LabX is the public engagement testbed at the U.S. National Academy of Sciences (NAS) - currently located in Washington, D.C. From 2004 until 2017, it was known as the Marian Koshland Science Museum. The museum featured exhibits that presented modern science and scientific issues in an accessible way, geared for the general public. It explored current scientific issues that were important for the nation's and world's public policy decisions, as presented in reports by the United States National Academies . The National Academy of Sciences replaced the museum with LabX.
142-612: The Koshland Science Museum was part of the National Academy of Sciences. Exhibits were developed based on guidance from committees of scientific experts, who donated their time and expertise to the museum. Each exhibit had its own Scientific Steering Committee or group of subject-matter experts who oversaw exhibit content and review information. A core group of museum staff members facilitated all aspects of exhibit selection, including development and fabrication. The museum also received input from advisory groups, whether in-person, in
284-562: A broader sense also includes previous long-term changes to Earth's climate. The current rise in global temperatures is driven by human activities , especially fossil fuel burning since the Industrial Revolution . Fossil fuel use, deforestation , and some agricultural and industrial practices release greenhouse gases . These gases absorb some of the heat that the Earth radiates after it warms from sunlight , warming
426-451: A consistent time period, assessments can attribute contributions to sea level rise and provide early indications of change in trajectory. This helps to inform adaptation plans. The different techniques used to measure changes in sea level do not measure exactly the same level. Tide gauges can only measure relative sea level. Satellites can also measure absolute sea level changes. To get precise measurements for sea level, researchers studying
568-590: A decadal timescale. Other changes are caused by an imbalance of energy from external forcings . Examples of these include changes in the concentrations of greenhouse gases , solar luminosity , volcanic eruptions, and variations in the Earth's orbit around the Sun. To determine the human contribution to climate change, unique "fingerprints" for all potential causes are developed and compared with both observed patterns and known internal climate variability . For example, solar forcing—whose fingerprint involves warming
710-487: A larger role over such timescales. Ice loss from Antarctica is likely to dominate very long-term SLR, especially if the warming exceeds 2 °C (3.6 °F). Continued carbon dioxide emissions from fossil fuel sources could cause additional tens of metres of sea level rise, over the next millennia. Burning of all fossil fuels on Earth is sufficient to melt the entire Antarctic ice sheet, causing about 58 m (190 ft) of sea level rise. Year 2021 IPCC estimates for
852-542: A lot of light to being dark after the ice has melted, they start absorbing more heat . Local black carbon deposits on snow and ice also contribute to Arctic warming. Arctic surface temperatures are increasing between three and four times faster than in the rest of the world. Melting of ice sheets near the poles weakens both the Atlantic and the Antarctic limb of thermohaline circulation , which further changes
994-412: A marked increase in temperature. Ongoing changes in climate have had no precedent for several thousand years. Multiple independent datasets all show worldwide increases in surface temperature, at a rate of around 0.2 °C per decade. The 2014–2023 decade warmed to an average 1.19 °C [1.06–1.30 °C] compared to the pre-industrial baseline (1850–1900). Not every single year was warmer than
1136-701: A much longer period. Coverage of tide gauges started mainly in the Northern Hemisphere . Data for the Southern Hemisphere remained scarce up to the 1970s. The longest running sea-level measurements, NAP or Amsterdam Ordnance Datum were established in 1675, in Amsterdam . Record collection is also extensive in Australia . They include measurements by Thomas Lempriere , an amateur meteorologist, beginning in 1837. Lempriere established
1278-508: A period of thousands of years. The size of the rise in sea level implies a large contribution from the Antarctic and Greenland ice sheets. Levels of atmospheric carbon dioxide of around 400 parts per million (similar to 2000s) had increased temperature by over 2–3 °C (3.6–5.4 °F) around three million years ago. This temperature increase eventually melted one third of Antarctica's ice sheet, causing sea levels to rise 20 meters above
1420-408: A physical climate model. These models simulate how population, economic growth , and energy use affect—and interact with—the physical climate. With this information, these models can produce scenarios of future greenhouse gas emissions. This is then used as input for physical climate models and carbon cycle models to predict how atmospheric concentrations of greenhouse gases might change. Depending on
1562-576: A range of 28–61 cm (11–24 in). The "moderate" scenario, where CO 2 emissions take a decade or two to peak and its atmospheric concentration does not plateau until the 2070s is called RCP 4.5. Its likely range of sea level rise is 36–71 cm (14–28 in). The highest scenario in RCP8.5 pathway sea level would rise between 52 and 98 cm ( 20 + 1 ⁄ 2 and 38 + 1 ⁄ 2 in). AR6 had equivalents for both scenarios, but it estimated larger sea level rise under both. In AR6,
SECTION 10
#17327727293781704-481: A range with a lower and upper limit to reflect the unknowns. The scenarios in the 2013–2014 Fifth Assessment Report (AR5) were called Representative Concentration Pathways , or RCPs and the scenarios in the IPCC Sixth Assessment Report (AR6) are known as Shared Socioeconomic Pathways , or SSPs. A large difference between the two was the addition of SSP1-1.9 to AR6, which represents meeting
1846-461: A result of climate change. Global sea level is rising as a consequence of thermal expansion and the melting of glaciers and ice sheets . Sea level rise has increased over time, reaching 4.8 cm per decade between 2014 and 2023. Over the 21st century, the IPCC projects 32–62 cm of sea level rise under a low emission scenario, 44–76 cm under an intermediate one and 65–101 cm under
1988-474: A result. The World Health Organization calls climate change one of the biggest threats to global health in the 21st century. Societies and ecosystems will experience more severe risks without action to limit warming . Adapting to climate change through efforts like flood control measures or drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer communities are responsible for
2130-665: A sea-level benchmark on a small cliff on the Isle of the Dead near the Port Arthur convict settlement in 1841. Together with satellite data for the period after 1992, this network established that global mean sea level rose 19.5 cm (7.7 in) between 1870 and 2004 at an average rate of about 1.44 mm/yr. (For the 20th century the average is 1.7 mm/yr.) By 2018, data collected by Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) had shown that
2272-470: A sharp reduction in greenhouse gas emissions, this may increase to hundreds of millions in the latter decades of the century. Local factors like tidal range or land subsidence will greatly affect the severity of impacts. For instance, sea level rise in the United States is likely to be two to three times greater than the global average by the end of the century. Yet, of the 20 countries with
2414-417: A small share of global emissions , yet have the least ability to adapt and are most vulnerable to climate change . Many climate change impacts have been observed in the first decades of the 21st century, with 2023 the warmest on record at +1.48 °C (2.66 °F) since regular tracking began in 1850. Additional warming will increase these impacts and can trigger tipping points , such as melting all of
2556-593: A version of SSP5-8.5 where these processes take place, and in that case, sea level rise of up to 1.6 m ( 5 + 1 ⁄ 3 ft) by 2100 could not be ruled out. The greatest uncertainty with sea level rise projections is associated with the so-called marine ice sheet instability (MISI), and, even more so, Marine Ice Cliff Instability (MICI). These processes are mainly associated with West Antarctic Ice Sheet, but may also apply to some of Greenland's glaciers. The former suggests that when glaciers are mostly underwater on retrograde (backwards-sloping) bedrock,
2698-548: A very high emission scenario. Marine ice sheet instability processes in Antarctica may add substantially to these values, including the possibility of a 2-meter sea level rise by 2100 under high emissions. Climate change has led to decades of shrinking and thinning of the Arctic sea ice . While ice-free summers are expected to be rare at 1.5 °C degrees of warming, they are set to occur once every three to ten years at
2840-519: A warming level of 2 °C. Higher atmospheric CO 2 concentrations cause more CO 2 to dissolve in the oceans, which is making them more acidic . Because oxygen is less soluble in warmer water, its concentrations in the ocean are decreasing , and dead zones are expanding. Greater degrees of global warming increase the risk of passing through ' tipping points '—thresholds beyond which certain major impacts can no longer be avoided even if temperatures return to their previous state. For instance,
2982-564: Is an estimated total sea level rise of 2.3 metres per degree Celsius (4.2 ft/°F) after 2000 years. Oceanic CO 2 uptake is slow enough that ocean acidification will also continue for hundreds to thousands of years. Deep oceans (below 2,000 metres (6,600 ft)) are also already committed to losing over 10% of their dissolved oxygen by the warming which occurred to date. Further, the West Antarctic ice sheet appears committed to practically irreversible melting, which would increase
SECTION 20
#17327727293783124-402: Is by lowering the global temperature to 1 °C (1.8 °F) below the preindustrial level. This would be 2 °C (3.6 °F) below the temperature of 2020. Other researchers suggested that a climate engineering intervention to stabilize the ice sheet's glaciers may delay its loss by centuries and give more time to adapt. However this is an uncertain proposal, and would end up as one of
3266-711: Is determined by modelling the carbon cycle and climate sensitivity to greenhouse gases. According to UNEP , global warming can be kept below 1.5 °C with a 50% chance if emissions after 2023 do not exceed 200 gigatonnes of CO 2 . This corresponds to around 4 years of current emissions. To stay under 2.0 °C, the carbon budget is 900 gigatonnes of CO 2 , or 16 years of current emissions. The climate system experiences various cycles on its own which can last for years, decades or even centuries. For example, El Niño events cause short-term spikes in surface temperature while La Niña events cause short term cooling. Their relative frequency can affect global temperature trends on
3408-454: Is due to the high level of inertia in the carbon cycle and the climate system, owing to factors such as the slow diffusion of heat into the deep ocean , leading to a longer climate response time. A 2018 paper estimated that sea level rise in 2300 would increase by a median of 20 cm (8 in) for every five years CO 2 emissions increase before peaking. It shows a 5% likelihood of a 1 m ( 3 + 1 ⁄ 2 ft) increase due to
3550-399: Is independent of where greenhouse gases are emitted, because the gases persist long enough to diffuse across the planet. Since the pre-industrial period, the average surface temperature over land regions has increased almost twice as fast as the global average surface temperature. This is because oceans lose more heat by evaporation and oceans can store a lot of heat . The thermal energy in
3692-465: Is now unstoppable. However the temperature changes in future, the warming of 2000–2019 had already damaged the ice sheet enough for it to eventually lose ~3.3% of its volume. This is leading to 27 cm ( 10 + 1 ⁄ 2 in) of future sea level rise. At a certain level of global warming, the Greenland ice sheet will almost completely melt. Ice cores show this happened at least once over
3834-450: Is primarily attributed to sulfate aerosols produced by the combustion of fossil fuels with heavy sulfur concentrations like coal and bunker fuel . Smaller contributions come from black carbon (from combustion of fossil fuels and biomass), and from dust. Globally, aerosols have been declining since 1990 due to pollution controls, meaning that they no longer mask greenhouse gas warming as much. Aerosols also have indirect effects on
3976-444: Is radiating into space. Warming reduces average snow cover and forces the retreat of glaciers . At the same time, warming also causes greater evaporation from the oceans , leading to more atmospheric humidity , more and heavier precipitation . Plants are flowering earlier in spring, and thousands of animal species have been permanently moving to cooler areas. Different regions of the world warm at different rates . The pattern
4118-516: Is shaped by feedbacks, which either amplify or dampen the change. Self-reinforcing or positive feedbacks increase the response, while balancing or negative feedbacks reduce it. The main reinforcing feedbacks are the water-vapour feedback , the ice–albedo feedback , and the net effect of clouds. The primary balancing mechanism is radiative cooling , as Earth's surface gives off more heat to space in response to rising temperature. In addition to temperature feedbacks, there are feedbacks in
4260-520: Is the East Antarctic Ice Sheet (EAIS). It is 2.2 km thick on average and holds enough ice to raise global sea levels by 53.3 m (174 ft 10 in) Its great thickness and high elevation make it more stable than the other ice sheets. As of the early 2020s, most studies show that it is still gaining mass. Some analyses have suggested it began to lose mass in the 2000s. However they over-extrapolated some observed losses on to
4402-409: Is the fastest it had been over at least the past 3,000 years. While sea level rise is uniform around the globe, some land masses are moving up or down as a consequence of subsidence (land sinking or settling) or post-glacial rebound (land rising as melting ice reduces weight). Therefore, local relative sea level rise may be higher or lower than the global average. Changing ice masses also affect
Marian Koshland Science Museum - Misplaced Pages Continue
4544-462: Is the largest and most influential scientific organization on climate change, and since 1990, it provides several plausible scenarios of 21st century sea level rise in each of its major reports. The differences between scenarios are mainly due to uncertainty about future greenhouse gas emissions. These depend on future economic developments, and also future political action which is hard to predict. Each scenario provides an estimate for sea level rise as
4686-407: Is the major reason why different climate models project different magnitudes of warming for a given amount of emissions. A climate model is a representation of the physical, chemical and biological processes that affect the climate system. Models include natural processes like changes in the Earth's orbit, historical changes in the Sun's activity, and volcanic forcing. Models are used to estimate
4828-417: Is unclear. A related phenomenon driven by climate change is woody plant encroachment , affecting up to 500 million hectares globally. Climate change has contributed to the expansion of drier climate zones, such as the expansion of deserts in the subtropics . The size and speed of global warming is making abrupt changes in ecosystems more likely. Overall, it is expected that climate change will result in
4970-529: The Amundsen Sea Embayment played a disproportionate role. The median estimated increase in sea level rise from Antarctica by 2100 is ~11 cm (5 in). There is no difference between scenarios, because the increased warming would intensify the water cycle and increase snowfall accumulation over the EAIS at about the same rate as it would increase ice loss from WAIS. However, most of
5112-511: The Atlantic meridional overturning circulation (AMOC), and irreversible damage to key ecosystems like the Amazon rainforest and coral reefs can unfold in a matter of decades. The long-term effects of climate change on oceans include further ice melt, ocean warming , sea level rise, ocean acidification and ocean deoxygenation. The timescale of long-term impacts are centuries to millennia due to CO 2 's long atmospheric lifetime. The result
5254-502: The Earth 's temperature by many decades, and sea level rise will therefore continue to accelerate between now and 2050 in response to warming that has already happened. What happens after that depends on human greenhouse gas emissions . If there are very deep cuts in emissions, sea level rise would slow between 2050 and 2100. It could then reach by 2100 slightly over 30 cm (1 ft) from now and approximately 60 cm (2 ft) from
5396-610: The Earth's energy budget . Sulfate aerosols act as cloud condensation nuclei and lead to clouds that have more and smaller cloud droplets. These clouds reflect solar radiation more efficiently than clouds with fewer and larger droplets. They also reduce the growth of raindrops , which makes clouds more reflective to incoming sunlight. Indirect effects of aerosols are the largest uncertainty in radiative forcing . While aerosols typically limit global warming by reflecting sunlight, black carbon in soot that falls on snow or ice can contribute to global warming. Not only does this increase
5538-573: The Greenland ice sheet is already melting, but if global warming reaches levels between 1.7 °C and 2.3 °C, its melting will continue until it fully disappears. If the warming is later reduced to 1.5 °C or less, it will still lose a lot more ice than if the warming was never allowed to reach the threshold in the first place. While the ice sheets would melt over millennia, other tipping points would occur faster and give societies less time to respond. The collapse of major ocean currents like
5680-840: The Greenland ice sheet . Under the 2015 Paris Agreement , nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.8 °C (5.0 °F) by the end of the century. Limiting warming to 1.5 °C would require halving emissions by 2030 and achieving net-zero emissions by 2050. Fossil fuel use can be phased out by conserving energy and switching to energy sources that do not produce significant carbon pollution. These energy sources include wind , solar , hydro , and nuclear power . Cleanly generated electricity can replace fossil fuels for powering transportation , heating buildings , and running industrial processes. Carbon can also be removed from
5822-638: The Haverford College . The museum was located at 525 E Street, NW. The museum entrance was at the corner of 6th & E Streets, NW, in the Penn Quarter neighborhood of Washington, DC. It was three blocks north of the National Mall . Global warming Present-day climate change includes both global warming —the ongoing increase in global average temperature —and its wider effects on Earth's climate . Climate change in
Marian Koshland Science Museum - Misplaced Pages Continue
5964-635: The Industrial Revolution , naturally-occurring amounts of greenhouse gases caused the air near the surface to be about 33 °C warmer than it would have been in their absence. Human activity since the Industrial Revolution, mainly extracting and burning fossil fuels ( coal , oil , and natural gas ), has increased the amount of greenhouse gases in the atmosphere. In 2022, the concentrations of CO 2 and methane had increased by about 50% and 164%, respectively, since 1750. These CO 2 levels are higher than they have been at any time during
6106-599: The Pacific Decadal Oscillation (PDO) and the El Niño–Southern Oscillation (ENSO) change from one state to the other. The PDO is a basin-wide climate pattern consisting of two phases, each commonly lasting 10 to 30 years. The ENSO has a shorter period of 2 to 7 years. The global network of tide gauges is the other important source of sea-level observations. Compared to the satellite record, this record has major spatial gaps but covers
6248-546: The SROCC assessed several studies attempting to estimate 2300 sea level rise caused by ice loss in Antarctica alone, arriving at projected estimates of 0.07–0.37 metres (0.23–1.21 ft) for the low emission RCP2.6 scenario, and 0.60–2.89 metres (2.0–9.5 ft) in the high emission RCP8.5 scenario. This wide range of estimates is mainly due to the uncertainties regarding marine ice sheet and marine ice cliff instabilities. The world's largest potential source of sea level rise
6390-518: The World Economic Forum , 14.5 million more deaths are expected due to climate change by 2050. 30% of the global population currently live in areas where extreme heat and humidity are already associated with excess deaths. By 2100, 50% to 75% of the global population would live in such areas. While total crop yields have been increasing in the past 50 years due to agricultural improvements, climate change has already decreased
6532-637: The bedrock underlying the WAIS lies well below sea level, and it has to be buttressed by the Thwaites and Pine Island glaciers. If these glaciers were to collapse, the entire ice sheet would as well. Their disappearance would take at least several centuries, but is considered almost inevitable, as their bedrock topography deepens inland and becomes more vulnerable to meltwater, in what is known as marine ice sheet instability. The contribution of these glaciers to global sea levels has already accelerated since
6674-414: The carbon cycle . While plants on land and in the ocean absorb most excess emissions of CO 2 every year, that CO 2 is returned to the atmosphere when biological matter is digested, burns, or decays. Land-surface carbon sink processes, such as carbon fixation in the soil and photosynthesis, remove about 29% of annual global CO 2 emissions. The ocean has absorbed 20 to 30% of emitted CO 2 over
6816-402: The climate system . Solar irradiance has been measured directly by satellites , and indirect measurements are available from the early 1600s onwards. Since 1880, there has been no upward trend in the amount of the Sun's energy reaching the Earth, in contrast to the warming of the lower atmosphere (the troposphere ). The upper atmosphere (the stratosphere ) would also be warming if the Sun
6958-971: The extinction of many species. The oceans have heated more slowly than the land, but plants and animals in the ocean have migrated towards the colder poles faster than species on land. Just as on land, heat waves in the ocean occur more frequently due to climate change, harming a wide range of organisms such as corals, kelp , and seabirds . Ocean acidification makes it harder for marine calcifying organisms such as mussels , barnacles and corals to produce shells and skeletons ; and heatwaves have bleached coral reefs . Harmful algal blooms enhanced by climate change and eutrophication lower oxygen levels, disrupt food webs and cause great loss of marine life. Coastal ecosystems are under particular stress. Almost half of global wetlands have disappeared due to climate change and other human impacts. Plants have come under increased stress from damage by insects. The effects of climate change are impacting humans everywhere in
7100-430: The ice shelves propping them up are gone. The collapse then exposes the ice masses following them to the same instability, potentially resulting in a self-sustaining cycle of cliff collapse and rapid ice sheet retreat. This theory had been highly influential - in a 2020 survey of 106 experts, the 2016 paper which suggested 1 m ( 3 + 1 ⁄ 2 ft) or more of sea level rise by 2100 from Antarctica alone,
7242-432: The socioeconomic scenario and the mitigation scenario, models produce atmospheric CO 2 concentrations that range widely between 380 and 1400 ppm. The environmental effects of climate change are broad and far-reaching, affecting oceans , ice, and weather. Changes may occur gradually or rapidly. Evidence for these effects comes from studying climate change in the past, from modelling, and from modern observations. Since
SECTION 50
#17327727293787384-405: The 18th century and 1970 there was little net warming, as the warming impact of greenhouse gas emissions was offset by cooling from sulfur dioxide emissions. Sulfur dioxide causes acid rain , but it also produces sulfate aerosols in the atmosphere, which reflect sunlight and cause global dimming . After 1970, the increasing accumulation of greenhouse gases and controls on sulfur pollution led to
7526-612: The 1950s, droughts and heat waves have appeared simultaneously with increasing frequency. Extremely wet or dry events within the monsoon period have increased in India and East Asia. Monsoonal precipitation over the Northern Hemisphere has increased since 1980. The rainfall rate and intensity of hurricanes and typhoons is likely increasing , and the geographic range likely expanding poleward in response to climate warming. Frequency of tropical cyclones has not increased as
7668-500: The 1980s, the terms global warming and climate change became more common, often being used interchangeably. Scientifically, global warming refers only to increased surface warming, while climate change describes both global warming and its effects on Earth's climate system , such as precipitation changes. Climate change can also be used more broadly to include changes to the climate that have happened throughout Earth's history. Global warming —used as early as 1975 —became
7810-973: The 19th century. With high emissions it would instead accelerate further, and could rise by 1.0 m ( 3 + 1 ⁄ 3 ft) or even 1.6 m ( 5 + 1 ⁄ 3 ft) by 2100. In the long run, sea level rise would amount to 2–3 m (7–10 ft) over the next 2000 years if warming stays to its current 1.5 °C (2.7 °F) over the pre-industrial past. It would be 19–22 metres (62–72 ft) if warming peaks at 5 °C (9.0 °F). Rising seas affect every coastal and island population on Earth. This can be through flooding, higher storm surges , king tides , and tsunamis . There are many knock-on effects. They lead to loss of coastal ecosystems like mangroves . Crop yields may reduce because of increasing salt levels in irrigation water. Damage to ports disrupts sea trade. The sea level rise projected by 2050 will expose places currently inhabited by tens of millions of people to annual flooding. Without
7952-584: The Antarctic continent stores around 60% of the world's fresh water. Excluding groundwater this is 90%. Antarctica is experiencing ice loss from coastal glaciers in the West Antarctica and some glaciers of East Antarctica . However it is gaining mass from the increased snow build-up inland, particularly in the East. This leads to contradicting trends. There are different satellite methods for measuring ice mass and change. Combining them helps to reconcile
8094-440: The Arctic is forcing many species to relocate or become extinct . Even if efforts to minimize future warming are successful, some effects will continue for centuries. These include ocean heating , ocean acidification and sea level rise . Climate change threatens people with increased flooding , extreme heat, increased food and water scarcity, more disease, and economic loss . Human migration and conflict can also be
8236-435: The Arctic is another major feedback, this reduces the reflectivity of the Earth's surface in the region and accelerates Arctic warming . This additional warming also contributes to permafrost thawing, which releases methane and CO 2 into the atmosphere. Around half of human-caused CO 2 emissions have been absorbed by land plants and by the oceans. This fraction is not static and if future CO 2 emissions decrease,
8378-545: The CO 2 released by the chemical reactions for making cement , steel , aluminum , and fertilizer . Methane emissions come from livestock , manure, rice cultivation , landfills, wastewater, and coal mining , as well as oil and gas extraction . Nitrous oxide emissions largely come from the microbial decomposition of fertilizer . While methane only lasts in the atmosphere for an average of 12 years, CO 2 lasts much longer. The Earth's surface absorbs CO 2 as part of
8520-451: The Earth was 2 °C (3.6 °F) warmer than pre-industrial temperatures was 120,000 years ago. This was when warming due to Milankovitch cycles (changes in the amount of sunlight due to slow changes in the Earth's orbit) caused the Eemian interglacial . Sea levels during that warmer interglacial were at least 5 m (16 ft) higher than now. The Eemian warming was sustained over
8662-604: The Earth will be able to absorb up to around 70%. If they increase substantially, it'll still absorb more carbon than now, but the overall fraction will decrease to below 40%. This is because climate change increases droughts and heat waves that eventually inhibit plant growth on land, and soils will release more carbon from dead plants when they are warmer . The rate at which oceans absorb atmospheric carbon will be lowered as they become more acidic and experience changes in thermohaline circulation and phytoplankton distribution. Uncertainty over feedbacks, particularly cloud cover,
SECTION 60
#17327727293788804-438: The Greenland ice sheet between 1992 and 2018 amounted to 3,902 gigatons (Gt) of ice. This is equivalent to a SLR contribution of 10.8 mm. The contribution for the 2012–2016 period was equivalent to 37% of sea level rise from land ice sources (excluding thermal expansion). This observed rate of ice sheet melting is at the higher end of predictions from past IPCC assessment reports. In 2021, AR6 estimated that by 2100,
8946-604: The Last Interglacial SLR is unlikely to have been higher than 2.7 m (9 ft), as higher values in other research, such as 5.7 m ( 18 + 1 ⁄ 2 ft), appear inconsistent with the new paleoclimate data from The Bahamas and the known history of the Greenland Ice Sheet. Even if the temperature stabilizes, significant sea-level rise (SLR) will continue for centuries, consistent with paleo records of sea level rise. This
9088-623: The Marian Koshland Science Museum was named for Marian Koshland , an immunologist and molecular biologist who conducted groundbreaking research in the behavior of antibodies . The museum was developed as the result of a gift from her husband, Daniel Koshland , a molecular biologist specializing in the study of enzymes and bacteria. The Museum shared an eponym with the Marian Koshland Integrated Natural Science Center at
9230-605: The SSP1-1.9 scenario would result in sea level rise in the 17–83% range of 37–86 cm ( 14 + 1 ⁄ 2 –34 in). In the SSP1-2.6 pathway the range would be 46–99 cm (18–39 in), for SSP2-4.5 a 66–133 cm (26– 52 + 1 ⁄ 2 in) range by 2100 and for SSP5-8.5 a rise of 98–188 cm ( 38 + 1 ⁄ 2 –74 in). It stated that the "low-confidence, high impact" projected 0.63–1.60 m (2–5 ft) mean sea level rise by 2100, and that by 2150,
9372-522: The SSP1-2.6 pathway results in a range of 32–62 cm ( 12 + 1 ⁄ 2 – 24 + 1 ⁄ 2 in) by 2100. The "moderate" SSP2-4.5 results in a 44–76 cm ( 17 + 1 ⁄ 2 –30 in) range by 2100 and SSP5-8.5 led to 65–101 cm ( 25 + 1 ⁄ 2 –40 in). This general increase of projections in AR6 came after the improvements in ice-sheet modeling and the incorporation of structured expert judgements. These decisions came as
9514-561: The WAIS to contribute up to 41 cm (16 in) by 2100 under the low-emission scenario and up to 57 cm (22 in) under the highest-emission one. Ice cliff instability would cause a contribution of 1 m ( 3 + 1 ⁄ 2 ft) or more if it were applicable. The melting of all the ice in West Antarctica would increase the total sea level rise to 4.3 m (14 ft 1 in). However, mountain ice caps not in contact with water are less vulnerable than
9656-441: The absorption of sunlight, it also increases melting and sea-level rise. Limiting new black carbon deposits in the Arctic could reduce global warming by 0.2 °C by 2050. The effect of decreasing sulfur content of fuel oil for ships since 2020 is estimated to cause an additional 0.05 °C increase in global mean temperature by 2050. As the Sun is the Earth's primary energy source, changes in incoming sunlight directly affect
9798-444: The amount of sea level rise over the next 2,000 years project that: Sea levels would continue to rise for several thousand years after the ceasing of emissions, due to the slow nature of climate response to heat. The same estimates on a timescale of 10,000 years project that: Variations in the amount of water in the oceans, changes in its volume, or varying land elevation compared to the sea surface can drive sea level changes. Over
9940-411: The atmosphere , for instance by increasing forest cover and farming with methods that capture carbon in soil . Before the 1980s it was unclear whether the warming effect of increased greenhouse gases was stronger than the cooling effect of airborne particulates in air pollution . Scientists used the term inadvertent climate modification to refer to human impacts on the climate at this time. In
10082-452: The atmosphere. volcanic CO 2 emissions are more persistent, but they are equivalent to less than 1% of current human-caused CO 2 emissions. Volcanic activity still represents the single largest natural impact (forcing) on temperature in the industrial era. Yet, like the other natural forcings, it has had negligible impacts on global temperature trends since the Industrial Revolution. The climate system's response to an initial forcing
10224-574: The average sea level rose by 15–25 cm (6–10 in), with an increase of 2.3 mm (0.091 in) per year since the 1970s. This was faster than the sea level had ever risen over at least the past 3,000 years. The rate accelerated to 4.62 mm (0.182 in)/yr for the decade 2013–2022. Climate change due to human activities is the main cause. Between 1993 and 2018, melting ice sheets and glaciers accounted for 44% of sea level rise , with another 42% resulting from thermal expansion of water . Sea level rise lags behind changes in
10366-422: The average world ocean temperature by 0.01 °C (0.018 °F) would increase atmospheric temperature by approximately 10 °C (18 °F). So a small change in the mean temperature of the ocean represents a very large change in the total heat content of the climate system. Winds and currents move heat into deeper parts of the ocean. Some of it reaches depths of more than 2,000 m (6,600 ft). When
10508-459: The best Paris climate agreement goal of 1.5 °C (2.7 °F). In that case, the likely range of sea level rise by 2100 is 28–55 cm (11– 21 + 1 ⁄ 2 in). The lowest scenario in AR5, RCP2.6, would see greenhouse gas emissions low enough to meet the goal of limiting warming by 2100 to 2 °C (3.6 °F). It shows sea level rise in 2100 of about 44 cm (17 in) with
10650-485: The best-case scenario, ice sheet under SSP1-2.6 gains enough mass by 2100 through surface mass balance feedbacks to reduce the sea levels by 2 cm (1 in). In the worst case, it adds 15 cm (6 in). For SSP5-8.5, the best-case scenario is adding 5 cm (2 in) to sea levels, and the worst-case is adding 23 cm (9 in). Greenland's peripheral glaciers and ice caps crossed an irreversible tipping point around 1997. Sea level rise from their loss
10792-454: The biggest threats to global health in the 21st century. Scientists have warned about the irreversible harms it poses. Extreme weather events affect public health, and food and water security . Temperature extremes lead to increased illness and death. Climate change increases the intensity and frequency of extreme weather events. It can affect transmission of infectious diseases , such as dengue fever and malaria . According to
10934-540: The carbon cycle, such as the fertilizing effect of CO 2 on plant growth. Feedbacks are expected to trend in a positive direction as greenhouse gas emissions continue, raising climate sensitivity. These feedback processes alter the pace of global warming. For instance, warmer air can hold more moisture in the form of water vapour , which is itself a potent greenhouse gas. Warmer air can also make clouds higher and thinner, and therefore more insulating, increasing climate warming. The reduction of snow cover and sea ice in
11076-551: The climate cycled through ice ages . One of the hotter periods was the Last Interglacial , around 125,000 years ago, where temperatures were between 0.5 °C and 1.5 °C warmer than before the start of global warming. This period saw sea levels 5 to 10 metres higher than today. The most recent glacial maximum 20,000 years ago was some 5–7 °C colder. This period has sea levels that were over 125 metres (410 ft) lower than today. Temperatures stabilized in
11218-475: The community, or online. The museum also had a Museum Advisory Board involved in strategic planning. The museum was centered around two primary exhibits: "Earth Lab", which focused on issues related to climate change , and "Life Lab", which emphasized learning , aging , nutrition , and infectious disease . The museum also had a "Wonders of Science" section devoted to interactive exhibits. Opened in April 2004,
11360-459: The contribution from these is thought to be small. Glacier retreat and ocean expansion have dominated sea level rise since the start of the 20th century. Some of the losses from glaciers are offset when precipitation falls as snow, accumulates and over time forms glacial ice. If precipitation, surface processes and ice loss at the edge balance each other, sea level remains the same. Because of this precipitation began as water vapor evaporated from
11502-684: The current interglacial period beginning 11,700 years ago . This period also saw the start of agriculture. Historical patterns of warming and cooling, like the Medieval Warm Period and the Little Ice Age , did not occur at the same time across different regions. Temperatures may have reached as high as those of the late 20th century in a limited set of regions. Climate information for that period comes from climate proxies , such as trees and ice cores . Around 1850 thermometer records began to provide global coverage. Between
11644-403: The degree of warming future emissions will cause when accounting for the strength of climate feedbacks . Models also predict the circulation of the oceans, the annual cycle of the seasons, and the flows of carbon between the land surface and the atmosphere. The physical realism of models is tested by examining their ability to simulate current or past climates. Past models have underestimated
11786-427: The destroyed trees release CO 2 , and are not replaced by new trees, removing that carbon sink . Between 2001 and 2018, 27% of deforestation was from permanent clearing to enable agricultural expansion for crops and livestock. Another 24% has been lost to temporary clearing under the shifting cultivation agricultural systems. 26% was due to logging for wood and derived products, and wildfires have accounted for
11928-517: The differences. However, there can still be variations between the studies. In 2018, a systematic review estimated average annual ice loss of 43 billion tons (Gt) across the entire continent between 1992 and 2002. This tripled to an annual average of 220 Gt from 2012 to 2017. However, a 2021 analysis of data from four different research satellite systems ( Envisat , European Remote-Sensing Satellite , GRACE and GRACE-FO and ICESat ) indicated annual mass loss of only about 12 Gt from 2012 to 2016. This
12070-401: The distribution of heat and precipitation around the globe. The World Meteorological Organization estimates there is an 80% chance that global temperatures will exceed 1.5 °C warming for at least one year between 2024 and 2028. The chance of the 5-year average being above 1.5 °C is almost half. The IPCC expects the 20-year average global temperature to exceed +1.5 °C in
12212-456: The distribution of sea water around the globe through gravity. Several approaches are used for sea level rise (SLR) projections. One is process-based modeling, where ice melting is computed through an ice-sheet model and rising sea temperature and expansion through a general circulation model , and then these contributions are added up. The so-called semi-empirical approach instead applies statistical techniques and basic physical modeling to
12354-444: The dominant direct influence on temperature from land use change. Thus, land use change to date is estimated to have a slight cooling effect. Air pollution, in the form of aerosols, affects the climate on a large scale. Aerosols scatter and absorb solar radiation. From 1961 to 1990, a gradual reduction in the amount of sunlight reaching the Earth's surface was observed. This phenomenon is popularly known as global dimming , and
12496-610: The early 2030s. The IPCC Sixth Assessment Report (2021) included projections that by 2100 global warming is very likely to reach 1.0–1.8 °C under a scenario with very low emissions of greenhouse gases , 2.1–3.5 °C under an intermediate emissions scenario , or 3.3–5.7 °C under a very high emissions scenario . The warming will continue past 2100 in the intermediate and high emission scenarios, with future projections of global surface temperatures by year 2300 being similar to millions of years ago. The remaining carbon budget for staying beneath certain temperature increases
12638-827: The emissions continue to increase for the rest of century, then over 9 million climate-related deaths would occur annually by 2100. Economic damages due to climate change may be severe and there is a chance of disastrous consequences. Severe impacts are expected in South-East Asia and sub-Saharan Africa , where most of the local inhabitants are dependent upon natural and agricultural resources. Heat stress can prevent outdoor labourers from working. If warming reaches 4 °C then labour capacity in those regions could be reduced by 30 to 50%. The World Bank estimates that between 2016 and 2030, climate change could drive over 120 million people into extreme poverty without adaptation. Sea level rise Between 1901 and 2018,
12780-428: The empirical 2.5 °C (4.5 °F) upper limit from ice cores. If temperatures reach or exceed that level, reducing the global temperature to 1.5 °C (2.7 °F) above pre-industrial levels or lower would prevent the loss of the entire ice sheet. One way to do this in theory would be large-scale carbon dioxide removal , but there would still be cause of greater ice losses and sea level rise from Greenland than if
12922-430: The entire atmosphere—is ruled out because only the lower atmosphere has warmed. Atmospheric aerosols produce a smaller, cooling effect. Other drivers, such as changes in albedo , are less impactful. Greenhouse gases are transparent to sunlight , and thus allow it to pass through the atmosphere to heat the Earth's surface. The Earth radiates it as heat , and greenhouse gases absorb a portion of it. This absorption slows
13064-403: The extremely low probability of large climate change-induced increases in precipitation greatly elevating ice sheet surface mass balance .) In 2020, 106 experts who contributed to 6 or more papers on sea level estimated median 118 cm ( 46 + 1 ⁄ 2 in) SLR in the year 2300 for the low-warming RCP2.6 scenario and the median of 329 cm ( 129 + 1 ⁄ 2 in) for
13206-604: The global climate system has grown with only brief pauses since at least 1970, and over 90% of this extra energy has been stored in the ocean . The rest has heated the atmosphere , melted ice, and warmed the continents. The Northern Hemisphere and the North Pole have warmed much faster than the South Pole and Southern Hemisphere . The Northern Hemisphere not only has much more land, but also more seasonal snow cover and sea ice . As these surfaces flip from reflecting
13348-559: The global mean sea level was rising by 3.2 mm ( 1 ⁄ 8 in) per year. This was double the average 20th century rate. The 2023 World Meteorological Organization report found further acceleration to 4.62 mm/yr over the 2013–2022 period. These observations help to check and verify predictions from climate change simulations. Regional differences are also visible in the tide gauge data. Some are caused by local sea level differences. Others are due to vertical land movements. In Europe , only some land areas are rising while
13490-1034: The greatest exposure to sea level rise, twelve are in Asia , including Indonesia , Bangladesh and the Philippines. The resilience and adaptive capacity of ecosystems and countries also varies, which will result in more or less pronounced impacts. The greatest impact on human populations in the near term will occur in the low-lying Caribbean and Pacific islands . Sea level rise will make many of them uninhabitable later this century. Societies can adapt to sea level rise in multiple ways. Managed retreat , accommodating coastal change , or protecting against sea level rise through hard-construction practices like seawalls are hard approaches. There are also soft approaches such as dune rehabilitation and beach nourishment . Sometimes these adaptation strategies go hand in hand. At other times choices must be made among different strategies. Poorer nations may also struggle to implement
13632-536: The high-warming RCP8.5. The former scenario had the 5%–95% confidence range of 24–311 cm ( 9 + 1 ⁄ 2 – 122 + 1 ⁄ 2 in), and the latter of 88–783 cm ( 34 + 1 ⁄ 2 – 308 + 1 ⁄ 2 in). After 500 years, sea level rise from thermal expansion alone may have reached only half of its eventual level - likely within ranges of 0.5–2 m ( 1 + 1 ⁄ 2 – 6 + 1 ⁄ 2 ft). Additionally, tipping points of Greenland and Antarctica ice sheets are likely to play
13774-417: The hypothesis after 2016 often suggested that the ice shelves in the real world may collapse too slowly to make this scenario relevant, or that ice mélange - debris produced as the glacier breaks down - would quickly build up in front of the glacier and significantly slow or even outright stop the instability soon after it began. Due to these uncertainties, some scientists - including the originators of
13916-476: The hypothesis, Robert DeConto and David Pollard - have suggested that the best way to resolve the question would be to precisely determine sea level rise during the Last Interglacial . MICI can be effectively ruled out if SLR at the time was lower than 4 m (13 ft), while it is very likely if the SLR was greater than 6 m ( 19 + 1 ⁄ 2 ft). As of 2023, the most recent analysis indicates that
14058-415: The ice and oceans factor in ongoing deformations of the solid Earth . They look in particular at landmasses still rising from past ice masses retreating , and the Earth's gravity and rotation . Since the launch of TOPEX/Poseidon in 1992, an overlapping series of altimetric satellites has been continuously recording the sea level and its changes. These satellites can measure the hills and valleys in
14200-408: The ice on Earth would result in about 70 m (229 ft 8 in) of sea level rise, although this would require at least 10,000 years and up to 10 °C (18 °F) of global warming. The oceans store more than 90% of the extra heat added to the climate system by Earth's energy imbalance and act as a buffer against its effects. This means that the same amount of heat that would increase
14342-672: The largest potential source of sea level rise. However the West Antarctic ice sheet (WAIS) is substantially more vulnerable. Temperatures on West Antarctica have increased significantly, unlike East Antarctica and the Antarctic Peninsula . The trend is between 0.08 °C (0.14 °F) and 0.96 °C (1.73 °F) per decade between 1976 and 2012. Satellite observations recorded a substantial increase in WAIS melting from 1992 to 2017. This resulted in 7.6 ± 3.9 mm ( 19 ⁄ 64 ± 5 ⁄ 32 in) of Antarctica sea level rise. Outflow glaciers in
14484-572: The last 14 million years. Concentrations of methane are far higher than they were over the last 800,000 years. Global human-caused greenhouse gas emissions in 2019 were equivalent to 59 billion tonnes of CO 2 . Of these emissions, 75% was CO 2 , 18% was methane , 4% was nitrous oxide, and 2% was fluorinated gases . CO 2 emissions primarily come from burning fossil fuels to provide energy for transport , manufacturing, heating , and electricity. Additional CO 2 emissions come from deforestation and industrial processes , which include
14626-414: The last million years, during which the temperatures have at most been 2.5 °C (4.5 °F) warmer than the preindustrial average. 2012 modelling suggested that the tipping point of the ice sheet was between 0.8 °C (1.4 °F) and 3.2 °C (5.8 °F). 2023 modelling has narrowed the tipping threshold to a 1.7 °C (3.1 °F)-2.3 °C (4.1 °F) range, which is consistent with
14768-436: The last two decades. CO 2 is only removed from the atmosphere for the long term when it is stored in the Earth's crust, which is a process that can take millions of years to complete. Around 30% of Earth's land area is largely unusable for humans ( glaciers , deserts , etc.), 26% is forests , 10% is shrubland and 34% is agricultural land . Deforestation is the main land use change contributor to global warming, as
14910-441: The last: internal climate variability processes can make any year 0.2 °C warmer or colder than the average. From 1998 to 2013, negative phases of two such processes, Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) caused a short slower period of warming called the " global warming hiatus ". After the "hiatus", the opposite occurred, with years like 2023 exhibiting temperatures well above even
15052-608: The lower atmosphere. Carbon dioxide , the primary greenhouse gas driving global warming, has grown by about 50% and is at levels not seen for millions of years. Climate change has an increasingly large impact on the environment . Deserts are expanding , while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost , retreat of glaciers and sea ice decline . Higher temperatures are also causing more intense storms , droughts, and other weather extremes . Rapid environmental change in mountains , coral reefs , and
15194-426: The majority of the ice sheet, which is located below the sea level. Its collapse would cause ~3.3 m (10 ft 10 in) of sea level rise. This disappearance would take an estimated 2000 years. The absolute minimum for the loss of West Antarctica ice is 500 years, and the potential maximum is 13,000 years. Once ice loss from the West Antarctica is triggered, the only way to restore it to near-present values
15336-507: The melting of Greenland ice sheet would most likely add around 6 cm ( 2 + 1 ⁄ 2 in) to sea levels under the low-emission scenario, and 13 cm (5 in) under the high-emission scenario. The first scenario, SSP1-2.6 , largely fulfils the Paris Agreement goals, while the other, SSP5-8.5, has the emissions accelerate throughout the century. The uncertainty about ice sheet dynamics can affect both pathways. In
15478-413: The more popular term after NASA climate scientist James Hansen used it in his 1988 testimony in the U.S. Senate . Since the 2000s, climate change has increased usage. Various scientists, politicians and media may use the terms climate crisis or climate emergency to talk about climate change, and may use the term global heating instead of global warming . Over the last few million years
15620-512: The most expensive projects ever attempted. Most ice on Greenland is in the Greenland ice sheet which is 3 km (10,000 ft) at its thickest. The rest of Greenland ice forms isolated glaciers and ice caps. The average annual ice loss in Greenland more than doubled in the early 21st century compared to the 20th century. Its contribution to sea level rise correspondingly increased from 0.07 mm per year between 1992 and 1997 to 0.68 mm per year between 2012 and 2017. Total ice loss from
15762-628: The observed ice-sheet erosion in Greenland and Antarctica had matched the upper-end range of the AR5 projections by 2020, and the finding that AR5 projections were likely too slow next to an extrapolation of observed sea level rise trends, while the subsequent reports had improved in this regard. Further, AR5 was criticized by multiple researchers for excluding detailed estimates the impact of "low-confidence" processes like marine ice sheet and marine ice cliff instability, which can substantially accelerate ice loss to potentially add "tens of centimeters" to sea level rise within this century. AR6 includes
15904-506: The observed sea level rise and its reconstructions from the historical geological data (known as paleoclimate modeling). It was developed because process-based model projections in the past IPCC reports (such as the Fourth Assessment Report from 2007) were found to underestimate the already observed sea level rise. By 2013, improvements in modeling had addressed this issue, and model and semi-empirical projections for
16046-473: The ocean gains heat, the water expands and sea level rises. Warmer water and water under great pressure (due to depth) expand more than cooler water and water under less pressure. Consequently, cold Arctic Ocean water will expand less than warm tropical water. Different climate models present slightly different patterns of ocean heating. So their projections do not agree fully on how much ocean heating contributes to sea level rise. The large volume of ice on
16188-543: The ocean surface, effects of climate change on the water cycle can even increase ice build-up. However, this effect is not enough to fully offset ice losses, and sea level rise continues to accelerate. The contributions of the two large ice sheets, in Greenland and Antarctica , are likely to increase in the 21st century. They store most of the land ice (~99.5%) and have a sea-level equivalent (SLE) of 7.4 m (24 ft 3 in) for Greenland and 58.3 m (191 ft 3 in) for Antarctica. Thus, melting of all
16330-401: The other hand, the whole EAIS would not definitely collapse until global warming reaches 7.5 °C (13.5 °F), with a range between 5 °C (9.0 °F) and 10 °C (18 °F). It would take at least 10,000 years to disappear. Some scientists have estimated that warming would have to reach at least 6 °C (11 °F) to melt two thirds of its volume. East Antarctica contains
16472-454: The others are sinking. Since 1970, most tidal stations have measured higher seas. However sea levels along the northern Baltic Sea have dropped due to post-glacial rebound . An understanding of past sea level is an important guide to where current changes in sea level will end up. In the recent geological past, thermal expansion from increased temperatures and changes in land ice are the dominant reasons of sea level rise. The last time that
16614-651: The poorly observed areas. A more complete observational record shows continued mass gain. In spite of the net mass gain, some East Antarctica glaciers have lost ice in recent decades due to ocean warming and declining structural support from the local sea ice , such as Denman Glacier , and Totten Glacier . Totten Glacier is particularly important because it stabilizes the Aurora Subglacial Basin . Subglacial basins like Aurora and Wilkes Basin are major ice reservoirs together holding as much ice as all of West Antarctica. They are more vulnerable than
16756-556: The preindustrial levels. Since the Last Glacial Maximum , about 20,000 years ago, sea level has risen by more than 125 metres (410 ft). Rates vary from less than 1 mm/year during the pre-industrial era to 40+ mm/year when major ice sheets over Canada and Eurasia melted. Meltwater pulses are periods of fast sea level rise caused by the rapid disintegration of these ice sheets. The rate of sea level rise started to slow down about 8,200 years before today. Sea level
16898-507: The projected range for total sea level rise was 9.5–16.2 metres (31–53 ft) by the year 2300. Projections for subsequent years are more difficult. In 2019, when 22 experts on ice sheets were asked to estimate 2200 and 2300 SLR under the 5 °C warming scenario, there were 90% confidence intervals of −10 cm (4 in) to 740 cm ( 24 + 1 ⁄ 2 ft) and − 9 cm ( 3 + 1 ⁄ 2 in) to 970 cm (32 ft), respectively. (Negative values represent
17040-619: The rate at which heat escapes into space, trapping heat near the Earth's surface and warming it over time. While water vapour (≈50%) and clouds (≈25%) are the biggest contributors to the greenhouse effect, they primarily change as a function of temperature and are therefore mostly considered to be feedbacks that change climate sensitivity . On the other hand, concentrations of gases such as CO 2 (≈20%), tropospheric ozone , CFCs and nitrous oxide are added or removed independently from temperature, and are therefore considered to be external forcings that change global temperatures. Before
17182-522: The rate of Arctic shrinkage and underestimated the rate of precipitation increase. Sea level rise since 1990 was underestimated in older models, but more recent models agree well with observations. The 2017 United States-published National Climate Assessment notes that "climate models may still be underestimating or missing relevant feedback processes". Additionally, climate models may be unable to adequately predict short-term regional climatic shifts. A subset of climate models add societal factors to
17324-622: The rate of yield growth . Fisheries have been negatively affected in multiple regions. While agricultural productivity has been positively affected in some high latitude areas, mid- and low-latitude areas have been negatively affected. According to the World Economic Forum, an increase in drought in certain regions could cause 3.2 million deaths from malnutrition by 2050 and stunting in children. With 2 °C warming, global livestock headcounts could decline by 7–10% by 2050, as less animal feed will be available. If
17466-405: The recent average. This is why the temperature change is defined in terms of a 20-year average, which reduces the noise of hot and cold years and decadal climate patterns, and detects the long-term signal. A wide range of other observations reinforce the evidence of warming. The upper atmosphere is cooling, because greenhouse gases are trapping heat near the Earth's surface, and so less heat
17608-411: The release of chemical compounds that influence clouds, and by changing wind patterns. In tropic and temperate areas the net effect is to produce significant warming, and forest restoration can make local temperatures cooler. At latitudes closer to the poles, there is a cooling effect as forest is replaced by snow-covered (and more reflective) plains. Globally, these increases in surface albedo have been
17750-476: The remaining 23%. Some forests have not been fully cleared, but were already degraded by these impacts. Restoring these forests also recovers their potential as a carbon sink. Local vegetation cover impacts how much of the sunlight gets reflected back into space ( albedo ), and how much heat is lost by evaporation . For instance, the change from a dark forest to grassland makes the surface lighter, causing it to reflect more sunlight. Deforestation can also modify
17892-563: The rest of East Antarctica. Their collective tipping point probably lies at around 3 °C (5.4 °F) of global warming. It may be as high as 6 °C (11 °F) or as low as 2 °C (3.6 °F). Once this tipping point is crossed, the collapse of these subglacial basins could take place over as little as 500 or as much as 10,000 years. The median timeline is 2000 years. Depending on how many subglacial basins are vulnerable, this causes sea level rise of between 1.4 m (4 ft 7 in) and 6.4 m (21 ft 0 in). On
18034-458: The same approaches to adapt to sea level rise as richer states. Between 1901 and 2018, the global mean sea level rose by about 20 cm (7.9 in). More precise data gathered from satellite radar measurements found an increase of 7.5 cm (3.0 in) from 1993 to 2017 (average of 2.9 mm (0.11 in)/yr). This accelerated to 4.62 mm (0.182 in)/yr for 2013–2022. Paleoclimate data shows that this rate of sea level rise
18176-426: The same. The same estimate found that if the temperature stabilized below 2 °C (3.6 °F), 2300 sea level rise would still exceed 1.5 m (5 ft). Early net zero and slowly falling temperatures could limit it to 70–120 cm ( 27 + 1 ⁄ 2 –47 in). By 2021, the IPCC Sixth Assessment Report was able to provide estimates for sea level rise in 2150. Keeping warming to 1.5 °C under
18318-404: The sea caused by currents and detect trends in their height. To measure the distance to the sea surface, the satellites send a microwave pulse towards Earth and record the time it takes to return after reflecting off the ocean's surface. Microwave radiometers correct the additional delay caused by water vapor in the atmosphere . Combining these data with the location of the spacecraft determines
18460-583: The sea levels by at least 3.3 m (10 ft 10 in) over approximately 2000 years. Recent warming has driven many terrestrial and freshwater species poleward and towards higher altitudes . For instance, the range of hundreds of North American birds has shifted northward at an average rate of 1.5 km/year over the past 55 years. Higher atmospheric CO 2 levels and an extended growing season have resulted in global greening. However, heatwaves and drought have reduced ecosystem productivity in some regions. The future balance of these opposing effects
18602-476: The sea-surface height to within a few centimetres. These satellite measurements have estimated rates of sea level rise for 1993–2017 at 3.0 ± 0.4 millimetres ( 1 ⁄ 8 ± 1 ⁄ 64 in) per year. Satellites are useful for measuring regional variations in sea level. An example is the substantial rise between 1993 and 2012 in the western tropical Pacific. This sharp rise has been linked to increasing trade winds . These occur when
18744-673: The specific regions. A structured expert judgement may be used in combination with modeling to determine which outcomes are more or less likely, which is known as "shifted SEJ". Semi-empirical techniques can be combined with the so-called "intermediate-complexity" models. After 2016, some ice sheet modeling exhibited the so-called ice cliff instability in Antarctica, which results in substantially faster disintegration and retreat than otherwise simulated. The differences are limited with low warming, but at higher warming levels, ice cliff instability predicts far greater sea level rise than any other approach. The Intergovernmental Panel on Climate Change
18886-453: The total sea level rise in his scenario would be in the range of 0.98–4.82 m (3–16 ft) by 2150. AR6 also provided lower-confidence estimates for year 2300 sea level rise under SSP1-2.6 and SSP5-8.5 with various impact assumptions. In the best case scenario, under SSP1-2.6 with no ice sheet acceleration after 2100, the estimate was only 0.8–2.0 metres (2.6–6.6 ft). In the worst estimated scenario, SSP-8.5 with ice cliff instability,
19028-445: The water melts more and more of their height as their retreat continues, thus accelerating their breakdown on its own. This is widely accepted, but is difficult to model. The latter posits that coastal ice cliffs which exceed ~ 90 m ( 295 + 1 ⁄ 2 ft) in above-ground height and are ~ 800 m ( 2,624 + 1 ⁄ 2 ft) in basal (underground) height are likely to rapidly collapse under their own weight once
19170-438: The world. Impacts can be observed on all continents and ocean regions, with low-latitude, less developed areas facing the greatest risk. Continued warming has potentially "severe, pervasive and irreversible impacts" for people and ecosystems. The risks are unevenly distributed, but are generally greater for disadvantaged people in developing and developed countries. The World Health Organization calls climate change one of
19312-556: The year 2000. The Thwaites Glacier now accounts for 4% of global sea level rise. It could start to lose even more ice if the Thwaites Ice Shelf fails and would no longer stabilize it, which could potentially occur in mid-2020s. A combination of ice sheet instability with other important but hard-to-model processes like hydrofracturing (meltwater collects atop the ice sheet, pools into fractures and forces them open) or smaller-scale changes in ocean circulation could cause
19454-594: The year 2100 are now very similar. Yet, semi-empirical estimates are reliant on the quality of available observations and struggle to represent non-linearities, while processes without enough available information about them cannot be modeled. Thus, another approach is to combine the opinions of a large number of scientists in what is known as a structured expert judgement (SEJ). Variations of these primary approaches exist. For instance, large climate models are always in demand, so less complex models are often used in their place for simpler tasks like projecting flood risk in
19596-450: Was almost constant for the last 2,500 years. The recent trend of rising sea level started at the end of the 19th or beginning of the 20th century. The three main reasons why global warming causes sea levels to rise are the expansion of oceans due to heating , water inflow from melting ice sheets and water inflow from glaciers. Other factors affecting sea level rise include changes in snow mass, and flow from terrestrial water storage, though
19738-407: Was considered even more important than the 2014 IPCC Fifth Assessment Report . Even more rapid sea level rise was proposed in a 2016 study led by Jim Hansen , which hypothesized multi-meter sea level rise in 50–100 years as a plausible outcome of high emissions, but it remains a minority view amongst the scientific community. Marine ice cliff instability had also been very controversial, since it
19880-509: Was due to greater ice gain in East Antarctica than estimated earlier. In the future, it is known that West Antarctica at least will continue to lose mass, and the likely future losses of sea ice and ice shelves , which block warmer currents from direct contact with the ice sheet, can accelerate declines even in East Antarctica. Altogether, Antarctica is the source of the largest uncertainty for future sea level projections. In 2019,
20022-472: Was proposed as a modelling exercise, and the observational evidence from both the past and the present is very limited and ambiguous. So far, only one episode of seabed gouging by ice from the Younger Dryas period appears truly consistent with this theory, but it had lasted for an estimated 900 years, so it is unclear if it supports rapid sea level rise in the present. Modelling which investigated
20164-524: Was sending more energy to Earth, but instead, it has been cooling. This is consistent with greenhouse gases preventing heat from leaving the Earth's atmosphere. Explosive volcanic eruptions can release gases, dust and ash that partially block sunlight and reduce temperatures, or they can send water vapour into the atmosphere, which adds to greenhouse gases and increases temperatures. These impacts on temperature only last for several years, because both water vapour and volcanic material have low persistence in
#377622