Misplaced Pages

Megha-Tropiques

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Megha-Tropiques was a satellite mission to study the water cycle in the tropical atmosphere in the context of climate change. A collaborative effort between Indian Space Research Organisation ( ISRO ) and French Centre National d’Etudes Spatiales ( CNES ), Megha-Tropiques was successfully deployed into orbit by a PSLV rocket in October 2011.

#519480

122-495: Megha-Tropiques was initially scrapped in 2003, but later revived in 2004 after India increased its contribution and overall costs were lowered. With the progress made by GEWEX (Global Energy and Water Cycle Experiment), Megha-Tropiques was designed to understand tropical meteorological and climatic processes, by obtaining reliable statistics on the water and energy budget of the tropical atmosphere. Megha-Tropiques complemented other data in regional monsoon projects such as MAHASRI and

244-409: A cell wall . Newly dead animals may be covered by an exoskeleton . Fragmentation processes, which break through these protective layers, accelerate the rate of microbial decomposition. Animals fragment detritus as they hunt for food, as does passage through the gut. Freeze-thaw cycles and cycles of wetting and drying also fragment dead material. The chemical alteration of the dead organic matter

366-495: A food chain . Real systems are much more complex than this—organisms will generally feed on more than one form of food, and may feed at more than one trophic level. Carnivores may capture some prey that is part of a plant-based trophic system and others that are part of a detritus-based trophic system (a bird that feeds both on herbivorous grasshoppers and earthworms, which consume detritus). Real systems, with all these complexities, form food webs rather than food chains which present

488-619: A habitat . Ecosystem ecology is the "study of the interactions between organisms and their environment as an integrated system". The size of ecosystems can range up to ten orders of magnitude , from the surface layers of rocks to the surface of the planet. The Hubbard Brook Ecosystem Study started in 1963 to study the White Mountains in New Hampshire . It was the first successful attempt to study an entire watershed as an ecosystem. The study used stream chemistry as

610-609: A central role over a wide range, for example, in the slow development of soil from bare rock and the faster recovery of a community from disturbance . Disturbance also plays an important role in ecological processes. F. Stuart Chapin and coauthors define disturbance as "a relatively discrete event in time that removes plant biomass". This can range from herbivore outbreaks, treefalls, fires, hurricanes, floods, glacial advances , to volcanic eruptions . Such disturbances can cause large changes in plant, animal and microbe populations, as well as soil organic matter content. Disturbance

732-507: A critical role in global nutrient cycling and ecosystem function. Phosphorus enters ecosystems through weathering . As ecosystems age this supply diminishes, making phosphorus-limitation more common in older landscapes (especially in the tropics). Calcium and sulfur are also produced by weathering, but acid deposition is an important source of sulfur in many ecosystems. Although magnesium and manganese are produced by weathering, exchanges between soil organic matter and living cells account for

854-517: A faster recovery. More severe and more frequent disturbance result in longer recovery times. From one year to another, ecosystems experience variation in their biotic and abiotic environments. A drought , a colder than usual winter, and a pest outbreak all are short-term variability in environmental conditions. Animal populations vary from year to year, building up during resource-rich periods and crashing as they overshoot their food supply. Longer-term changes also shape ecosystem processes. For example,

976-454: A form that can be readily used by plants and microbes. Ecosystems provide a variety of goods and services upon which people depend, and may be part of. Ecosystem goods include the "tangible, material products" of ecosystem processes such as water, food, fuel, construction material, and medicinal plants . Ecosystem services , on the other hand, are generally "improvements in the condition or location of things of value". These include things like

1098-427: A function-based typology has been proposed to leverage the strengths of these different approaches into a unified system. Human activities are important in almost all ecosystems. Although humans exist and operate within ecosystems, their cumulative effects are large enough to influence external factors like climate. Ecosystems provide a variety of goods and services upon which people depend. Ecosystem goods include

1220-698: A general level, for example, tropical forests , temperate grasslands , and arctic tundra . There can be any degree of subcategories among ecosystem types that comprise a biome, e.g., needle-leafed boreal forests or wet tropical forests. Although ecosystems are most commonly categorized by their structure and geography, there are also other ways to categorize and classify ecosystems such as by their level of human impact (see anthropogenic biome ), or by their integration with social processes or technological processes or their novelty (e.g. novel ecosystem ). Each of these taxonomies of ecosystems tends to emphasize different structural or functional properties. None of these

1342-672: A means of monitoring ecosystem properties, and developed a detailed biogeochemical model of the ecosystem. Long-term research at the site led to the discovery of acid rain in North America in 1972. Researchers documented the depletion of soil cations (especially calcium) over the next several decades. Ecosystems can be studied through a variety of approaches—theoretical studies, studies monitoring specific ecosystems over long periods of time, those that look at differences between ecosystems to elucidate how they work and direct manipulative experimentation. Studies can be carried out at

SECTION 10

#1732775730520

1464-528: A more important role in moving nutrients around. This can be especially important as the soil thaws in the spring, creating a pulse of nutrients that become available. Decomposition rates are low under very wet or very dry conditions. Decomposition rates are highest in wet, moist conditions with adequate levels of oxygen. Wet soils tend to become deficient in oxygen (this is especially true in wetlands ), which slows microbial growth. In dry soils, decomposition slows as well, but bacteria continue to grow (albeit at

1586-452: A multifold increase of moist air flow from the Gulf of Mexico to the flooded regions was a major factor in excessive rainfall. The Global Land/Atmosphere System Study (GLASS) gave GEWEX investigators the ability to observe soil wetness over much of the world's surface by correlating observations on the ground with information obtained by satellites. While the ability to show cause is important,

1708-406: A number of common, non random properties in the topology of their network. The carbon and nutrients in dead organic matter are broken down by a group of processes known as decomposition. This releases nutrients that can then be re-used for plant and microbial production and returns carbon dioxide to the atmosphere (or water) where it can be used for photosynthesis. In the absence of decomposition,

1830-421: A process known as denitrification . Mycorrhizal fungi which are symbiotic with plant roots, use carbohydrates supplied by the plants and in return transfer phosphorus and nitrogen compounds back to the plant roots. This is an important pathway of organic nitrogen transfer from dead organic matter to plants. This mechanism may contribute to more than 70 Tg of annually assimilated plant nitrogen, thereby playing

1952-622: A renewed effort for better data and with more observation satellites, the GPCP, hopes to gain insights to rainfall variation on 'weather'-scale, or 4-hour periods to daily time scales. The Precipitation Assessment Group was assigned by the panel to evaluate data on precipitation emphasizing data in the Global Precipitation Climatology Project (GPCP) product (GRP project). The GRP prepares to assimilate data from GPCP diurnal variation data for better estimation of

2074-696: A significant portion of ecosystem fluxes. Potassium is primarily cycled between living cells and soil organic matter. Biodiversity plays an important role in ecosystem functioning. Ecosystem processes are driven by the species in an ecosystem, the nature of the individual species, and the relative abundance of organisms among these species. Ecosystem processes are the net effect of the actions of individual organisms as they interact with their environment. Ecological theory suggests that in order to coexist, species must have some level of limiting similarity —they must be different from one another in some fundamental way, otherwise, one species would competitively exclude

2196-526: A sink for CO 2 that is adsorbed at the polar regions, as this builds into the Pacific the upwelling and warming of water can bring CO 2 -rich waters trapped in the cold pressurized bottom layers to the surface. Local increases of CO 2 occur which allow more heat-trapping; the La-Nina may be mild or aborted early in the process. However, if the return of the thermocline has enough momentum it could propel

2318-408: A slower rate) even after soils become too dry to support plant growth. Ecosystems are dynamic entities. They are subject to periodic disturbances and are always in the process of recovering from past disturbances. When a perturbation occurs, an ecosystem responds by moving away from its initial state. The tendency of an ecosystem to remain close to its equilibrium state, despite that disturbance,

2440-464: A small effect on ecosystem function. Ecologically distinct species, on the other hand, have a much larger effect. Similarly, dominant species have a large effect on ecosystem function, while rare species tend to have a small effect. Keystone species tend to have an effect on ecosystem function that is disproportionate to their abundance in an ecosystem. An ecosystem engineer is any organism that creates, significantly modifies, maintains or destroys

2562-472: A stalling of long-term cycles is believed to be a factor in the Dryas period, a warming interrupted by surface impacts of extraterrestrial origin may have occurred over hundreds of years. But the anthropogenic greenhouse effects and changing insolation patterns may have unpredictable long-term effects. Reductions of glacial ice on land masses can cause isostatic rebounds and may affect earthquakes and volcanism over

SECTION 20

#1732775730520

2684-596: A strong La-Nina event that last for a few years. However, rapid cooling in the Arctic can allow for more CO 2 trapping and offset release of CO 2 during La-Nina in a specific area. The Pacific Decadal Anomaly (PDA See image) may influence the source, direction or momentum of rise of the cold water component of the thermocline. The extent and duration of the PDA are yet unpredictable, and its modulating effects on El-Nino/La-Nina patterns can only be speculated. These unknowns affect

2806-526: A system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same function, structure, identity, and feedbacks is termed its ecological resilience . Ecosystems can be studied through a variety of approaches—theoretical studies, studies monitoring specific ecosystems over long periods of time, those that look at differences between ecosystems to elucidate how they work and direct manipulative experimentation. Biomes are general classes or categories of ecosystems. However, there

2928-522: A variety of scales, ranging from whole-ecosystem studies to studying microcosms or mesocosms (simplified representations of ecosystems). American ecologist Stephen R. Carpenter has argued that microcosm experiments can be "irrelevant and diversionary" if they are not carried out in conjunction with field studies done at the ecosystem scale. In such cases, microcosm experiments may fail to accurately predict ecosystem-level dynamics. Biomes are general classes or categories of ecosystems. However, there

3050-563: A wide range. Rising sea levels can also affect patterns, and was seen in Indonesia, simply drilling a gas well in the wrong place may have touched off a mud volcano and there are some signs that this may precede a new caldera formation for a volcano. Over the very long term, the change in temperature of the Earth's crust on geothermal and volcanic processes is unknown. How this plays into climate-forcing events with magnitudes that are unpredictable

3172-680: Is a more recent addition to GEWEX. The study is tasked with understanding the physical properties of the atmospheric boundary layers for better models which include representation of boundary layers. GEWEX Cloud System Study ( GCSS ) task is to individualize modelling for different types of cloud systems. GCSS identifies 5 types of cloud systems:boundary layer, cirrus, extra tropical layer, precipitating convective, and polar. These cloud systems are generally too small to be rationalized in large scale climate modelling, this results in inadequate development of equations resulting in greater statistical uncertainty in results. In order to rationalize these processes,

3294-432: Is a process of study which observes the contribution of irregular events, such a volcano eruption, greenhouse warming, solar variation, fluctuations in the Earth's orbit, long-term variation in the oceans circulation. The GMPP exploits these natural perturbations to test models developed that should predict what happens to global energy and water budgets with the perturbations. GEWEX Atmospheric Boundary Layer Study ( GABLS )

3416-484: Is a sharp temperature drop at depth; it varies during the year, with location, and over long periods of time. As the thermocline depth increases El-Nino events are more likely; however, during the peak of the event energy is dissipated and the thermocline decreases depth, possibly to below normal levels so the a strong La-Nina event can results. The world's oceans, particularly the depths of the Atlantic, are believed to be

3538-558: Is an international cooperation it can utilize information from existing and planned satellites. The CEOP project has a number of energy budget and water cycle objectives. First is to produce more consistent research with better error definitions. Second is to better determine how energy flux and water cycles involve in feedback mechanisms. Third is to the predictability of important variables and improved parametric analysis to better model these processes. Fourth, to collaborate with other hydrological science projects to create tools for assessing

3660-406: Is an international synthesis by over 1000 of the world's leading biological scientists that analyzes the state of the Earth's ecosystems and provides summaries and guidelines for decision-makers. The report identified four major categories of ecosystem services: provisioning, regulating, cultural and supporting services. It concludes that human activity is having a significant and escalating impact on

3782-442: Is consumed by animals while still alive and enters the plant-based trophic system. After plants and animals die, the organic matter contained in them enters the detritus-based trophic system. Ecosystem respiration is the sum of respiration by all living organisms (plants, animals, and decomposers) in the ecosystem. Net ecosystem production is the difference between gross primary production (GPP) and ecosystem respiration. In

Megha-Tropiques - Misplaced Pages Continue

3904-423: Is controlled by internal factors. Therefore, internal factors not only control ecosystem processes but are also controlled by them. Ecosystems are dynamic entities—they are subject to periodic disturbances and are always in the process of recovering from some past disturbance. The tendency of an ecosystem to remain close to its equilibrium state, despite that disturbance, is termed its resistance . The capacity of

4026-642: Is designed to collect a much greater amount of data, and see if better models of that data can forecast weather and climate change into the future. GEWEX is organized into several structures. As GEWEX was conceived projects were organized by participating factions, this task is now done by the International GEWEX Project Office (IGPO). IGPO oversees major initiatives and coordinates between national projects in an effort to bring about communication between researchers. IGPO claims to support communication exchange between 2000 scientist and

4148-569: Is followed by succession, a "directional change in ecosystem structure and functioning resulting from biotically driven changes in resource supply." The frequency and severity of disturbance determine the way it affects ecosystem function. A major disturbance like a volcanic eruption or glacial advance and retreat leave behind soils that lack plants, animals or organic matter. Ecosystems that experience such disturbances undergo primary succession . A less severe disturbance like forest fires, hurricanes or cultivation result in secondary succession and

4270-554: Is governed by three sets of factors—the physical environment (temperature, moisture, and soil properties), the quantity and quality of the dead material available to decomposers, and the nature of the microbial community itself. Temperature controls the rate of microbial respiration; the higher the temperature, the faster the microbial decomposition occurs. Temperature also affects soil moisture, which affects decomposition. Freeze-thaw cycles also affect decomposition—freezing temperatures kill soil microorganisms, which allows leaching to play

4392-475: Is large relative to possible trends . The number of ground sensing stations (currently around 40) in the BSRN is rather limited for global observation this affected the measurement of aerosols which are regionally dominant. The best measurements of aerosol pollution are obtained when cloud types are identified properly by satellite observation, therefore better cloud sensing strategies and models are needed to provide

4514-591: Is linked to other WCRP projects such as Stratospheric Processes and their Role in Climate (SPARC) Project, and the Climate and Cryosphere Project through WCRP. and thus shares information and goals with other WCRP projects. The goal becomes more important with the newer WCRP project, the Coordinated Observation and Prediction of the Earth System . Aside from fluctuations of solar radiation,

4636-405: Is no clear distinction between biomes and ecosystems. Biomes are always defined at a very general level. Ecosystems can be described at levels that range from very general (in which case the names are sometimes the same as those of biomes) to very specific, such as "wet coastal needle-leafed forests". Biomes vary due to global variations in climate . Biomes are often defined by their structure: at

4758-516: Is no clear distinction between biomes and ecosystems. Ecosystem classifications are specific kinds of ecological classifications that consider all four elements of the definition of ecosystems : a biotic component, an abiotic complex, the interactions between and within them, and the physical space they occupy. Biotic factors of the ecosystem are living things; such as plants, animals, and bacteria, while abiotic are non-living components; such as water, soil and atmosphere. Plants allow energy to enter

4880-531: Is primarily achieved through bacterial and fungal action. Fungal hyphae produce enzymes that can break through the tough outer structures surrounding dead plant material. They also produce enzymes that break down lignin , which allows them access to both cell contents and the nitrogen in the lignin. Fungi can transfer carbon and nitrogen through their hyphal networks and thus, unlike bacteria, are not dependent solely on locally available resources. Decomposition rates vary among ecosystems. The rate of decomposition

5002-405: Is reflected, the earth or water where heat and light are radiated back into the atmosphere or space. When water is struck heated surface water can evaporate carrying energy back into space through cloud formation and rain. The SRB project measured these processes by measuring fluxes at the Earth's surface, top-of-atmosphere with shortwave (SW) and longwave (LW) radiation. At the onset of GEWEX there

Megha-Tropiques - Misplaced Pages Continue

5124-485: Is termed its resistance . The capacity of a system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same function, structure, identity, and feedbacks is termed its ecological resilience . Resilience thinking also includes humanity as an integral part of the biosphere where we are dependent on ecosystem services for our survival and must build and maintain their natural capacities to withstand shocks and disturbances. Time plays

5246-422: Is the "best" classification. Ecosystem classifications are specific kinds of ecological classifications that consider all four elements of the definition of ecosystems : a biotic component, an abiotic complex, the interactions between and within them, and the physical space they occupy. Different approaches to ecological classifications have been developed in terrestrial, freshwater and marine disciplines, and

5368-638: Is the inability to capture decadal rainfall events, events that frequently occur over a few hours. Therefore, more measurements documenting shorter time frames may provide essential data for almost continuous data set. Therefore, Phase II is mainly modelling with addition of more data as deemed lacking in Phase I. Many of the critiques above may be compensated for with better data requiring better models including insolation and changes in reflection. The problem with variation in ocean currents, particular with respect to thermocline depths requires more oceanography as part of

5490-716: Is the instrument for publication of major reports. The Scientific Steering Group organizes the projects and assigns them to panels , which oversee progress and provide critique. The Coordinated Energy and Water Cycle Observations Project (CEOP) the 'Hydrology Project' is a major instrument in GEWEX. This panel includes geographic study areas such as the Climate Prediction Program for the Americas operated by NOAA , but also examines several types of climate zones (e.g. high altitude and semi-arid). Another panel,

5612-596: Is the largest of the panel projects. There are several regional project areas most of these are now covered by CEOP For CEOP which survey the hydroclimate for southern African (AMMA), Baltic Sea area (BALTEX), North America (CPPA), Eastern Amazonia (LBA), La Plate Basin (LBB), Asia (MAHASRI), Australia (MDB), and Northern Eurasia (NEEPSI). In addition, CEOP coordinates the study of region types, such as cold, high altitude, monsoon, and semiarid climates and collects and formulates modelling on global, regional scale including land surface and surface hydrology modelling. Since GEWEX

5734-484: Is transformed as it inevitably is radiated back into space. GPCP task was to estimate precipitation using satellites that were global including places where people were not present to take measurements. Secondarily the project was tasked with studying regional precipitation on seasonal to between year time scales. As the study period of the project increased past 25 years a third objective was added analyze long-term variation, such as that caused by global warming . Also, in

5856-416: Is unknown. The critiques at GEWEX can only be thrust at current results, which have added much more information about climate modelling that have created critiques, the major thrust of modelling was originally intended to be part of Phase II which will, after 4 years, produce its results. One of the major critiques of GEWEX phase I was land-based measurements, which are now increasing. The other major critique

5978-604: The Global Energy and Water Cycle Experiment from 1990 to 2012 ) is an international research project and a core project of the World Climate Research Programme (WCRP). In the beginning, the project intended to observe, comprehend and model the Earth's water cycle . The experiment also observes how much energy the Earth receives, and studies how much of that energy reaches the surfaces of

6100-410: The atmosphere . If the Earth's climates were identical from year to year, then people could predict when, where and what crops to plant. However, the instability created by solar variation, weather trends, and chaotic events creates weather that is unpredictable on seasonal scales. Through weather patterns such as droughts and higher rainfall these cycles impact ecosystems and human activities. GEWEX

6222-555: The resource inputs are generally controlled by external processes like climate and parent material, the availability of these resources within the ecosystem is controlled by internal factors like decomposition, root competition or shading. Other factors like disturbance, succession or the types of species present are also internal factors. Primary production is the production of organic matter from inorganic carbon sources. This mainly occurs through photosynthesis . The energy incorporated through this process supports life on earth, while

SECTION 50

#1732775730520

6344-435: The "tangible, material products" of ecosystem processes such as water, food, fuel, construction material, and medicinal plants . They also include less tangible items like tourism and recreation, and genes from wild plants and animals that can be used to improve domestic species. Ecosystem services , on the other hand, are generally "improvements in the condition or location of things of value". These include things like

6466-407: The Earth and how that energy is transformed. Sunlight 's energy evaporates water to produce clouds and rain and dries out land masses after rain. Rain that falls on land becomes the water budget which can be used by people for agricultural and other processes. GEWEX is a collaboration of researchers worldwide to find better ways of studying the water cycle and how it transforms energy through

6588-494: The Earth's energy budget and water cycle, contribution of processes in climate feedback, causes of natural variability, predicting changes on seasonal or annual timescales, and how changes impact water resources. Phase II of is designed to be active models that have use to regional resource managers in real time. Some phases, such as the GAME (GEWEX Asia Monsoon Experiment) are already completed . GEWEX has become an umbrella program for

6710-581: The GEWEX Radiation Panel oversees the coordinated use of satellites and ground-based observation to better estimate energy and water fluxes. One recent result GEWEX's Radiation panel has assessed data on rainfall for the last 25 years and determined that global rainfall is 2.61 mm/day with a small statistical variation. While the study period is short, after 25 years of measurement regional trends are beginning to appear. The GEWEX Modeling and Prediction Panel takes current models and analyzes

6832-567: The GEWEX study, these oscillations are an aspect of climate forcing, which allow testing of predictions and models. This modelling may be complicated by the fact that the North Atlantic Oscillation in switching state (see graph) as the effects of global warming are becoming more prominent. For example, 2006 and 2007 saw one of the most dramatic declines in Arctic Sea ice, a decline that was largely unpredicted and can shift

6954-573: The SRM University, Chennai, the 3 kg (6.6 lb) remote sensing satellite Jugnu from the Indian Institute of Technology Kanpur(IIT Kanpur) and the 28.7 kg (63 lb) VesselSat-1 of Luxembourg to locate ships on high seas. The original mission life was three years. The mission was extended by two years on 26 May 2015. The mission was further extended by four years on 7 October 2016. In April 2022, ISRO announced

7076-499: The ability for climate modellers to predict and indicate climate-forcing models need to accurate a wider sampling of data to be predictive. There are also longer-term cycles, the mini ice-age that preceded the medieval warm period may have been a transition to an ice age, the last ice-age lasted from ~130,000 years ago until the onset of the Holocene. This ice-age may have been aborted by other factors including global warming. Such

7198-481: The absence of disturbance, net ecosystem production is equivalent to the net carbon accumulation in the ecosystem. Energy can also be released from an ecosystem through disturbances such as wildfire or transferred to other ecosystems (e.g., from a forest to a stream to a lake) by erosion . In aquatic systems , the proportion of plant biomass that gets consumed by herbivores is much higher than in terrestrial systems. In trophic systems, photosynthetic organisms are

7320-402: The amount of energy available to the ecosystem. Parent material determines the nature of the soil in an ecosystem, and influences the supply of mineral nutrients. Topography also controls ecosystem processes by affecting things like microclimate , soil development and the movement of water through a system. For example, ecosystems can be quite different if situated in a small depression on

7442-504: The amount of light available, the amount of leaf area a plant has to capture light (shading by other plants is a major limitation of photosynthesis), the rate at which carbon dioxide can be supplied to the chloroplasts to support photosynthesis, the availability of water, and the availability of suitable temperatures for carrying out photosynthesis. Energy and carbon enter ecosystems through photosynthesis, are incorporated into living tissue, transferred to other organisms that feed on

SECTION 60

#1732775730520

7564-547: The amount of radiation reaching the Earth. There are oscillations in oceanic currents, such as El-Niño and North Atlantic Oscillation, which alter the parts of the Earth's ice mass and land water availability. The experiment takes a sampling of climate, with some trends lasting a million years, and as paleo-climatology shows, can abruptly change. Therefore, the ability to use data to predict change depends on factors that are measurable over periods of time, and factors that can affect global climate that abruptly appear can markedly alter

7686-408: The carbon makes up much of the organic matter in living and dead biomass, soil carbon and fossil fuels . It also drives the carbon cycle , which influences global climate via the greenhouse effect . Through the process of photosynthesis, plants capture energy from light and use it to combine carbon dioxide and water to produce carbohydrates and oxygen . The photosynthesis carried out by all

7808-514: The center. The heat of the water under the storm drops. Cyclones demonstrate how much latent energy is stored in the world's oceans. Another example is the floods that hit the Midwest U.S. in 1993. The energy that drove moisture into the air occurred in the Gulf, and strong winds and lack of cooling in coastal regions permitted the moisture to travel 1000 miles until conditions were ripe for rain. As

7930-518: The clearest real-time data. Certain projects like GCIP allow have focused on continental scale observations provide better prediction for project areas; however, areas outside these project areas may lag in receiving forecasting improvements. Many of the deficiencies in Phase I are improvement areas within the objectives of Phase II of the project. Currently scientist use NASA Aqua's Advanced Microwave Scanning Radiometer (AMSR-E) to evaluation soil moisture from space. However, except for focused observations

8052-527: The coasts of some developing nations and extend hundreds of miles over surrounding oceans. Some have questioned whether this aerosol pollution is partly to blame for long-term drought in places like the African Sahel . One critique of the Build-up Phase data and predictions is that there needs to be better error descriptions. The global estimate of rainfall indicates that the confidence range

8174-432: The combustion of fossil fuels, ammonia gas which evaporates from agricultural fields which have had fertilizers applied to them, and dust. Anthropogenic nitrogen inputs account for about 80% of all nitrogen fluxes in ecosystems. When plant tissues are shed or are eaten, the nitrogen in those tissues becomes available to animals and microbes. Microbial decomposition releases nitrogen compounds from dead organic matter in

8296-416: The completed GAME project. Megha-Tropiques also sought to describe the evolution of major tropical weather systems. The focus was the repetitive measurement of the tropics. Megha-Tropiques instruments allowed simultaneous observation of three interrelated components of the atmospheric engine: water vapor, condensed water (clouds and precipitations), and radiative fluxes, facilitating the repetitive sampling of

8418-418: The concept to draw attention to the importance of transfers of materials between organisms and their environment. He later refined the term, describing it as "The whole system, ... including not only the organism-complex, but also the whole complex of physical factors forming what we call the environment". Tansley regarded ecosystems not simply as natural units, but as "mental isolates". Tansley later defined

8540-562: The coordination of studies and experiments around the world. Reports from the phase I are still being produced and it will be some time before the results of the second phase are available. The experiment is still in progress. There are three panels in GEWEX: The Coordinated Energy and Water Cycle Observations Project (CEOP), GEWEX Radiation Panel (GRP), and GEWEX Modeling and Prediction Panel (GMPP). The Coordinated Energy and Water Cycle Observations Project ( CEOP )

8662-434: The data are most useful in determining rainfall. The research interest of GEWEX is to study fluxes of radiation at the Earth's surface, predict seasonal hydration levels of soils and develop accurate models of predicting energy and water budgets around the world. The project sets its goal as to improve, by an order of magnitude, the ability to model and therefore prediction hydration (rainfall and evaporation) patterns GEWEX

8784-514: The dataset analysis have the flaw of not having inaccurate measurements of drizzle and snow, and lack measurements in isolated places and over oceans. The rainfall maps show the greatest absolute rainfall error over the tropical oceans in regions with the highest estimated rainfall. The report self-critiques two aspects: the lack of polar-crossing satellites at the beginning of the study and the inability to correlate new information and older information (ground-based measurements). The noticeable trends in

8906-486: The dataset were deemed insignificant with regard to issues like global warming, but some stand-out positive trends over the Indopacific region were notable (Bay of Bengal and Indochina) and negative trends over South Central Africa . The SRB project under NASA/GEWEX took global radiation measurements to determine radiative energy fluxes. The energy that comes from the sun strikes the atmosphere and scatters, clouds and

9028-403: The dead organic matter would accumulate in an ecosystem, and nutrients and atmospheric carbon dioxide would be depleted. Decomposition processes can be separated into three categories— leaching , fragmentation and chemical alteration of dead material. As water moves through dead organic matter, it dissolves and carries with it the water-soluble components. These are then taken up by organisms in

9150-457: The different conditions (soil wetness, global patterns) that were permissive for weather anomalies are the focus of Phase I, gathering information and learning how to use satellite information better. One of the biggest impacts of the Aerosol analysis has been the demonstration of the fairly large impact of anthropogenic aerosols, smoke patterns, even daily ripples of aerosols can be observed off

9272-593: The distribution of aerosols, how they are formed, transformed and transported. The GEWEX cloud assessment was initiated by the GEWEX Radiation Panel (GRP) in 2005 to evaluate the reliability of available, global, long-term cloud data products, with a special emphasis on ISCCP. The GEWEX modelling and prediction panel ( GMPP ) is charged with the task of finding better ways to use the data by other projects and other agencies. It oversees GEWEX Atmospheric Boundary Layer Study (GABLS), GEWEX Cloud System Study (GCSS), and Global Land/Atmosphere System Study(GLASS). Climate forcing

9394-655: The ecosystem or to gradual disruption of biotic processes and degradation of abiotic conditions of the ecosystem. Once the original ecosystem has lost its defining features, it is considered "collapsed ". Ecosystem restoration can contribute to achieving the Sustainable Development Goals . An ecosystem (or ecological system) consists of all the organisms and the abiotic pools (or physical environment) with which they interact. The biotic and abiotic components are linked together through nutrient cycles and energy flows. "Ecosystem processes" are

9516-530: The end of mission for the satellite because of issues with the attitude control sub-system. Megha-Tropiques was located at an 870 km orbit, which was to be lowered to 300 km to prepare for the eventual disposal of the satellite. Starting from August 2022, Megha-Tropiques' orbit was lowered through a series of maneuvers. On 7 March 2023, Megha-Tropiques was successfully deorbited after conducting two final de-boost burns. GEWEX The Global Energy and Water Exchanges Project (abbreviated GEWEX , formerly named

9638-651: The equator by the Indian Space Research Organisation through its Polar Satellite Launch Vehicle ( PSLV-C18 ) on October 12, 2011. The PSLV-C18 was launched at 11:00 am on October 12, 2011, from the first launch pad of the Satish Dhawan Space Centre (SHAR) located in Sriharikota , Andhra Pradesh . The satellite was placed in orbit along with three micro satellites: the 10.9 kg (24 lb) SRMSAT built by

9760-421: The events will eventually take dominance, lack of precedents from the past study of similar confluences of events, as well as knowledge of the uncertainty of sensitive 'switches' in the oceanic/atmospheric switches may affect the ability to provide accurate models and predictions. In addition, sampling points may be spread to monitor leading indicators in one common scenario may be useless during an oscillation where

9882-421: The flow of energy through a lake was the primary driver of the ecosystem. Hutchinson's students, brothers Howard T. Odum and Eugene P. Odum , further developed a "systems approach" to the study of ecosystems. This allowed them to study the flow of energy and material through ecological systems. Ecosystems are controlled by both external and internal factors. External factors, also called state factors, control

10004-458: The forests of eastern North America still show legacies of cultivation which ceased in 1850 when large areas were reverted to forests. Another example is the methane production in eastern Siberian lakes that is controlled by organic matter which accumulated during the Pleistocene . Ecosystems continually exchange energy and carbon with the wider environment . Mineral nutrients, on

10126-418: The future. GEWEX is being implemented in phases. The first phase comprises information gathering, modelling, predictions, and advancement of observation techniques and is complete. The second phase addresses several scientific questions such as prediction capacity, changes in Earth's water cycle, and the impact on water resources. Phase I (1990–2002), also called the "Build-Up Phase", was designed to determine

10248-424: The global precipitation products. The result of 25 years of measurement the global average precipitation rate is 2.61 mm per/day (about 0.1 inch/day) with about 1% uncertainty. The finding suggests there is no significant variation in mean annual rainfall. Regional variation was separated from land and ocean and the land variation of received precipitation was greater than the ocean. Satellites used to train

10370-485: The heat of daytime, creating clouds. As the density of droplets in the clouds increase, the air can no longer support droplets and they fall as rain. More moist air can be drawn into clouds as energy is released, allowing the development of large thunderstorms. Prevailing winds are a factor in storm formation, particularly when changes occur. Tropical waves that develop in westerly flows around the Earth's semitropical and tropical region can organize into horizontal circles over

10492-422: The hydrological cycle and energy fluxes by means of global measurements of atmospheric and surface properties. GEWEX was also designed to model the global hydrological cycle and its impact on the atmosphere, oceans and land surfaces. Phase I processes were to develop the ability to predict the variations of global and regional hydrological processes & water resources, and their response to environmental change. It

10614-750: The impact on land surface parameters on the atmosphere. Changes in land as a result of natural and man-made activities results in the ability to alter the local climate and affect wind and cloud formation. The GEWEX project has been in existence for over 30 years, and while some climate oscillations are short, such as El-Nino, some climate oscillations last for decades, such as the North Atlantic Oscillation. Some have proposed extrapolating pre-GEWEX information using new information and measurements taken with pre-GEWEX technology. The MAGS project, located in Northwestern Canada utilized indigenous peoples traditional experiences. In addition, in other parts of

10736-591: The indirect effects of aerosols , compiled a correlated data set, some reductions in uncertainty GEWEX claims the following accomplishments: A long period data set of clouds , rain fall , water vapor , surface radiation, and aerosols with no indication of large global trends, but with evidence of regional variability, models showing increased precipitation, and showed the importance of regional factors, such as water and soil conservation in regional climate change. The Phase I also claims to have produced over 200 publications and 15 review articles. The Mississippi watershed

10858-580: The inter-tropical zone over long periods of time. Its microwave radiometer, Multi-frequency Microwave Scanning Radiometer ( MADRAS ), complemented the radiometers of the other elements of the Global Precipitation Measurement mission . Instruments fulfill a critical role on Earth observation satellites. On this mission, microwave instruments were essential. The Megha-Tropiques satellite was successfully placed in an 867 km (539 mi) orbit with an inclination of 20 degrees to

10980-691: The landscape, versus one present on an adjacent steep hillside. Other external factors that play an important role in ecosystem functioning include time and potential biota , the organisms that are present in a region and could potentially occupy a particular site. Ecosystems in similar environments that are located in different parts of the world can end up doing things very differently simply because they have different pools of species present. The introduction of non-native species can cause substantial shifts in ecosystem function. Unlike external factors, internal factors in ecosystems not only control ecosystem processes but are also controlled by them. While

11102-615: The large amount of weather that occurs over the oceans and unpopulated regions, with key data missing from these areas. Since satellites orbiting the Earth cover large areas in small time frames, they can better estimate climate where measurements are infrequently taken. GEWEX was initiated by World Climate Research Programme (WCRP) to take advantage of environmental satellites such as TRMM , but now uses information from newer satellites as well as collections land-based instruments, such as BSRN . These land-based instruments can be used to verify information interpreted from satellite. GEWEX studies

11224-522: The late summer albedo in the northern hemisphere. In 2008, sea ice extent decline has backed off from the previous years' trend, and researchers had forecast a strong La Nina event for late 2007 and 2008. However, unexpectedly the surface temperatures in the Eastern Pacific have already begun to rise to El-Nino temperature ranges, indicating the La Nina event may terminate unexpectedly. With this,

11346-423: The living and dead plant matter, and eventually released through respiration. The carbon and energy incorporated into plant tissues (net primary production) is either consumed by animals while the plant is alive, or it remains uneaten when the plant tissue dies and becomes detritus . In terrestrial ecosystems , the vast majority of the net primary production ends up being broken down by decomposers . The remainder

11468-399: The long-term and regional changes in climate with a goal of predicting important seasonal weather patterns and climate changes that occurs over a few years. At 100% humidity, any loss of radiant energy from water causes vapor to condense into water. Circulation and convection can carry moist air upward in the air column, and this often cools moist air. The air forms water droplets, even in

11590-628: The loss of Northern Polar sea ice has begun to accelerate back toward the earlier trend. Such rapid and unexpected changes in climate-forcing events eventually suggest that modellers need to include parameters such as ocean temperature thermoclines, energy accumulation in the tropical oceans, sea ice extents in the polar regions, land glacial ice retraction in Greenland, and sheet ice and shelf ice remodelling in Antarctica. When multiple climate-forcing influences are acting simultaneously in which one of

11712-471: The maintenance of hydrological cycles , cleaning air and water, the maintenance of oxygen in the atmosphere, crop pollination and even things like beauty, inspiration and opportunities for research. Many ecosystems become degraded through human impacts, such as soil loss , air and water pollution , habitat fragmentation , water diversion , fire suppression , and introduced species and invasive species . These threats can lead to abrupt transformation of

11834-408: The maintenance of hydrological cycles, cleaning air and water, the maintenance of oxygen in the atmosphere, crop pollination and even things like beauty, inspiration and opportunities for research. While material from the ecosystem had traditionally been recognized as being the basis for things of economic value, ecosystem services tend to be taken for granted. The Millennium Ecosystem Assessment

11956-485: The models when climate forcing phenomena occur (global warming as an example of a 'climate forcing' event). GEWEX is now the core project of WCRP. Predicting weather change requires accurate data that is collected over many years, and the application of models . GEWEX was conceived to respond to the need for observations of the Earth's radiation budget and clouds. Many preexisting techniques were limited to observations taken from land and populated areas. This ignored

12078-537: The other hand, are mostly cycled back and forth between plants, animals, microbes and the soil. Most nitrogen enters ecosystems through biological nitrogen fixation , is deposited through precipitation, dust, gases or is applied as fertilizer . Most terrestrial ecosystems are nitrogen-limited in the short term making nitrogen cycling an important control on ecosystem production. Over the long term, phosphorus availability can also be critical. Macronutrients which are required by all plants in large quantities include

12200-509: The other. Despite this, the cumulative effect of additional species in an ecosystem is not linear: additional species may enhance nitrogen retention, for example. However, beyond some level of species richness, additional species may have little additive effect unless they differ substantially from species already present. This is the case for example for exotic species . The addition (or loss) of species that are ecologically similar to those already present in an ecosystem tends to only have

12322-403: The overall structure of an ecosystem and the way things work within it, but are not themselves influenced by the ecosystem. On broad geographic scales, climate is the factor that "most strongly determines ecosystem processes and structure". Climate determines the biome in which the ecosystem is embedded. Rainfall patterns and seasonal temperatures influence photosynthesis and thereby determine

12444-405: The plants in an ecosystem is called the gross primary production (GPP). About half of the gross GPP is respired by plants in order to provide the energy that supports their growth and maintenance. The remainder, that portion of GPP that is not used up by respiration, is known as the net primary production (NPP). Total photosynthesis is limited by a range of environmental factors. These include

12566-423: The pool of energy shifts to an unmonitored region so that the magnitude of the shift avoids computation. An example of climate-forcing anomalies might be used to describe the events of 1998 to 2002, a strong El-Nino/La Nina cycle. The onset of the cycle can be influenced by global warming, which facilitated a larger increase of warm water in the tropics, rapidly enough that the thermocline was tolerant. A thermocline

12688-585: The primary nutrients (which are most limiting as they are used in largest amounts): Nitrogen, phosphorus, potassium. Secondary major nutrients (less often limiting) include: Calcium, magnesium, sulfur. Micronutrients required by all plants in small quantities include boron, chloride, copper, iron, manganese, molybdenum, zinc. Finally, there are also beneficial nutrients which may be required by certain plants or by plants under specific environmental conditions: aluminum, cobalt, iodine, nickel, selenium, silicon, sodium, vanadium. Until modern times, nitrogen fixation

12810-413: The primary producers. The organisms that consume their tissues are called primary consumers or secondary producers — herbivores . Organisms which feed on microbes ( bacteria and fungi ) are termed microbivores . Animals that feed on primary consumers— carnivores —are secondary consumers. Each of these constitutes a trophic level. The sequence of consumption—from plant to herbivore, to carnivore—forms

12932-461: The project, as with losses of ice and changes of climate on the ice edges. Ecosystem An ecosystem (or ecological system ) is a system that environments and their organisms form through their interaction. The biotic and abiotic components are linked together through nutrient cycles and energy flows. Ecosystems are controlled by external and internal factors . External factors such as climate , parent material which forms

13054-543: The rain fell it cooled the air and dissipated heat, and as new moisture arrived, the process continued. When the sun did come out, it heated wet ground, which created more rain. Aerosols over the ocean can cause a lack of sufficient heat in the middle of the day to create sufficiently humid air. When the air reaches land, which may be warmer, there may be inadequate convection and other processes to create rains, and this can cause droughts. To better see these events progress, scientists need data and models to see what elements of

13176-452: The satellites data is not useful for global weather prediction. The proposed Soil Moisture and Ocean Salinity satellite would provide the detail of soil moisture information on a daily basis may provide the data needed for real time forecasting. Phase II, "Full Implementation" (2003–2012) of GEWEX is to "exploit new capabilities" developed during phase I such as new satellite information and, increasingly, new models. These include changes in

13298-409: The soil and topography , control the overall structure of an ecosystem but are not themselves influenced by the ecosystem. Internal factors are controlled, for example, by decomposition , root competition, shading, disturbance, succession, and the types of species present. While the resource inputs are generally controlled by external processes, the availability of these resources within the ecosystem

13420-611: The soil, react with mineral soil, or are transported beyond the confines of the ecosystem (and are considered lost to it). Newly shed leaves and newly dead animals have high concentrations of water-soluble components and include sugars , amino acids and mineral nutrients. Leaching is more important in wet environments and less important in dry ones. Fragmentation processes break organic material into smaller pieces, exposing new surfaces for colonization by microbes. Freshly shed leaf litter may be inaccessible due to an outer layer of cuticle or bark , and cell contents are protected by

13542-511: The soil, where plants, fungi, and bacteria compete for it. Some soil bacteria use organic nitrogen-containing compounds as a source of carbon, and release ammonium ions into the soil. This process is known as nitrogen mineralization . Others convert ammonium to nitrite and nitrate ions, a process known as nitrification . Nitric oxide and nitrous oxide are also produced during nitrification. Under nitrogen-rich and oxygen-poor conditions, nitrates and nitrites are converted to nitrogen gas ,

13664-483: The spatial extent of ecosystems using the term " ecotope ". G. Evelyn Hutchinson , a limnologist who was a contemporary of Tansley's, combined Charles Elton 's ideas about trophic ecology with those of Russian geochemist Vladimir Vernadsky . As a result, he suggested that mineral nutrient availability in a lake limited algal production . This would, in turn, limit the abundance of animals that feed on algae. Raymond Lindeman took these ideas further to suggest that

13786-519: The study observes cloud systems at single fixed positions on earth in order to better estimate their parameters. These four areas are: Azores and Madeira Islands, Barbados, Equatorial Western Pacific, and Atlantic Tropics. The initial data collection is complete, methods developed for land and aircraft-based observations can be compared with satellite observations so that better models of cloud system identification can be made at smaller scales. Global Land/Atmosphere System Study ( GLASS ) tries to understand

13908-668: The sunlight that is transformed by the Earth can vary greatly, some have concluded for instance, that ice-ages self-perpetuate once enough ice has accumulated in the polar regions to reflect enough radiation at high elevations to lower the global average temperature, whereas it takes an unusually warm period to reverse this state. Water usage by plants, herbivore activities can change albedo in the temperate and tropical zones. These trends in reflection are subject to change. Some have proposed extrapolating pre-GEWEX information using new information and measurements taken with pre-GEWEX technology. Natural fires, volcanism, and man-made aerosols can alter

14030-454: The system through photosynthesis , building up plant tissue. Animals play an important role in the movement of matter and energy through the system, by feeding on plants and on one another. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter , decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to

14152-421: The transfers of energy and materials from one pool to another. Ecosystem processes are known to "take place at a wide range of scales". Therefore, the correct scale of study depends on the question asked. The term "ecosystem" was first used in 1935 in a publication by British ecologist Arthur Tansley . The term was coined by Arthur Roy Clapham , who came up with the word at Tansley's request. Tansley devised

14274-409: The water, creating a cyclone. A cyclone is a stereotype energy transfer system. It gathers steam off of warm water and quickly moves it upwards releasing the energy into space. This causes the characteristic rain bands. The energy transferred is so great it gives rise to catastrophic winds, which disturb surface waters, increasing steam release, and also increase the rate at which moisture is drawn into

14396-451: The water-system consequences of predictions and global climate change. GEWEX Radiation panel ( GRP ) is a collaborative organization with a goal of reviewing theoretical and experimental knowledge of radiative processes within the climate system. Sixty percent of the energy that comes to Earth from the Sun is transformed by the earth. The goals of this collaboration is to determine how energy

14518-436: Was also to advance the development of observing techniques, data management, and assimilation systems for operational application to long-range weather forecasts, hydrology, and climate predictions. During Phase I GEWEX projects were divided into the three overlapping sectors. CEOP projects interacted with other non-GEWEX projects like CLIVAR and CLiC The results of the build-up phase include 15 to 25 years of study, measured

14640-603: Was inadequate information on how radiation redistributed, both horizontally and vertically. BSRN is a global system of less than 40 widely spread radiation measuring devices designed to measure changes in radiation at the Earth's surface. The information obtained is stored at the World Radiation Monitoring Center (WRMC) at the ETH (Zurich). Established by Radiation Sciences Program(NASA) and GEWEX in 1998 to analyze satellite and field data to determine

14762-627: Was part of the GEWEX Continental scale International Projects and as a result was well situated for the analysis of the Great Flood of 1993 ( Mississippi River and Red River watersheds). The coordination between ground sensing observations and satellite information allowed a more thorough analysis of events that led up to the flood. Researchers at the Center for Ocean-Land-Atmosphere Studies (COLA) found that upstream soil moisture and

14884-679: Was the major source of nitrogen for ecosystems. Nitrogen-fixing bacteria either live symbiotically with plants or live freely in the soil. The energetic cost is high for plants that support nitrogen-fixing symbionts—as much as 25% of gross primary production when measured in controlled conditions. Many members of the legume plant family support nitrogen-fixing symbionts. Some cyanobacteria are also capable of nitrogen fixation. These are phototrophs , which carry out photosynthesis. Like other nitrogen-fixing bacteria, they can either be free-living or have symbiotic relationships with plants. Other sources of nitrogen include acid deposition produced through

#519480