Misplaced Pages

Mark III Stellar Interferometer

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Optics is the branch of physics that studies the behaviour and properties of light , including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible , ultraviolet , and infrared light. Light is a type of electromagnetic radiation , and other forms of electromagnetic radiation such as X-rays , microwaves , and radio waves exhibit similar properties.

#708291

88-746: The Mark III Stellar Interferometer was a long-baseline optical astronomical interferometer , located at the Mount Wilson Observatory , California , United States . It had a maximum baseline of 32 meters and operated in wavelengths between 450 and 800 nm . A joint venture between the United States Naval Observatory , the Naval Research Laboratory , the Smithsonian Astrophysical Observatory , and

176-543: A pitch accent . In Modern Greek, all vowels and consonants are short. Many vowels and diphthongs once pronounced distinctly are pronounced as /i/ ( iotacism ). Some of the stops and glides in diphthongs have become fricatives , and the pitch accent has changed to a stress accent . Many of the changes took place in the Koine Greek period. The writing system of Modern Greek, however, does not reflect all pronunciation changes. The examples below represent Attic Greek in

264-430: A broad band, or extremely low reflectivity at a single wavelength. Constructive interference in thin films can create a strong reflection of light in a range of wavelengths, which can be narrow or broad depending on the design of the coating. These films are used to make dielectric mirrors , interference filters , heat reflectors , and filters for colour separation in colour television cameras. This interference effect

352-619: A changing index of refraction; this principle allows for lenses and the focusing of light. The simplest case of refraction occurs when there is an interface between a uniform medium with index of refraction n 1 and another medium with index of refraction n 2 . In such situations, Snell's Law describes the resulting deflection of the light ray: n 1 sin ⁡ θ 1 = n 2 sin ⁡ θ 2 {\displaystyle n_{1}\sin \theta _{1}=n_{2}\sin \theta _{2}} where θ 1 and θ 2 are

440-399: A converging lens has positive focal length, while a diverging lens has negative focal length. Smaller focal length indicates that the lens has a stronger converging or diverging effect. The focal length of a simple lens in air is given by the lensmaker's equation . Ray tracing can be used to show how images are formed by a lens. For a thin lens in air, the location of the image is given by

528-525: A fifth major dialect group, or it is Mycenaean Greek overlaid by Doric, with a non-Greek native influence. Regarding the speech of the ancient Macedonians diverse theories have been put forward, but the epigraphic activity and the archaeological discoveries in the Greek region of Macedonia during the last decades has brought to light documents, among which the first texts written in Macedonian , such as

616-550: A prefix /e-/, called the augment . This was probably originally a separate word, meaning something like "then", added because tenses in PIE had primarily aspectual meaning. The augment is added to the indicative of the aorist, imperfect, and pluperfect, but not to any of the other forms of the aorist (no other forms of the imperfect and pluperfect exist). The two kinds of augment in Greek are syllabic and quantitative. The syllabic augment

704-477: A single scalar quantity to represent the electric field of the light wave, rather than using a vector model with orthogonal electric and magnetic vectors. The Huygens–Fresnel equation is one such model. This was derived empirically by Fresnel in 1815, based on Huygens' hypothesis that each point on a wavefront generates a secondary spherical wavefront, which Fresnel combined with the principle of superposition of waves. The Kirchhoff diffraction equation , which

792-522: A single point on the image, while chromatic aberration occurs because the index of refraction of the lens varies with the wavelength of the light. In physical optics, light is considered to propagate as waves. This model predicts phenomena such as interference and diffraction, which are not explained by geometric optics. The speed of light waves in air is approximately 3.0×10  m/s (exactly 299,792,458 m/s in vacuum ). The wavelength of visible light waves varies between 400 and 700 nm, but

880-437: A spectrum. The discovery of this phenomenon when passing light through a prism is famously attributed to Isaac Newton. Some media have an index of refraction which varies gradually with position and, therefore, light rays in the medium are curved. This effect is responsible for mirages seen on hot days: a change in index of refraction air with height causes light rays to bend, creating the appearance of specular reflections in

968-542: A strong Northwest Greek influence, and can in some respects be considered a transitional dialect, as exemplified in the poems of the Boeotian poet Pindar who wrote in Doric with a small Aeolic admixture. Thessalian likewise had come under Northwest Greek influence, though to a lesser degree. Pamphylian Greek , spoken in a small area on the southwestern coast of Anatolia and little preserved in inscriptions, may be either

SECTION 10

#1732782548709

1056-465: A thickness of one-fourth the wavelength of incident light. The reflected wave from the top of the film and the reflected wave from the film/material interface are then exactly 180° out of phase, causing destructive interference. The waves are only exactly out of phase for one wavelength, which would typically be chosen to be near the centre of the visible spectrum, around 550 nm. More complex designs using multiple layers can achieve low reflectivity over

1144-476: A variety of technologies and everyday objects, including mirrors , lenses , telescopes , microscopes , lasers , and fibre optics . Optics began with the development of lenses by the ancient Egyptians and Mesopotamians . The earliest known lenses, made from polished crystal , often quartz , date from as early as 2000 BC from Crete (Archaeological Museum of Heraclion, Greece). Lenses from Rhodes date around 700 BC, as do Assyrian lenses such as

1232-510: A vowel or /n s r/ ; final stops were lost, as in γάλα "milk", compared with γάλακτος "of milk" (genitive). Ancient Greek of the classical period also differed in both the inventory and distribution of original PIE phonemes due to numerous sound changes, notably the following: The pronunciation of Ancient Greek was very different from that of Modern Greek . Ancient Greek had long and short vowels ; many diphthongs ; double and single consonants; voiced, voiceless, and aspirated stops ; and

1320-525: A wide range of scientific topics, and discussed light from four different perspectives: an epistemology of light, a metaphysics or cosmogony of light, an etiology or physics of light, and a theology of light, basing it on the works of Aristotle and Platonism. Grosseteste's most famous disciple, Roger Bacon , wrote works citing a wide range of recently translated optical and philosophical works, including those of Alhazen, Aristotle, Avicenna , Averroes , Euclid, al-Kindi, Ptolemy, Tideus, and Constantine

1408-591: Is a more comprehensive model of light, which includes wave effects such as diffraction and interference that cannot be accounted for in geometric optics. Historically, the ray-based model of light was developed first, followed by the wave model of light. Progress in electromagnetic theory in the 19th century led to the discovery that light waves were in fact electromagnetic radiation. Some phenomena depend on light having both wave-like and particle-like properties . Explanation of these effects requires quantum mechanics . When considering light's particle-like properties,

1496-427: Is a simple paraxial physical optics model for the propagation of coherent radiation such as laser beams. This technique partially accounts for diffraction, allowing accurate calculations of the rate at which a laser beam expands with distance, and the minimum size to which the beam can be focused. Gaussian beam propagation thus bridges the gap between geometric and physical optics. In the absence of nonlinear effects,

1584-418: Is added to stems beginning with consonants, and simply prefixes e (stems beginning with r , however, add er ). The quantitative augment is added to stems beginning with vowels, and involves lengthening the vowel: Some verbs augment irregularly; the most common variation is e → ei . The irregularity can be explained diachronically by the loss of s between vowels, or that of the letter w , which affected

1672-444: Is also what causes the colourful rainbow patterns seen in oil slicks. Ancient Greek Ancient Greek ( Ἑλληνῐκή , Hellēnikḗ ; [hellɛːnikɛ́ː] ) includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek ( c.  1400–1200 BC ), Dark Ages ( c.  1200–800 BC ),

1760-448: Is considered by some linguists to have been closely related to Greek . Among Indo-European branches with living descendants, Greek is often argued to have the closest genetic ties with Armenian (see also Graeco-Armenian ) and Indo-Iranian languages (see Graeco-Aryan ). Ancient Greek differs from Proto-Indo-European (PIE) and other Indo-European languages in certain ways. In phonotactics , ancient Greek words could end only in

1848-486: Is considered to travel in straight lines, while in physical optics, light is considered as an electromagnetic wave. Geometrical optics can be viewed as an approximation of physical optics that applies when the wavelength of the light used is much smaller than the size of the optical elements in the system being modelled. Geometrical optics , or ray optics , describes the propagation of light in terms of "rays" which travel in straight lines, and whose paths are governed by

SECTION 20

#1732782548709

1936-491: Is derived using Maxwell's equations, puts the Huygens-Fresnel equation on a firmer physical foundation. Examples of the application of Huygens–Fresnel principle can be found in the articles on diffraction and Fraunhofer diffraction . More rigorous models, involving the modelling of both electric and magnetic fields of the light wave, are required when dealing with materials whose electric and magnetic properties affect

2024-409: Is to the lens, the further the image is from the lens. With diverging lenses, incoming parallel rays diverge after going through the lens, in such a way that they seem to have originated at a spot one focal length in front of the lens. This is the lens's front focal point. Rays from an object at a finite distance are associated with a virtual image that is closer to the lens than the focal point, and on

2112-480: The Book of Optics ( Kitab al-manazir ) in which he explored reflection and refraction and proposed a new system for explaining vision and light based on observation and experiment. He rejected the "emission theory" of Ptolemaic optics with its rays being emitted by the eye, and instead put forward the idea that light reflected in all directions in straight lines from all points of the objects being viewed and then entered

2200-679: The Archaic or Epic period ( c.  800–500 BC ), and the Classical period ( c.  500–300 BC ). Ancient Greek was the language of Homer and of fifth-century Athenian historians, playwrights, and philosophers . It has contributed many words to English vocabulary and has been a standard subject of study in educational institutions of the Western world since the Renaissance . This article primarily contains information about

2288-606: The Epic and Classical periods of the language, which are the best-attested periods and considered most typical of Ancient Greek. From the Hellenistic period ( c.  300 BC ), Ancient Greek was followed by Koine Greek , which is regarded as a separate historical stage, though its earliest form closely resembles Attic Greek , and its latest form approaches Medieval Greek . There were several regional dialects of Ancient Greek; Attic Greek developed into Koine. Ancient Greek

2376-604: The Massachusetts Institute of Technology , it began operation in 1987 and was closed in 1992. The Naval Observatory later constructed a larger interferometer, the Navy Prototype Optical Interferometer . The Mark III interferometer was used to resolve a number of spectroscopic binary systems , including Alpha Andromedae , Phi Cygni , and many others. Optical Most optical phenomena can be accounted for by using

2464-617: The Nimrud lens . The ancient Romans and Greeks filled glass spheres with water to make lenses. These practical developments were followed by the development of theories of light and vision by ancient Greek and Indian philosophers, and the development of geometrical optics in the Greco-Roman world . The word optics comes from the ancient Greek word ὀπτική , optikē ' appearance, look ' . Greek philosophy on optics broke down into two opposing theories on how vision worked,

2552-501: The Pella curse tablet , as Hatzopoulos and other scholars note. Based on the conclusions drawn by several studies and findings such as Pella curse tablet , Emilio Crespo and other scholars suggest that ancient Macedonian was a Northwest Doric dialect , which shares isoglosses with its neighboring Thessalian dialects spoken in northeastern Thessaly . Some have also suggested an Aeolic Greek classification. The Lesbian dialect

2640-398: The classical electromagnetic description of light, however complete electromagnetic descriptions of light are often difficult to apply in practice. Practical optics is usually done using simplified models. The most common of these, geometric optics , treats light as a collection of rays that travel in straight lines and bend when they pass through or reflect from surfaces. Physical optics

2728-454: The emission theory , the idea that visual perception is accomplished by rays emitted by the eyes. He also commented on the parity reversal of mirrors in Timaeus . Some hundred years later, Euclid (4th–3rd century BC) wrote a treatise entitled Optics where he linked vision to geometry , creating geometrical optics . He based his work on Plato's emission theory wherein he described

Mark III Stellar Interferometer - Misplaced Pages Continue

2816-603: The epic poems , the Iliad and the Odyssey , and in later poems by other authors. Homeric Greek had significant differences in grammar and pronunciation from Classical Attic and other Classical-era dialects. The origins, early form and development of the Hellenic language family are not well understood because of a lack of contemporaneous evidence. Several theories exist about what Hellenic dialect groups may have existed between

2904-468: The intromission theory and the emission theory . The intromission approach saw vision as coming from objects casting off copies of themselves (called eidola) that were captured by the eye. With many propagators including Democritus , Epicurus , Aristotle and their followers, this theory seems to have some contact with modern theories of what vision really is, but it remained only speculation lacking any experimental foundation. Plato first articulated

2992-501: The present , future , and imperfect are imperfective in aspect; the aorist , present perfect , pluperfect and future perfect are perfective in aspect. Most tenses display all four moods and three voices, although there is no future subjunctive or imperative. Also, there is no imperfect subjunctive, optative or imperative. The infinitives and participles correspond to the finite combinations of tense, aspect, and voice. The indicative of past tenses adds (conceptually, at least)

3080-448: The superposition principle , which is a wave-like property not predicted by Newton's corpuscle theory. This work led to a theory of diffraction for light and opened an entire area of study in physical optics. Wave optics was successfully unified with electromagnetic theory by James Clerk Maxwell in the 1860s. The next development in optical theory came in 1899 when Max Planck correctly modelled blackbody radiation by assuming that

3168-466: The surface normal , a line perpendicular to the surface at the point where the ray hits. The incident and reflected rays and the normal lie in a single plane, and the angle between the reflected ray and the surface normal is the same as that between the incident ray and the normal. This is known as the Law of Reflection . For flat mirrors , the law of reflection implies that images of objects are upright and

3256-1031: The 5th century BC. Ancient pronunciation cannot be reconstructed with certainty, but Greek from the period is well documented, and there is little disagreement among linguists as to the general nature of the sounds that the letters represent. /oː/ raised to [uː] , probably by the 4th century BC. Greek, like all of the older Indo-European languages , is highly inflected. It is highly archaic in its preservation of Proto-Indo-European forms. In ancient Greek, nouns (including proper nouns) have five cases ( nominative , genitive , dative , accusative , and vocative ), three genders ( masculine , feminine , and neuter ), and three numbers (singular, dual , and plural ). Verbs have four moods ( indicative , imperative , subjunctive , and optative ) and three voices (active, middle, and passive ), as well as three persons (first, second, and third) and various other forms. Verbs are conjugated through seven combinations of tenses and aspect (generally simply called "tenses"):

3344-567: The African . Bacon was able to use parts of glass spheres as magnifying glasses to demonstrate that light reflects from objects rather than being released from them. The first wearable eyeglasses were invented in Italy around 1286. This was the start of the optical industry of grinding and polishing lenses for these "spectacles", first in Venice and Florence in the thirteenth century, and later in

3432-495: The Archaic period of ancient Greek (see Homeric Greek for more details): Μῆνιν ἄειδε, θεά, Πηληϊάδεω Ἀχιλῆος οὐλομένην, ἣ μυρί' Ἀχαιοῖς ἄλγε' ἔθηκε, πολλὰς δ' ἰφθίμους ψυχὰς Ἄϊδι προΐαψεν ἡρώων, αὐτοὺς δὲ ἑλώρια τεῦχε κύνεσσιν οἰωνοῖσί τε πᾶσι· Διὸς δ' ἐτελείετο βουλή· ἐξ οὗ δὴ τὰ πρῶτα διαστήτην ἐρίσαντε Ἀτρεΐδης τε ἄναξ ἀνδρῶν καὶ δῖος Ἀχιλλεύς. The beginning of Apology by Plato exemplifies Attic Greek from

3520-545: The Dorians. The Greeks of this period believed there were three major divisions of all Greek people – Dorians, Aeolians, and Ionians (including Athenians), each with their own defining and distinctive dialects. Allowing for their oversight of Arcadian, an obscure mountain dialect, and Cypriot, far from the center of Greek scholarship, this division of people and language is quite similar to the results of modern archaeological-linguistic investigation. One standard formulation for

3608-548: The Huygens–Fresnel principle states that every point of a wavefront is associated with the production of a new disturbance, it is possible for a wavefront to interfere with itself constructively or destructively at different locations producing bright and dark fringes in regular and predictable patterns. Interferometry is the science of measuring these patterns, usually as a means of making precise determinations of distances or angular resolutions . The Michelson interferometer

Mark III Stellar Interferometer - Misplaced Pages Continue

3696-484: The amplitude of the wave, which for light is associated with a brightening of the waveform in that location. Alternatively, if the two waves of the same wavelength and frequency are out of phase, then the wave crests will align with wave troughs and vice versa. This results in destructive interference and a decrease in the amplitude of the wave, which for light is associated with a dimming of the waveform at that location. See below for an illustration of this effect. Since

3784-552: The angle of incidence. Plutarch (1st–2nd century AD) described multiple reflections on spherical mirrors and discussed the creation of magnified and reduced images, both real and imaginary, including the case of chirality of the images. During the Middle Ages , Greek ideas about optics were resurrected and extended by writers in the Muslim world . One of the earliest of these was Al-Kindi ( c.  801 –873) who wrote on

3872-435: The angles between the normal (to the interface) and the incident and refracted waves, respectively. The index of refraction of a medium is related to the speed, v , of light in that medium by n = c / v , {\displaystyle n=c/v,} where c is the speed of light in vacuum . Snell's Law can be used to predict the deflection of light rays as they pass through linear media as long as

3960-550: The aorist. Following Homer 's practice, the augment is sometimes not made in poetry , especially epic poetry. The augment sometimes substitutes for reduplication; see below. Almost all forms of the perfect, pluperfect, and future perfect reduplicate the initial syllable of the verb stem. (A few irregular forms of perfect do not reduplicate, whereas a handful of irregular aorists reduplicate.) The three types of reduplication are: Irregular duplication can be understood diachronically. For example, lambanō (root lab ) has

4048-419: The augment when it was word-initial. In verbs with a preposition as a prefix, the augment is placed not at the start of the word, but between the preposition and the original verb. For example, προσ(-)βάλλω (I attack) goes to προσ έ βαλoν in the aorist. However compound verbs consisting of a prefix that is not a preposition retain the augment at the start of the word: αὐτο(-)μολῶ goes to ηὐ τομόλησα in

4136-615: The dialect of Sparta ), and Northern Peloponnesus Doric (including Corinthian ). All the groups were represented by colonies beyond Greece proper as well, and these colonies generally developed local characteristics, often under the influence of settlers or neighbors speaking different Greek dialects. After the conquests of Alexander the Great in the late 4th century BC, a new international dialect known as Koine or Common Greek developed, largely based on Attic Greek , but with influence from other dialects. This dialect slowly replaced most of

4224-530: The dialects is: West vs. non-West Greek is the strongest-marked and earliest division, with non-West in subsets of Ionic-Attic (or Attic-Ionic) and Aeolic vs. Arcadocypriot, or Aeolic and Arcado-Cypriot vs. Ionic-Attic. Often non-West is called 'East Greek'. Arcadocypriot apparently descended more closely from the Mycenaean Greek of the Bronze Age. Boeotian Greek had come under

4312-449: The distance (as if on the surface of a pool of water). Optical materials with varying indexes of refraction are called gradient-index (GRIN) materials. Such materials are used to make gradient-index optics . For light rays travelling from a material with a high index of refraction to a material with a low index of refraction, Snell's law predicts that there is no θ 2 when θ 1 is large. In this case, no transmission occurs; all

4400-567: The divergence of early Greek-like speech from the common Proto-Indo-European language and the Classical period. They have the same general outline but differ in some of the detail. The only attested dialect from this period is Mycenaean Greek , but its relationship to the historical dialects and the historical circumstances of the times imply that the overall groups already existed in some form. Scholars assume that major Ancient Greek period dialect groups developed not later than 1120 BC, at

4488-426: The exchange of energy between light and matter only occurred in discrete amounts he called quanta . In 1905, Albert Einstein published the theory of the photoelectric effect that firmly established the quantization of light itself. In 1913, Niels Bohr showed that atoms could only emit discrete amounts of energy, thus explaining the discrete lines seen in emission and absorption spectra . The understanding of

SECTION 50

#1732782548709

4576-586: The eye, although he was unable to correctly explain how the eye captured the rays. Alhazen's work was largely ignored in the Arabic world but it was anonymously translated into Latin around 1200 A.D. and further summarised and expanded on by the Polish monk Witelo making it a standard text on optics in Europe for the next 400 years. In the 13th century in medieval Europe, English bishop Robert Grosseteste wrote on

4664-535: The feud between the two lasted until Hooke's death. In 1704, Newton published Opticks and, at the time, partly because of his success in other areas of physics, he was generally considered to be the victor in the debate over the nature of light. Newtonian optics was generally accepted until the early 19th century when Thomas Young and Augustin-Jean Fresnel conducted experiments on the interference of light that firmly established light's wave nature. Young's famous double slit experiment showed that light followed

4752-474: The focus to be smeared out in space. In particular, spherical mirrors exhibit spherical aberration . Curved mirrors can form images with a magnification greater than or less than one, and the magnification can be negative, indicating that the image is inverted. An upright image formed by reflection in a mirror is always virtual, while an inverted image is real and can be projected onto a screen. Refraction occurs when light travels through an area of space that has

4840-411: The gloss of surfaces such as mirrors, which reflect light in a simple, predictable way. This allows for the production of reflected images that can be associated with an actual ( real ) or extrapolated ( virtual ) location in space. Diffuse reflection describes non-glossy materials, such as paper or rock. The reflections from these surfaces can only be described statistically, with the exact distribution of

4928-416: The incident rays came. This is called retroreflection . Mirrors with curved surfaces can be modelled by ray tracing and using the law of reflection at each point on the surface. For mirrors with parabolic surfaces , parallel rays incident on the mirror produce reflected rays that converge at a common focus . Other curved surfaces may also focus light, but with aberrations due to the diverging shape causing

5016-418: The indexes of refraction and the geometry of the media are known. For example, the propagation of light through a prism results in the light ray being deflected depending on the shape and orientation of the prism. In most materials, the index of refraction varies with the frequency of the light, known as dispersion . Taking this into account, Snell's Law can be used to predict how a prism will disperse light into

5104-436: The interaction between light and matter that followed from these developments not only formed the basis of quantum optics but also was crucial for the development of quantum mechanics as a whole. The ultimate culmination, the theory of quantum electrodynamics , explains all optics and electromagnetic processes in general as the result of the exchange of real and virtual photons. Quantum optics gained practical importance with

5192-426: The interaction of light with the material. For instance, the behaviour of a light wave interacting with a metal surface is quite different from what happens when it interacts with a dielectric material. A vector model must also be used to model polarised light. Numerical modeling techniques such as the finite element method , the boundary element method and the transmission-line matrix method can be used to model

5280-483: The invention of the compound optical microscope around 1595, and the refracting telescope in 1608, both of which appeared in the spectacle making centres in the Netherlands. In the early 17th century, Johannes Kepler expanded on geometric optics in his writings, covering lenses, reflection by flat and curved mirrors, the principles of pinhole cameras , inverse-square law governing the intensity of light, and

5368-491: The inventions of the maser in 1953 and of the laser in 1960. Following the work of Paul Dirac in quantum field theory , George Sudarshan , Roy J. Glauber , and Leonard Mandel applied quantum theory to the electromagnetic field in the 1950s and 1960s to gain a more detailed understanding of photodetection and the statistics of light. Classical optics is divided into two main branches: geometrical (or ray) optics and physical (or wave) optics. In geometrical optics, light

SECTION 60

#1732782548709

5456-504: The laws of reflection and refraction at interfaces between different media. These laws were discovered empirically as far back as 984 AD and have been used in the design of optical components and instruments from then until the present day. They can be summarised as follows: When a ray of light hits the boundary between two transparent materials, it is divided into a reflected and a refracted ray. The laws of reflection and refraction can be derived from Fermat's principle which states that

5544-449: The light is modelled as a collection of particles called " photons ". Quantum optics deals with the application of quantum mechanics to optical systems. Optical science is relevant to and studied in many related disciplines including astronomy , various engineering fields, photography , and medicine (particularly ophthalmology and optometry , in which it is called physiological optics). Practical applications of optics are found in

5632-422: The light is reflected. This phenomenon is called total internal reflection and allows for fibre optics technology. As light travels down an optical fibre, it undergoes total internal reflection allowing for essentially no light to be lost over the length of the cable. A device that produces converging or diverging light rays due to refraction is known as a lens . Lenses are characterized by their focal length :

5720-443: The mathematical rules of perspective and described the effects of refraction qualitatively, although he questioned that a beam of light from the eye could instantaneously light up the stars every time someone blinked. Euclid stated the principle of shortest trajectory of light, and considered multiple reflections on flat and spherical mirrors. Ptolemy , in his treatise Optics , held an extramission-intromission theory of vision:

5808-494: The merits of Aristotelian and Euclidean ideas of optics, favouring the emission theory since it could better quantify optical phenomena. In 984, the Persian mathematician Ibn Sahl wrote the treatise "On burning mirrors and lenses", correctly describing a law of refraction equivalent to Snell's law. He used this law to compute optimum shapes for lenses and curved mirrors . In the early 11th century, Alhazen (Ibn al-Haytham) wrote

5896-405: The object and image distances are positive if the object and image are on opposite sides of the lens. Incoming parallel rays are focused by a converging lens onto a spot one focal length from the lens, on the far side of the lens. This is called the rear focal point of the lens. Rays from an object at a finite distance are focused further from the lens than the focal distance; the closer the object

5984-508: The older dialects, although the Doric dialect has survived in the Tsakonian language , which is spoken in the region of modern Sparta. Doric has also passed down its aorist terminations into most verbs of Demotic Greek . By about the 6th century AD, the Koine had slowly metamorphosed into Medieval Greek . Phrygian is an extinct Indo-European language of West and Central Anatolia , which

6072-401: The optical explanations of astronomical phenomena such as lunar and solar eclipses and astronomical parallax . He was also able to correctly deduce the role of the retina as the actual organ that recorded images, finally being able to scientifically quantify the effects of different types of lenses that spectacle makers had been observing over the previous 300 years. After the invention of

6160-676: The path taken between two points by a ray of light is the path that can be traversed in the least time. Geometric optics is often simplified by making the paraxial approximation , or "small angle approximation". The mathematical behaviour then becomes linear, allowing optical components and systems to be described by simple matrices. This leads to the techniques of Gaussian optics and paraxial ray tracing , which are used to find basic properties of optical systems, such as approximate image and object positions and magnifications . Reflections can be divided into two types: specular reflection and diffuse reflection . Specular reflection describes

6248-487: The perfect stem eilēpha (not * lelēpha ) because it was originally slambanō , with perfect seslēpha , becoming eilēpha through compensatory lengthening. Reduplication is also visible in the present tense stems of certain verbs. These stems add a syllable consisting of the root's initial consonant followed by i . A nasal stop appears after the reduplication in some verbs. The earliest extant examples of ancient Greek writing ( c.  1450 BC ) are in

6336-511: The propagation of light in systems which cannot be solved analytically. Such models are computationally demanding and are normally only used to solve small-scale problems that require accuracy beyond that which can be achieved with analytical solutions. All of the results from geometrical optics can be recovered using the techniques of Fourier optics which apply many of the same mathematical and analytical techniques used in acoustic engineering and signal processing . Gaussian beam propagation

6424-416: The rays (or flux) from the eye formed a cone, the vertex being within the eye, and the base defining the visual field. The rays were sensitive, and conveyed information back to the observer's intellect about the distance and orientation of surfaces. He summarized much of Euclid and went on to describe a way to measure the angle of refraction , though he failed to notice the empirical relationship between it and

6512-423: The reflected light depending on the microscopic structure of the material. Many diffuse reflectors are described or can be approximated by Lambert's cosine law , which describes surfaces that have equal luminance when viewed from any angle. Glossy surfaces can give both specular and diffuse reflection. In specular reflection, the direction of the reflected ray is determined by the angle the incident ray makes with

6600-415: The same distance behind the mirror as the objects are in front of the mirror. The image size is the same as the object size. The law also implies that mirror images are parity inverted, which we perceive as a left-right inversion. Images formed from reflection in two (or any even number of) mirrors are not parity inverted. Corner reflectors produce reflected rays that travel back in the direction from which

6688-407: The same side of the lens as the object. The closer the object is to the lens, the closer the virtual image is to the lens. As with mirrors, upright images produced by a single lens are virtual, while inverted images are real. Lenses suffer from aberrations that distort images. Monochromatic aberrations occur because the geometry of the lens does not perfectly direct rays from each object point to

6776-405: The simple equation 1 S 1 + 1 S 2 = 1 f , {\displaystyle {\frac {1}{S_{1}}}+{\frac {1}{S_{2}}}={\frac {1}{f}},} where S 1 is the distance from the object to the lens, θ 2 is the distance from the lens to the image, and f is the focal length of the lens. In the sign convention used here,

6864-464: The spectacle making centres in both the Netherlands and Germany. Spectacle makers created improved types of lenses for the correction of vision based more on empirical knowledge gained from observing the effects of the lenses rather than using the rudimentary optical theory of the day (theory which for the most part could not even adequately explain how spectacles worked). This practical development, mastery, and experimentation with lenses led directly to

6952-444: The superposition principle can be used to predict the shape of interacting waveforms through the simple addition of the disturbances. This interaction of waves to produce a resulting pattern is generally termed "interference" and can result in a variety of outcomes. If two waves of the same wavelength and frequency are in phase , both the wave crests and wave troughs align. This results in constructive interference and an increase in

7040-517: The syllabic script Linear B . Beginning in the 8th century BC, however, the Greek alphabet became standard, albeit with some variation among dialects. Early texts are written in boustrophedon style, but left-to-right became standard during the classic period. Modern editions of ancient Greek texts are usually written with accents and breathing marks , interword spacing , modern punctuation , and sometimes mixed case , but these were all introduced later. The beginning of Homer 's Iliad exemplifies

7128-472: The telescope, Kepler set out the theoretical basis on how they worked and described an improved version, known as the Keplerian telescope , using two convex lenses to produce higher magnification. Optical theory progressed in the mid-17th century with treatises written by philosopher René Descartes , which explained a variety of optical phenomena including reflection and refraction by assuming that light

7216-440: The term "light" is also often applied to infrared (0.7–300 μm) and ultraviolet radiation (10–400 nm). The wave model can be used to make predictions about how an optical system will behave without requiring an explanation of what is "waving" in what medium. Until the middle of the 19th century, most physicists believed in an "ethereal" medium in which the light disturbance propagated. The existence of electromagnetic waves

7304-467: The time of the Dorian invasions —and that their first appearances as precise alphabetic writing began in the 8th century BC. The invasion would not be "Dorian" unless the invaders had some cultural relationship to the historical Dorians . The invasion is known to have displaced population to the later Attic-Ionic regions, who regarded themselves as descendants of the population displaced by or contending with

7392-480: Was Aeolic. For example, fragments of the works of the poet Sappho from the island of Lesbos are in Aeolian. Most of the dialect sub-groups listed above had further subdivisions, generally equivalent to a city-state and its surrounding territory, or to an island. Doric notably had several intermediate divisions as well, into Island Doric (including Cretan Doric ), Southern Peloponnesus Doric (including Laconian ,

7480-452: Was a pluricentric language , divided into many dialects. The main dialect groups are Attic and Ionic , Aeolic , Arcadocypriot , and Doric , many of them with several subdivisions. Some dialects are found in standardized literary forms in literature , while others are attested only in inscriptions. There are also several historical forms. Homeric Greek is a literary form of Archaic Greek (derived primarily from Ionic and Aeolic) used in

7568-400: Was a famous instrument which used interference effects to accurately measure the speed of light. The appearance of thin films and coatings is directly affected by interference effects. Antireflective coatings use destructive interference to reduce the reflectivity of the surfaces they coat, and can be used to minimise glare and unwanted reflections. The simplest case is a single layer with

7656-540: Was emitted by objects which produced it. This differed substantively from the ancient Greek emission theory. In the late 1660s and early 1670s, Isaac Newton expanded Descartes's ideas into a corpuscle theory of light , famously determining that white light was a mix of colours that can be separated into its component parts with a prism . In 1690, Christiaan Huygens proposed a wave theory for light based on suggestions that had been made by Robert Hooke in 1664. Hooke himself publicly criticised Newton's theories of light and

7744-467: Was predicted in 1865 by Maxwell's equations . These waves propagate at the speed of light and have varying electric and magnetic fields which are orthogonal to one another, and also to the direction of propagation of the waves. Light waves are now generally treated as electromagnetic waves except when quantum mechanical effects have to be considered. Many simplified approximations are available for analysing and designing optical systems. Most of these use

#708291