The Moltrasio Formation also known as the Lombardische Kieselkalk Formation is a geological formation in Italy and Switzerland. This Formation mostly developed in the Lower or Middle Sinemurian stage of the Lower Jurassic, where on the Lombardian basin tectonic activity modified the current marine and terrestrial habitats. Here it developed a series of marine-related depositional settings, represented by an outcrop of 550–600 m of grey Calcarenites and Calcilutites with chert lenses and marly interbeds, that recovers the Sedrina , Moltrasio and Domaro Formations . This was mostly due to the post-Triassic crisis, that was linked locally to tectonics. The Moltrasio Formation is considered a continuation of the Sedrina Limestone and the Hettangian Albenza Formation , and was probably a shallow water succession, developed on the passive margin of the westernmost Southern Alps. It is known due to the exquisite preservation observed on the Outcrop in Osteno , where several kinds of marine biota have been recovered.
91-633: Apart from the Eocene of Monte Bolca , the Sinemurian of Osteno is the only fossil deposit in Italy in which soft bodies are preserved. The Osteno site was discovered in 1964. It was recovered from a series of 6 metres (20 ft) package of fine laminated, gray, spongiolitic, micritic limestone . Coroniceras bisulcatum allowed to date the outcrop as the Bucklandi zone, lower Sinemurian . The outcrop
182-431: A large body of water is also present. In an attempt to try to mitigate the cooling polar temperatures, large lakes were proposed to mitigate seasonal climate changes. To replicate this case, a lake was inserted into North America and a climate model was run using varying carbon dioxide levels. The model runs concluded that while the lake did reduce the seasonality of the region greater than just an increase in carbon dioxide,
273-540: A marine ecosystem)—one of the largest in the Cenozoic. This event happened around 55.8 Ma, and was one of the most significant periods of global change during the Cenozoic. The middle Eocene was characterized by the shift towards a cooler climate at the end of the EECO, around 47.8 Ma, which was briefly interrupted by another warming event called the middle Eocene climatic optimum (MECO). Lasting for about 400,000 years,
364-511: A role in triggering the ETM2 and ETM3. An enhancement of the biological pump proved effective at sequestering excess carbon during the recovery phases of these hyperthermals. These hyperthermals led to increased perturbations in planktonic and benthic foraminifera , with a higher rate of fluvial sedimentation as a consequence of the warmer temperatures. Unlike the PETM, the lesser hyperthermals of
455-533: A significant amount of water vapor is released. Another requirement for polar stratospheric clouds is cold temperatures to ensure condensation and cloud production. Polar stratospheric cloud production, since it requires the cold temperatures, is usually limited to nighttime and winter conditions. With this combination of wetter and colder conditions in the lower stratosphere, polar stratospheric clouds could have formed over wide areas in Polar Regions. To test
546-400: A stagnant, restricted basin with anoxic conditions likely within the sediment pore waters. Eophasma Osteno Outcrop A nematode , type member of the family Eophasmidae inside Desmoscolecida . A rare find, since nematode fossils are absent in most Mesozoic marine rocks. [REDACTED] Melanoraphia Osteno Outcrop A polychaete , member of
637-775: A wide variety of climate conditions that includes the warmest climate in the Cenozoic Era , and arguably the warmest time interval since the Permian-Triassic mass extinction and Early Triassic, and ends in an icehouse climate. The evolution of the Eocene climate began with warming after the end of the Paleocene–Eocene Thermal Maximum (PETM) at 56 Ma to a maximum during the Eocene Optimum at around 49 Ma. During this period of time, little to no ice
728-529: Is a geological epoch that lasted from about 56 to 33.9 million years ago (Ma). It is the second epoch of the Paleogene Period in the modern Cenozoic Era . The name Eocene comes from the Ancient Greek Ἠώς ( Ēṓs , " Dawn ") and καινός ( kainós , "new") and refers to the "dawn" of modern ('new') fauna that appeared during the epoch. The Eocene spans the time from the end of
819-635: Is a good documentation of a particularly complete fauna and flora of the Lower Jurassic which is not exactly common in the Southern Alps. The Osteno outcrop, part of the formation, is worldwide known due to the exceptional preservation of mostly marine biota, including rare fossilized components, helping to understand the ecosystems of the local Sinemurian margin of the Monte Generoso Basin . The high local variety of fossils found
910-459: Is an important factor in the creation of the primary Type II polar stratospheric clouds that were created in the early Eocene. Since water vapor is the only supporting substance used in Type II polar stratospheric clouds, the presence of water vapor in the lower stratosphere is necessary where in most situations the presence of water vapor in the lower stratosphere is rare. When methane is oxidized,
1001-638: Is considered to be primarily due to carbon dioxide increases, because carbon isotope signatures rule out major methane release during this short-term warming. A sharp increase in atmospheric carbon dioxide was observed with a maximum of 4,000 ppm: the highest amount of atmospheric carbon dioxide detected during the Eocene. Other studies suggest a more modest rise in carbon dioxide levels. The increase in atmospheric carbon dioxide has also been hypothesised to have been driven by increased seafloor spreading rates and metamorphic decarbonation reactions between Australia and Antarctica and increased amounts of volcanism in
SECTION 10
#17327727841821092-594: Is conventionally divided into early (56–47.8 Ma), middle (47.8–38 Ma), and late (38–33.9 Ma) subdivisions. The corresponding rocks are referred to as lower, middle, and upper Eocene. The Ypresian Stage constitutes the lower, the Priabonian Stage the upper; and the Lutetian and Bartonian stages are united as the middle Eocene. The Western North American floras of the Eocene were divided into four floral "stages" by Jack Wolfe ( 1968 ) based on work with
1183-497: Is most likely due to unique conditions of preservation, where phosphatized soft tissues have not been observed in any fish or polychaetes, but they are common in crustaceans (33%) and also occur in a smaller percentage of teuthids (14%). Soft part preservation through phosphatization in this deposit includes the muscles and branchia of Crustaceans , fish tissues, and the digestive tracts of coleoids , polychaetes , and nematodes . These fossils are interpreted as having been preserved in
1274-720: Is short lived, as benthic oxygen isotope records indicate a return to cooling at ~40 Ma. At the end of the MECO, the MLEC resumed. Cooling and the carbon dioxide drawdown continued through the late Eocene and into the Eocene–Oligocene transition around 34 Ma. The post-MECO cooling brought with it a major aridification trend in Asia, enhanced by retreating seas. A monsoonal climate remained predominant in East Asia. The cooling during
1365-535: Is the period of time when the Antarctic ice sheet began to rapidly expand. Greenhouse gases, in particular carbon dioxide and methane , played a significant role during the Eocene in controlling the surface temperature. The end of the PETM was met with very large sequestration of carbon dioxide into the forms of methane clathrate , coal , and crude oil at the bottom of the Arctic Ocean , that reduced
1456-686: The Grande Coupure (the "Great Break" in continuity) or the Eocene–Oligocene extinction event , which may be related to the impact of one or more large bolides in Siberia and in what is now Chesapeake Bay . As with other geologic periods , the strata that define the start and end of the epoch are well identified, though their exact dates are slightly uncertain. The term "Eocene" is derived from Ancient Greek Ἠώς ( Ēṓs ) meaning "Dawn", and καινός kainos meaning "new" or "recent", as
1547-603: The Late Ordovician around 455 million years ago, with the Dendrobranchiata (prawns) being the first group to diverge. The remaining group, called Pleocyemata , then diverged between the swimming shrimp groupings and the crawling/walking group called Reptantia , consisting of lobsters and crabs . High species diversification can be traced to the Jurassic and Cretaceous periods, which coincides with
1638-713: The Middle Eocene Climatic Optimum (MECO). At around 41.5 Ma, stable isotopic analysis of samples from Southern Ocean drilling sites indicated a warming event for 600,000 years. A similar shift in carbon isotopes is known from the Northern Hemisphere in the Scaglia Limestones of Italy. Oxygen isotope analysis showed a large negative change in the proportion of heavier oxygen isotopes to lighter oxygen isotopes, which indicates an increase in global temperatures. The warming
1729-536: The Paleocene Epoch to the beginning of the Oligocene Epoch. The start of the Eocene is marked by a brief period in which the concentration of the carbon isotope C in the atmosphere was exceptionally low in comparison with the more common isotope C . The average temperature of Earth at the beginning of the Eocene was about 27 degrees Celsius. The end is set at a major extinction event called
1820-761: The Puget Group fossils of King County, Washington . The four stages, Franklinian , Fultonian , Ravenian , and Kummerian covered the Early Eocene through early Oligocene, and three of the four were given informal early/late substages. Wolfe tentatively deemed the Franklinian as Early Eocene, the Fultonian as Middle Eocene, the Ravenian as Late, and the Kummerian as Early Oligocene. The beginning of
1911-458: The amount of oxygen in the Earth's atmosphere more or less doubled. During the warming in the early Eocene between 55 and 52 Ma, there were a series of short-term changes of carbon isotope composition in the ocean. These isotope changes occurred due to the release of carbon from the ocean into the atmosphere that led to a temperature increase of 4–8 °C (7.2–14.4 °F) at the surface of
SECTION 20
#17327727841822002-417: The proxy data . Using all different ranges of greenhouse gasses that occurred during the early Eocene, models were unable to produce the warming that was found at the poles and the reduced seasonality that occurs with winters at the poles being substantially warmer. The models, while accurately predicting the tropics, tend to produce significantly cooler temperatures of up to 20 °C (36 °F) colder than
2093-666: The southeast United States . After the Paleocene–Eocene Thermal Maximum, members of the Equoidea arose in North America and Europe, giving rise to some of the earliest equids such as Sifrhippus and basal European equoids such as the palaeothere Hyracotherium . Some of the later equoids were especially species-rich; Palaeotherium , ranging from small to very large in size, is known from as many as 16 species. Established large-sized mammals of
2184-620: The Azolla Event. This cooling trend at the end of the EECO has also been proposed to have been caused by increased siliceous plankton productivity and marine carbon burial, which also helped draw carbon dioxide out of the atmosphere. Cooling after this event, part of a trend known as the Middle-Late Eocene Cooling (MLEC), continued due to continual decrease in atmospheric carbon dioxide from organic productivity and weathering from mountain building . Many regions of
2275-404: The EECO. Relative to present-day values, bottom water temperatures are 10 °C (18 °F) higher according to isotope proxies. With these bottom water temperatures, temperatures in areas where deep water forms near the poles are unable to be much cooler than the bottom water temperatures. An issue arises, however, when trying to model the Eocene and reproduce the results that are found with
2366-548: The Early Eocene had negligible consequences for terrestrial mammals. These Early Eocene hyperthermals produced a sustained period of extremely hot climate known as the Early Eocene Climatic Optimum (EECO). During the early and middle EECO, the superabundance of the euryhaline dinocyst Homotryblium in New Zealand indicates elevated ocean salinity in the region. One of the unique features of
2457-440: The Earth including the poles. Tropical forests extended across much of modern Africa, South America, Central America, India, South-east Asia and China. Paratropical forests grew over North America, Europe and Russia, with broad-leafed evergreen and broad-leafed deciduous forests at higher latitudes. Polar forests were quite extensive. Fossils and even preserved remains of trees such as swamp cypress and dawn redwood from
2548-691: The Eocene and Neogene for the Miocene and Pliocene in 1853. After decades of inconsistent usage, the newly formed International Commission on Stratigraphy (ICS), in 1969, standardized stratigraphy based on the prevailing opinions in Europe: the Cenozoic Era subdivided into the Tertiary and Quaternary sub-eras, and the Tertiary subdivided into the Paleogene and Neogene periods. In 1978, the Paleogene
2639-566: The Eocene have been found on Ellesmere Island in the Arctic . Even at that time, Ellesmere Island was only a few degrees in latitude further south than it is today. Fossils of subtropical and even tropical trees and plants from the Eocene also have been found in Greenland and Alaska . Tropical rainforests grew as far north as northern North America and Europe . Palm trees were growing as far north as Alaska and northern Europe during
2730-619: The Eocene include the Uintatherium , Arsinoitherium , and brontotheres , in which the former two, unlike the latter, did not belong to ungulates but groups that became extinct shortly after their establishments. Large terrestrial mammalian predators had already existed since the Paleocene, but new forms now arose like Hyaenodon and Daphoenus (the earliest lineage of a once-successful predatory family known as bear dogs ). Entelodonts meanwhile established themselves as some of
2821-544: The Eocene's climate as mentioned before was the equable and homogeneous climate that existed in the early parts of the Eocene. A multitude of proxies support the presence of a warmer equable climate being present during this period of time. A few of these proxies include the presence of fossils native to warm climates, such as crocodiles , located in the higher latitudes, the presence in the high latitudes of frost-intolerant flora such as palm trees which cannot survive during sustained freezes, and fossils of snakes found in
Moltrasio Formation - Misplaced Pages Continue
2912-664: The Eocene, and compression was replaced with crustal extension that ultimately gave rise to the Basin and Range Province . The Kishenehn Basin, around 1.5 km in elevation during the Lutetian, was uplifted to an altitude of 2.5 km by the Priabonian. Huge lakes formed in the high flat basins among uplifts, resulting in the deposition of the Green River Formation lagerstätte . At about 35 Ma, an asteroid impact on
3003-466: The Eocene-Oligocene transition is the timing of the creation of the circulation is uncertain. For Drake Passage , sediments indicate the opening occurred ~41 Ma while tectonics indicate that this occurred ~32 Ma. Solar activity did not change significantly during the greenhouse-icehouse transition across the Eocene-Oligocene boundary. During the early-middle Eocene, forests covered most of
3094-439: The Kummerian was refined by Gregory Retallack et al (2004) as 40 Mya, with a refined end at the Eocene-Oligocene boundary where the younger Angoonian floral stage starts. During the Eocene, the continents continued to drift toward their present positions. At the beginning of the period, Australia and Antarctica remained connected, and warm equatorial currents may have mixed with colder Antarctic waters, distributing
3185-426: The MECO was responsible for a globally uniform 4° to 6°C warming of both the surface and deep oceans, as inferred from foraminiferal stable oxygen isotope records. The resumption of a long-term gradual cooling trend resulted in a glacial maximum at the late Eocene/early Oligocene boundary. The end of the Eocene was also marked by the Eocene–Oligocene extinction event , also known as the Grande Coupure . The Eocene
3276-679: The MECO. Both groups of modern ungulates (hoofed animals) became prevalent because of a major radiation between Europe and North America, along with carnivorous ungulates like Mesonyx . Early forms of many other modern mammalian orders appeared, including horses (most notably the Eohippus ), bats , proboscidians (elephants), primates, and rodents . Older primitive forms of mammals declined in variety and importance. Important Eocene land fauna fossil remains have been found in western North America, Europe, Patagonia , Egypt , and southeast Asia . Marine fauna are best known from South Asia and
3367-469: The North American continent, and it reduced the seasonal variation of temperature by up to 75%. While orbital parameters did not produce the warming at the poles, the parameters did show a great effect on seasonality and needed to be considered. Another method considered for producing the warm polar temperatures were polar stratospheric clouds . Polar stratospheric clouds are clouds that occur in
3458-415: The PETM event in the sea floor or wetland environments. For contrast, today the carbon dioxide levels are at 400 ppm or 0.04%. During the early Eocene, methane was another greenhouse gas that had a drastic effect on the climate. Methane has 30 times more of a warming effect than carbon dioxide on a 100-year scale (i.e., methane has a global warming potential of 29.8±11). Most of the methane released to
3549-405: The actual determined temperature at the poles. This error has been classified as the "equable climate problem". To solve this problem, the solution would involve finding a process to warm the poles without warming the tropics. Some hypotheses and tests which attempt to find the process are listed below. Due to the nature of water as opposed to land, less temperature variability would be present if
3640-410: The addition of a large lake was unable to reduce the seasonality to the levels shown by the floral and faunal data. The transport of heat from the tropics to the poles, much like how ocean heat transport functions in modern times, was considered a possibility for the increased temperature and reduced seasonality for the poles. With the increased sea surface temperatures and the increased temperature of
3731-422: The amount of polar stratospheric clouds. While the polar stratospheric clouds could explain the reduction of the equator to pole temperature gradient and the increased temperatures at the poles during the early Eocene, there are a few drawbacks to maintaining polar stratospheric clouds for an extended period of time. Separate model runs were used to determine the sustainability of the polar stratospheric clouds. It
Moltrasio Formation - Misplaced Pages Continue
3822-456: The atmosphere during this period of time would have been from wetlands, swamps, and forests. The atmospheric methane concentration today is 0.000179% or 1.79 ppmv . As a result of the warmer climate and the sea level rise associated with the early Eocene, more wetlands, more forests, and more coal deposits would have been available for methane release. If we compare the early Eocene production of methane to current levels of atmospheric methane,
3913-528: The atmosphere may have been more important. Once the Antarctic region began to cool down, the ocean surrounding Antarctica began to freeze, sending cold water and icefloes north and reinforcing the cooling. The northern supercontinent of Laurasia began to fragment, as Europe , Greenland and North America drifted apart. In western North America, the Laramide Orogeny came to an end in
4004-524: The atmospheric carbon dioxide. This event was similar in magnitude to the massive release of greenhouse gasses at the beginning of the PETM, and it is hypothesized that the sequestration was mainly due to organic carbon burial and weathering of silicates. For the early Eocene there is much discussion on how much carbon dioxide was in the atmosphere. This is due to numerous proxies representing different atmospheric carbon dioxide content. For example, diverse geochemical and paleontological proxies indicate that at
4095-602: The bulk of the remainder. The earliest fossils of the group date to the Devonian . Decapods can have as many as 38 appendages, arranged in one pair per body segment. As the name Decapoda (from the Greek δέκα , deca- , "ten", and πούς / ποδός , -pod , "foot") implies, ten of these appendages are considered legs. They are the pereiopods , found on the last five thoracic segments. In many decapods, one pair of these "legs" has enlarged pincers, called chelae , with
4186-538: The cladogram above, the clade Glypheidea is excluded due to lack of sufficient DNA evidence, but is likely the sister clade to Polychelida , within Reptantia . Classification within the order Decapoda depends on the structure of the gills and legs, and the way in which the larvae develop, giving rise to two suborders: Dendrobranchiata and Pleocyemata . The Dendrobranchiata consist of prawns, including many species colloquially referred to as "shrimp", such as
4277-434: The class Malacostraca , and includes crabs , lobsters , crayfish , shrimp , and prawns . Most decapods are scavengers . The order is estimated to contain nearly 15,000 extant species in around 2,700 genera, with around 3,300 fossil species. Nearly half of these species are crabs, with the shrimp (about 3,000 species) and Anomura including hermit crabs , porcelain crabs , squat lobsters (about 2500 species) making up
4368-413: The decline into an icehouse climate and the rapid expansion of the Antarctic ice sheet . The transition from a warming climate into a cooling climate began at around 49 Ma. Isotopes of carbon and oxygen indicate a shift to a global cooling climate. The cause of the cooling has been attributed to a significant decrease of >2,000 ppm in atmospheric carbon dioxide concentrations. One proposed cause of
4459-437: The deep ocean water during the early Eocene, one common hypothesis was that due to these increases there would be a greater transport of heat from the tropics to the poles. Simulating these differences, the models produced lower heat transport due to the lower temperature gradients and were unsuccessful in producing an equable climate from only ocean heat transport. While typically seen as a control on ice growth and seasonality,
4550-410: The deep ocean. On top of that, MECO warming caused an increase in the respiration rates of pelagic heterotrophs , leading to a decreased proportion of primary productivity making its way down to the seafloor and causing a corresponding decline in populations of benthic foraminifera. An abrupt decrease in lakewater salinity in western North America occurred during this warming interval. This warming
4641-411: The early Eocene would have produced triple the amount of methane. The warm temperatures during the early Eocene could have increased methane production rates, and methane that is released into the atmosphere would in turn warm the troposphere, cool the stratosphere, and produce water vapor and carbon dioxide through oxidation. Biogenic production of methane produces carbon dioxide and water vapor along with
SECTION 50
#17327727841824732-901: The early Eocene, although they became less abundant as the climate cooled. Dawn redwoods were far more extensive as well. The earliest definitive Eucalyptus fossils were dated from 51.9 Ma, and were found in the Laguna del Hunco deposit in Chubut province in Argentina . Cooling began mid-period, and by the end of the Eocene continental interiors had begun to dry, with forests thinning considerably in some areas. The newly evolved grasses were still confined to river banks and lake shores, and had not yet expanded into plains and savannas . The cooling also brought seasonal changes. Deciduous trees, better able to cope with large temperature changes, began to overtake evergreen tropical species. By
4823-639: The eastern coast of North America formed the Chesapeake Bay impact crater . The Tethys Ocean finally closed with the collision of Africa and Eurasia, while the uplift of the Alps isolated its final remnant, the Mediterranean , and created another shallow sea with island archipelagos to the north. Planktonic foraminifera in the northwestern Peri-Tethys are very similar to those of the Tethys in
4914-544: The end of the period, deciduous forests covered large parts of the northern continents, including North America, Eurasia and the Arctic, and rainforests held on only in equatorial South America , Africa , India and Australia . Antarctica began the Eocene fringed with a warm temperate to sub-tropical rainforest . Pollen found in Prydz Bay from the Eocene suggest taiga forest existed there. It became much colder as
5005-508: The enhanced burial of azolla could have had a significant effect on the world atmospheric carbon content and may have been the event to begin the transition into an ice house climate. The azolla event could have led to a draw down of atmospheric carbon dioxide of up to 470 ppm. Assuming the carbon dioxide concentrations were at 900 ppmv prior to the Azolla Event they would have dropped to 430 ppmv, or 30 ppmv more than they are today, after
5096-472: The enhanced carbon dioxide levels found in the early Eocene. The isolation of the Arctic Ocean, evidenced by euxinia that occurred at this time, led to stagnant waters and as the azolla sank to the sea floor, they became part of the sediments on the seabed and effectively sequestered the carbon by locking it out of the atmosphere for good. The ability for the azolla to sequester carbon is exceptional, and
5187-633: The epoch saw the dawn of recent, or modern, life. Scottish geologist Charles Lyell (ignoring the Quaternary) divided the Tertiary Epoch into the Eocene, Miocene , Pliocene , and New Pliocene ( Holocene ) Periods in 1833. British geologist John Phillips proposed the Cenozoic in 1840 in place of the Tertiary, and Austrian paleontologist Moritz Hörnes introduced the Paleogene for
5278-494: The expansion of the ice sheet was the creation of the Antarctic Circumpolar Current . The creation of the Antarctic circumpolar current would isolate the cold water around the Antarctic, which would reduce heat transport to the Antarctic along with creating ocean gyres that result in the upwelling of colder bottom waters. The issue with this hypothesis of the consideration of this being a factor for
5369-534: The extant manatees and dugongs . It is thought that millions of years after the Cretaceous-Paleogene extinction event , brain sizes of mammals now started to increase , "likely driven by a need for greater cognition in increasingly complex environments". Decapoda Dendrobranchiata Pleocyemata See text for superfamilies. The Decapoda or decapods ( lit. ' ten-footed ' ) are an order of crustaceans within
5460-408: The family Coleiidae . Probably a bottom dweller predatory crustacean. [REDACTED] Eryma 41 specimens, fairly preserved Osteno Outcrop A decapod , type member of the family Erymidae . The species was originally identified as Pustulina sinemuriana . Glyphea 137 complete and fragmentary specimens Osteno Outcrop A decapod , type member of the family Erymidae . The species
5551-504: The family Erymidae . The species was originally included in the genus Eryma as E. meyeri , although the specimens reveal morphological characters diagnostic of Palaeastacus . Phlyctisoma 10 specimens, in a fairly good state of preservation Osteno Outcrop A decapod , type member of the family Erymidae . The species was originally identified as Pustulina sinemuriana . Eocene The Eocene ( IPA : / ˈ iː ə s iː n , ˈ iː oʊ -/ EE -ə-seen, EE -oh- )
SECTION 60
#17327727841825642-509: The group Phyllodocemorpha with incertae sedis assignation. This polychaete was probably an open swimmer more than a substrate dweller. [REDACTED] Aeger Multiple specimens fairly preserved Osteno Outcrop A decapod , type member of the family Aegeridae . This genus is the most abundant local crustacean, and was a shrimp-like creature that was probably necrophagous. [REDACTED] Coleia Multiple specimens fairly preserved Osteno Outcrop A decapod , type member of
5733-399: The heat around the planet and keeping global temperatures high. When Australia split from the southern continent around 45 Ma, the warm equatorial currents were routed away from Antarctica. An isolated cold water channel developed between the two continents. However, modeling results call into question the thermal isolation model for late Eocene cooling, and decreasing carbon dioxide levels in
5824-402: The hot house to the cold house. The beginning of the Eocene is marked by the Paleocene–Eocene Thermal Maximum , a short period of intense warming and ocean acidification brought about by the release of carbon en masse into the atmosphere and ocean systems, which led to a mass extinction of 30–50% of benthic foraminifera (single-celled species which are used as bioindicators of the health of
5915-588: The initial stages of the opening of the Drake Passage ~38.5 Ma was not global, as evidenced by an absence of cooling in the North Atlantic. During the cooling period, benthic oxygen isotopes show the possibility of ice creation and ice increase during this later cooling. The end of the Eocene and beginning of the Oligocene is marked with the massive expansion of area of the Antarctic ice sheet that
6006-516: The largest omnivores. The first nimravids , including Dinictis , established themselves as amongst the first feliforms to appear. Their groups became highly successful and continued to live past the Eocene. Basilosaurus is a very well-known Eocene whale , but whales as a group had become very diverse during the Eocene, which is when the major transitions from being terrestrial to fully aquatic in cetaceans occurred. The first sirenians were evolving at this time, and would eventually evolve into
6097-459: The legs being called chelipeds. In front of the pereiopods are three pairs of maxillipeds that function as feeding appendages. The head has five pairs of appendages, including mouthparts , antennae, and antennules. There are five more pairs of appendages on the abdomen. They are called pleopods . There is one final pair called uropods , which, with the telson , form the tail fan. A 2019 molecular clock analysis suggested decapods originated in
6188-556: The lower stratosphere at very low temperatures. Polar stratospheric clouds have a great impact on radiative forcing. Due to their minimal albedo properties and their optical thickness, polar stratospheric clouds act similar to a greenhouse gas and trap outgoing longwave radiation. Different types of polar stratospheric clouds occur in the atmosphere: polar stratospheric clouds that are created due to interactions with nitric or sulfuric acid and water (Type I) or polar stratospheric clouds that are created with only water ice (Type II). Methane
6279-610: The maximum of global warmth the atmospheric carbon dioxide values were at 700–900 ppm , while model simulations suggest a concentration of 1,680 ppm fits best with deep sea, sea surface, and near-surface air temperatures of the time. Other proxies such as pedogenic (soil building) carbonate and marine boron isotopes indicate large changes of carbon dioxide of over 2,000 ppm over periods of time of less than 1 million years. This large influx of carbon dioxide could be attributed to volcanic out-gassing due to North Atlantic rifting or oxidation of methane stored in large reservoirs deposited from
6370-530: The members of the new mammal orders were small, under 10 kg; based on comparisons of tooth size, Eocene mammals were only 60% of the size of the primitive Palaeocene mammals that preceded them. They were also smaller than the mammals that followed them. It is assumed that the hot Eocene temperatures favored smaller animals that were better able to manage the heat. Rodents were widespread. East Asian rodent faunas declined in diversity when they shifted from ctenodactyloid-dominant to cricetid–dipodid-dominant after
6461-480: The methane, as well as yielding infrared radiation. The breakdown of methane in an atmosphere containing oxygen produces carbon monoxide, water vapor and infrared radiation. The carbon monoxide is not stable, so it eventually becomes carbon dioxide and in doing so releases yet more infrared radiation. Water vapor traps more infrared than does carbon dioxide. At about the beginning of the Eocene Epoch (55.8–33.9 Ma)
6552-569: The middle Lutetian but become completely disparate in the Bartonian, indicating biogeographic separation. Though the North Atlantic was opening, a land connection appears to have remained between North America and Europe since the faunas of the two regions are very similar. Eurasia was separated in three different landmasses 50 Ma; Western Europe, Balkanatolia and Asia. About 40 Ma, Balkanatolia and Asia were connected, while Europe
6643-399: The modern mammal orders appear within a brief period during the early Eocene . At the beginning of the Eocene, several new mammal groups arrived in North America. These modern mammals, like artiodactyls , perissodactyls , and primates , had features like long, thin legs , feet, and hands capable of grasping, as well as differentiated teeth adapted for chewing. Dwarf forms reigned. All
6734-664: The ocean. Recent analysis of and research into these hyperthermals in the early Eocene has led to hypotheses that the hyperthermals are based on orbital parameters, in particular eccentricity and obliquity. The hyperthermals in the early Eocene, notably the Palaeocene–Eocene Thermal Maximum (PETM), the Eocene Thermal Maximum 2 (ETM2), and the Eocene Thermal Maximum 3 (ETM3), were analyzed and found that orbital control may have had
6825-416: The orbital parameters were theorized as a possible control on continental temperatures and seasonality. Simulating the Eocene by using an ice free planet, eccentricity , obliquity , and precession were modified in different model runs to determine all the possible different scenarios that could occur and their effects on temperature. One particular case led to warmer winters and cooler summer by up to 30% in
6916-416: The period progressed; the heat-loving tropical flora was wiped out, and by the beginning of the Oligocene, the continent hosted deciduous forests and vast stretches of tundra . During the Eocene, plants and marine faunas became quite modern. Many modern bird orders first appeared in the Eocene. The Eocene oceans were warm and teeming with fish and other sea life. The oldest known fossils of most of
7007-438: The polar stratospheric clouds effects on the Eocene climate, models were run comparing the effects of polar stratospheric clouds at the poles to an increase in atmospheric carbon dioxide. The polar stratospheric clouds had a warming effect on the poles, increasing temperatures by up to 20 °C in the winter months. A multitude of feedbacks also occurred in the models due to the polar stratospheric clouds' presence. Any ice growth
7098-458: The reduction in carbon dioxide during the warming to cooling transition was the azolla event . With the equable climate during the early Eocene, warm temperatures in the arctic allowed for the growth of azolla , which is a floating aquatic fern, on the Arctic Ocean . The significantly high amounts of carbon dioxide also acted to facilitate azolla blooms across the Arctic Ocean. Compared to current carbon dioxide levels, these azolla grew rapidly in
7189-459: The region. One possible cause of atmospheric carbon dioxide increase could have been a sudden increase due to metamorphic release due to continental drift and collision of India with Asia and the resulting formation of the Himalayas ; however, data on the exact timing of metamorphic release of atmospheric carbon dioxide is not well resolved in the data. Recent studies have mentioned, however, that
7280-445: The removal of the ocean between Asia and India could have released significant amounts of carbon dioxide. Another hypothesis still implicates a diminished negative feedback of silicate weathering as a result of continental rocks having become less weatherable during the warm Early and Middle Eocene, allowing volcanically released carbon dioxide to persist in the atmosphere for longer. Yet another explanation hypothesises that MECO warming
7371-930: The rise and spread of modern coral reefs , a key habitat for the decapods. Despite the inferred early origin, the oldest fossils of the group such as Palaeopalaemon only date to the Late Devonian . The cladogram below shows the internal relationships of Decapoda, from analysis by Wolfe et al. (2019). Dendrobranchiata (prawns) [REDACTED] Stenopodidea (boxer shrimp) [REDACTED] Procarididea Caridea ("true" shrimp) [REDACTED] Achelata (spiny lobsters and slipper lobsters) [REDACTED] Polychelida (benthic crustaceans) Astacidea (lobsters and crayfish) [REDACTED] Axiidea (mud shrimp, ghost shrimp, and burrowing shrimp) Gebiidea (mud lobsters and mud shrimp) [REDACTED] Anomura (hermit crabs and allies) [REDACTED] Brachyura ("true" crabs) [REDACTED] In
7462-399: The tropics that would require much higher average temperatures to sustain them. TEX 86 BAYSPAR measurements indicate extremely high sea surface temperatures of 40 °C (104 °F) to 45 °C (113 °F) at low latitudes, although clumped isotope analyses point to a maximum low latitude sea surface temperature of 36.3 °C (97.3 °F) ± 1.9 °C (35.4 °F) during
7553-463: The world became more arid and cold over the course of the stage, such as the Fushun Basin. In East Asia, lake level changes were in sync with global sea level changes over the course of the MLEC. Global cooling continued until there was a major reversal from cooling to warming in the Bartonian. This warming event, signifying a sudden and temporary reversal of the cooling conditions, is known as
7644-528: Was a major step into the icehouse climate. Multiple proxies, such as oxygen isotopes and alkenones , indicate that at the Eocene–Oligocene transition, the atmospheric carbon dioxide concentration had decreased to around 750–800 ppm, approximately twice that of present levels . Along with the decrease of atmospheric carbon dioxide reducing the global temperature, orbital factors in ice creation can be seen with 100,000-year and 400,000-year fluctuations in benthic oxygen isotope records. Another major contribution to
7735-476: Was caused by the simultaneous occurrence of minima in both the 400 kyr and 2.4 Myr eccentricity cycles. During the MECO, sea surface temperatures in the Tethys Ocean jumped to 32–36 °C, and Tethyan seawater became more dysoxic. A decline in carbonate accumulation at ocean depths of greater than three kilometres took place synchronously with the peak of the MECO, signifying ocean acidification took place in
7826-465: Was connected 34 Ma. The Fushun Basin contained large, suboxic lakes known as the paleo-Jijuntun Lakes. India collided with Asia , folding to initiate formation of the Himalayas . The incipient subcontinent collided with the Kohistan–Ladakh Arc around 50.2 Ma and with Karakoram around 40.4 Ma, with the final collision between Asia and India occurring ~40 Ma. The Eocene Epoch contained
7917-402: Was determined that in order to maintain the lower stratospheric water vapor, methane would need to be continually released and sustained. In addition, the amounts of ice and condensation nuclei would need to be high in order for the polar stratospheric cloud to sustain itself and eventually expand. The Eocene is not only known for containing the warmest period during the Cenozoic; it also marked
8008-457: Was officially defined as the Paleocene, Eocene, and Oligocene epochs; and the Neogene as the Miocene and Pliocene epochs. In 1989, Tertiary and Quaternary were removed from the time scale due to the arbitrary nature of their boundary, but Quaternary was reinstated in 2009. The Eocene is a dynamic epoch that represents global climatic transitions between two climatic extremes, transitioning from
8099-406: Was originally identified as Pustulina sinemuriana . Mecochirus 81 complete and fragmentary specimens, Osteno Outcrop A decapod , member of the family Mecochiridae . Rather rare compared to other local crustacean genera. Single Specimen fairly preserved Osteno Outcrop A mantis shrimp Palaeastacus Multiple specimens fairly preserved Osteno Outcrop A decapod , member of
8190-401: Was present on Earth with a smaller difference in temperature from the equator to the poles . Because of this the maximum sea level was 150 meters higher than current levels. Following the maximum was a descent into an icehouse climate from the Eocene Optimum to the Eocene–Oligocene transition at 34 Ma. During this decrease, ice began to reappear at the poles, and the Eocene–Oligocene transition
8281-437: Was slowed immensely and would lead to any present ice melting. Only the poles were affected with the change in temperature and the tropics were unaffected, which with an increase in atmospheric carbon dioxide would also cause the tropics to increase in temperature. Due to the warming of the troposphere from the increased greenhouse effect of the polar stratospheric clouds, the stratosphere would cool and would potentially increase
#181818