of two nuclei. For example, at

11176-552: The nature of molecules and their bonds began in the 17th century. Refined over time by scientists such as Robert Boyle , Amedeo Avogadro , Jean Perrin , and Linus Pauling , the study of molecules is today known as molecular physics or molecular chemistry. According to Merriam-Webster and the Online Etymology Dictionary , the word "molecule" derives from the Latin " moles " or small unit of mass. The word

11303-439: The nature of the interaction between the atoms, but only on the strength of the interaction. In fact, it includes weakly bound species that would not traditionally be considered molecules, such as the helium dimer , He 2 , which has one vibrational bound state and is so loosely bound that it is only likely to be observed at very low temperatures. Whether or not an arrangement of atoms is sufficiently stable to be considered

11430-509: The nucleus must occupy a quantum state different from all other protons, and the same applies to all neutrons of the nucleus and to all electrons of the electron cloud. A nucleus that has a different number of protons than neutrons can potentially drop to a lower energy state through a radioactive decay that causes the number of protons and neutrons to more closely match. As a result, atoms with matching numbers of protons and neutrons are more stable against decay, but with increasing atomic number,

11557-515: The nucleus to emit particles or electromagnetic radiation. Radioactivity can occur when the radius of a nucleus is large compared with the radius of the strong force, which only acts over distances on the order of 1 fm. The most common forms of radioactive decay are: Other more rare types of radioactive decay include ejection of neutrons or protons or clusters of nucleons from a nucleus, or more than one beta particle . An analog of gamma emission which allows excited nuclei to lose energy in

11684-401: The number of hydrogen atoms. A single carat diamond with a mass of 2 × 10  kg contains about 10 sextillion (10 ) atoms of carbon . If an apple were magnified to the size of the Earth, then the atoms in the apple would be approximately the size of the original apple. Every element has one or more isotopes that have unstable nuclei that are subject to radioactive decay, causing

11811-450: The number of neighboring atoms ( coordination number ) and a quantum mechanical property known as spin . On the periodic table of the elements, atom size tends to increase when moving down columns, but decrease when moving across rows (left to right). Consequently, the smallest atom is helium with a radius of 32  pm , while one of the largest is caesium at 225 pm. When subjected to external forces, like electrical fields ,

11938-451: The number of protons in a nucleus, the atom changes to a different chemical element. If the mass of the nucleus following a fusion reaction is less than the sum of the masses of the separate particles, then the difference between these two values can be emitted as a type of usable energy (such as a gamma ray , or the kinetic energy of a beta particle ), as described by Albert Einstein 's mass–energy equivalence formula, E=mc , where m

12065-517: The oceans and atmosphere. Most organic substances are molecules. The substances of life are molecules, e.g. proteins, the amino acids of which they are composed, the nucleic acids (DNA and RNA), sugars, carbohydrates, fats, and vitamins. The nutrient minerals are generally ionic compounds, thus they are not molecules, e.g. iron sulfate. However, the majority of familiar solid substances on Earth are made partly or completely of crystals or ionic compounds, which are not made of molecules. These include all of

12192-435: The positive charge of the atom is concentrated in a tiny volume at the center of the atom and that the electrons surround this nucleus in a diffuse cloud. This nucleus carried almost all of the atom's mass, the electrons being so very light. Only such an intense concentration of charge, anchored by its high mass, could produce an electric field that could deflect the alpha particles so strongly. A problem in classical mechanics

12319-452: The positively charged protons from one another. Under certain circumstances, the repelling electromagnetic force becomes stronger than the nuclear force. In this case, the nucleus splits and leaves behind different elements . This is a form of nuclear decay . Atoms can attach to one or more other atoms by chemical bonds to form chemical compounds such as molecules or crystals . The ability of atoms to attach and detach from each other

12446-399: The principle of combustibility, and mercury , which contained the idealized principle of metallic properties. This elemental system spread rapidly throughout all of Europe and became popular with alchemists, especially in medicinal alchemy. Medicinal alchemy then sought to isolate quintessence and incorporate it within medicine and elixirs. Due to quintessence's pure and heavenly quality, it

12573-448: The protons and neutrons that make it up. The total number of these particles (called "nucleons") in a given atom is called the mass number . It is a positive integer and dimensionless (instead of having dimension of mass), because it expresses a count. An example of use of a mass number is "carbon-12," which has 12 nucleons (six protons and six neutrons). The actual mass of an atom at rest is often expressed in daltons (Da), also called

12700-477: The rare aether they were attracted back to the dense aether much like cooling vapors of water are attracted back to each other to form water. In the Principia he attempts to explain the elasticity and movement of aether by relating aether to his static model of fluids. This elastic interaction is what caused the pull of gravity to take place, according to this early theory, and allowed an explanation for action at

12827-411: The rearrangement of the clusters. Boyle argued that matter's basic elements consisted of various sorts and sizes of particles, called "corpuscles", which were capable of arranging themselves into groups. In 1789, William Higgins published views on what he called combinations of "ultimate" particles, which foreshadowed the concept of valency bonds . If, for example, according to Higgins, the force between

12954-421: The red powder there is about 42 g of oxygen for every 100 g of iron. 28 and 42 form a ratio of 2:3. Dalton concluded that in these oxides, for every two atoms of iron, there are two or three atoms of oxygen respectively ( Fe 2 O 2 and Fe 2 O 3 ). As a final example: nitrous oxide is 63.3% nitrogen and 36.7% oxygen, nitric oxide is 44.05% nitrogen and 55.95% oxygen, and nitrogen dioxide

13081-544: The regularity of repeating unit-cellular-structure that characterizes salts, covalent crystals, and metals. Molecules are generally held together by covalent bonding . Several non-metallic elements exist only as molecules in the environment either in compounds or as homonuclear molecules, not as free atoms: for example, hydrogen. While some people say a metallic crystal can be considered a single giant molecule held together by metallic bonding , others point out that metals behave very differently than molecules. A covalent bond

13208-405: The same atoms in different arrangements are called isomers . Also carbohydrates, for example, have the same ratio (carbon:hydrogen:oxygen= 1:2:1) (and thus the same empirical formula) but different total numbers of atoms in the molecule. The molecular formula reflects the exact number of atoms that compose the molecule and so characterizes different molecules. However different isomers can have

13335-412: The same chemical element . Atoms with equal numbers of protons but a different number of neutrons are different isotopes of the same element. For example, all hydrogen atoms admit exactly one proton, but isotopes exist with no neutrons ( hydrogen-1 , by far the most common form, also called protium), one neutron ( deuterium ), two neutrons ( tritium ) and more than two neutrons . The known elements form

13462-404: The same atomic composition while being different molecules. The empirical formula is often the same as the molecular formula but not always. For example, the molecule acetylene has molecular formula C 2 H 2 , but the simplest integer ratio of elements is CH. The molecular mass can be calculated from the chemical formula and is expressed in conventional atomic mass units equal to 1/12 of

13589-445: The same element. Atoms are extremely small, typically around 100  picometers across. A human hair is about a million carbon atoms wide. Atoms are smaller than the shortest wavelength of visible light, which means humans cannot see atoms with conventional microscopes. They are so small that accurately predicting their behavior using classical physics is not possible due to quantum effects . More than 99.9994% of an atom's mass

13716-405: The same length and strength, which yields a molecular structure as shown below: The science of molecules is called molecular chemistry or molecular physics , depending on whether the focus is on chemistry or physics. Molecular chemistry deals with the laws governing the interaction between molecules that results in the formation and breakage of chemical bonds, while molecular physics deals with

13843-498: The same number of atoms (about 6.022 × 10 ). This number was chosen so that if an element has an atomic mass of 1 u, a mole of atoms of that element has a mass close to one gram. Because of the definition of the unified atomic mass unit , each carbon-12 atom has an atomic mass of exactly 12 Da, and so a mole of carbon-12 atoms weighs exactly 0.012 kg. Atoms lack a well-defined outer boundary, so their dimensions are usually described in terms of an atomic radius . This

13970-571: The same time different biochemical activities. Molecular spectroscopy deals with the response ( spectrum ) of molecules interacting with probing signals of known energy (or frequency , according to the Planck relation ). Molecules have quantized energy levels that can be analyzed by detecting the molecule's energy exchange through absorbance or emission . Spectroscopy does not generally refer to diffraction studies where particles such as neutrons , electrons, or high energy X-rays interact with

14097-539: The shape of an atom may deviate from spherical symmetry . The deformation depends on the field magnitude and the orbital type of outer shell electrons, as shown by group-theoretical considerations. Aspherical deviations might be elicited for instance in crystals , where large crystal-electrical fields may occur at low-symmetry lattice sites. Significant ellipsoidal deformations have been shown to occur for sulfur ions and chalcogen ions in pyrite -type compounds. Atomic dimensions are thousands of times smaller than

14224-516: The smallest particles of pure chemical substances that still retain their composition and chemical properties. This definition often breaks down since many substances in ordinary experience, such as rocks , salts , and metals , are composed of large crystalline networks of chemically bonded atoms or ions , but are not made of discrete molecules. The modern concept of molecules can be traced back towards pre-scientific and Greek philosophers such as Leucippus and Democritus who argued that all

14351-418: The stars and planets. The idea of aethereal spheres moving with natural circular motion led to Aristotle's explanation of the observed orbits of stars and planets in perfectly circular motion. Medieval scholastic philosophers granted aether changes of density, in which the bodies of the planets were considered to be more dense than the medium which filled the rest of the universe. Robert Fludd stated that

14478-629: The system of elements was extended to five and later commentators started referring to the new first one as the fifth and also called it aether , a word that Aristotle had used in On the Heavens and the Meteorology . Aether differed from the four terrestrial elements; it was incapable of motion of quality or motion of quantity. Aether was only capable of local motion. Aether naturally moved in circles, and had no contrary, or unnatural, motion. Aristotle also stated that celestial spheres made of aether held

14605-737: The total to 251) have not been observed to decay, even though in theory it is energetically possible. These are also formally classified as "stable". An additional 35 radioactive nuclides have half-lives longer than 100 million years, and are long-lived enough to have been present since the birth of the Solar System . This collection of 286 nuclides are known as primordial nuclides . Finally, an additional 53 short-lived nuclides are known to occur naturally, as daughter products of primordial nuclide decay (such as radium from uranium ), or as products of natural energetic processes on Earth, such as cosmic ray bombardment (for example, carbon-14). For 80 of

14732-666: The ultimate particle of oxygen and the ultimate particle of nitrogen were 6, then the strength of the force would be divided accordingly, and similarly for the other combinations of ultimate particles. Amedeo Avogadro created the word "molecule". His 1811 paper "Essay on Determining the Relative Masses of the Elementary Molecules of Bodies", he essentially states, i.e. according to Partington 's A Short History of Chemistry , that: The smallest particles of gases are not necessarily simple atoms, but are made up of

14859-445: The unified atomic mass unit (u). This unit is defined as a twelfth of the mass of a free neutral atom of carbon-12 , which is approximately 1.66 × 10  kg . Hydrogen-1 (the lightest isotope of hydrogen which is also the nuclide with the lowest mass) has an atomic weight of 1.007825 Da. The value of this number is called the atomic mass . A given atom has an atomic mass approximately equal (within 1%) to its mass number times

14986-409: The universe is composed of atoms and voids . Circa 450 BC Empedocles imagined fundamental elements ( fire ( [REDACTED] ), earth ( [REDACTED] ), air ( [REDACTED] ), and water ( [REDACTED] )) and "forces" of attraction and repulsion allowing the elements to interact. A fifth element, the incorruptible quintessence aether , was considered to be the fundamental building block of

15113-432: The vaporization/sublimation of such materials does produce separate molecules where electrons are still transferred fully enough for the bonds to be considered ionic rather than covalent. Most molecules are far too small to be seen with the naked eye, although molecules of many polymers can reach macroscopic sizes, including biopolymers such as DNA . Molecules commonly used as building blocks for organic synthesis have

15240-406: The wavelengths of light (400–700  nm ) so they cannot be viewed using an optical microscope , although individual atoms can be observed using a scanning tunneling microscope . To visualize the minuteness of the atom, consider that a typical human hair is about 1 million carbon atoms in width. A single drop of water contains about 2  sextillion ( 2 × 10 ) atoms of oxygen, and twice

15367-432: The white oxide there are two atoms of oxygen for every atom of tin ( SnO and SnO 2 ). Dalton also analyzed iron oxides . There is one type of iron oxide that is a black powder which is 78.1% iron and 21.9% oxygen; and there is another iron oxide that is a red powder which is 70.4% iron and 29.6% oxygen. Adjusting these figures, in the black powder there is about 28 g of oxygen for every 100 g of iron, and in

15494-407: The word atom originally denoted a particle that cannot be cut into smaller particles, in modern scientific usage the atom is composed of various subatomic particles . The constituent particles of an atom are the electron , the proton and the neutron . The electron is the least massive of these particles by four orders of magnitude at 9.11 × 10  kg , with a negative electrical charge and

15621-526: Was learning the Dalton hook-and-eye bonding method , which was the mainstream description of bonds between atoms at the time. Pauling, however, was not satisfied with this method and looked to the newly emerging field of quantum physics for a new method. In 1926, French physicist Jean Perrin received the Nobel Prize in physics for proving, conclusively, the existence of molecules. He did this by calculating

15748-435: Was thought that through consumption one may rid oneself of any impurities or illnesses. In The book of Quintessence , a 15th-century English translation of a continental text, quintessence was used as a medicine for many of man's illnesses. A process given for the creation of quintessence is distillation of alcohol seven times. Over the years, the term quintessence has become synonymous with elixirs , medicinal alchemy , and

15875-432: Was thought to be high-energy gamma radiation , since gamma radiation had a similar effect on electrons in metals, but James Chadwick found that the ionization effect was too strong for it to be due to electromagnetic radiation, so long as energy and momentum were conserved in the interaction. In 1932, Chadwick exposed various elements, such as hydrogen and nitrogen, to the mysterious "beryllium radiation", and by measuring

16002-420: Was thought to be the pure essence that the gods breathed, filling the space where they lived, analogous to the air breathed by mortals. It is also personified as a deity, Aether , the son of Erebus and Nyx in traditional Greek mythology. Aether is related to αἴθω "to incinerate", and intransitive "to burn, to shine" (related is the name Aithiopes ( Ethiopians ; see Aethiopia ), meaning "people with

16129-522: Was used in one of Sir Isaac Newton 's first published theories of gravitation, Philosophiæ Naturalis Principia Mathematica (the Principia , 1687). He based the whole description of planetary motions on a theoretical law of dynamic interactions. He renounced standing attempts at accounting for this particular form of interaction between distant bodies by introducing a mechanism of propagation through an intervening medium. He calls this intervening medium aether. In his aether model, Newton describes aether as

#25974