Spaceflight (or space flight ) is an application of astronautics to fly objects, usually spacecraft , into or through outer space , either with or without humans on board . Most spaceflight is uncrewed and conducted mainly with spacecraft such as satellites in orbit around Earth , but also includes space probes for flights beyond Earth orbit. Such spaceflights operate either by telerobotic or autonomous control. The first spaceflights began in the 1950s with the launches of the Soviet Sputnik satellites and American Explorer and Vanguard missions. Human spaceflight programs include the Soyuz , Shenzhou , the past Apollo Moon landing and the Space Shuttle programs . Other current spaceflight are conducted to the International Space Station and to China's Tiangong Space Station .
123-415: A mission control center ( MCC , sometimes called a flight control center or operations center ) is a facility that manages space flights , usually from the point of launch until landing or the end of the mission. It is part of the ground segment of spacecraft operations. A staff of flight controllers and other support personnel monitor all aspects of the mission using telemetry , and send commands to
246-421: A spaceport (cosmodrome), which may be equipped with launch complexes and launch pads for vertical rocket launches and runways for takeoff and landing of carrier airplanes and winged spacecraft. Spaceports are situated well away from human habitation for noise and safety reasons. ICBMs have various special launching facilities. A launch is often restricted to certain launch windows . These windows depend upon
369-496: A sub-orbital spaceflight the spacecraft reaches space and then returns to the atmosphere after following a (primarily) ballistic trajectory. This is usually because of insufficient specific orbital energy , in which case a suborbital flight will last only a few minutes, but it is also possible for an object with enough energy for an orbit to have a trajectory that intersects the Earth's atmosphere, sometimes after many hours. Pioneer 1
492-512: A "time buffer" and substantially widened the allowable launch windows . The parking orbit gave the crew and controllers time to thoroughly check out the spacecraft after the stresses of launch before committing it for a long journey to the Moon. Robotic missions do not require an abort capability and require radiation minimalization only for delicate electronics, and because modern launchers routinely meet "instantaneous" launch windows, space probes to
615-545: A 19-species model. An important aspect of modelling non-equilibrium real gas effects is radiative heat flux. If a vehicle is entering an atmosphere at very high speed (hyperbolic trajectory, lunar return) and has a large nose radius then radiative heat flux can dominate TPS heating. Radiative heat flux during entry into an air or carbon dioxide atmosphere typically comes from asymmetric diatomic molecules; e.g., cyanogen (CN), carbon monoxide , nitric oxide (NO), single ionized molecular nitrogen etc. These molecules are formed by
738-471: A Gibbs free energy equilibrium program, the iterative process from the originally specified molecular composition to the final calculated equilibrium composition is essentially random and not time accurate. With a non-equilibrium program, the computation process is time accurate and follows a solution path dictated by chemical and reaction rate formulas. The five species model has 17 chemical formulas (34 when counting reverse formulas). The Lighthill-Freeman model
861-499: A challenge. The experimental measurement of radiative heat flux (typically done with shock tubes) along with theoretical calculation through the unsteady Schrödinger equation are among the more esoteric aspects of aerospace engineering. Most of the aerospace research work related to understanding radiative heat flux was done in the 1960s, but largely discontinued after conclusion of the Apollo Program. Radiative heat flux in air
984-459: A complete sphere or a spherical section forebody with a converging conical afterbody. The aerodynamics of a sphere or spherical section are easy to model analytically using Newtonian impact theory. Likewise, the spherical section's heat flux can be accurately modeled with the Fay–Riddell equation . The static stability of a spherical section is assured if the vehicle's center of mass is upstream from
1107-435: A converging conical afterbody. It flew a lifting entry with a hypersonic trim angle of attack of −27° (0° is blunt-end first) to yield an average L/D (lift-to-drag ratio) of 0.368. The resultant lift achieved a measure of cross-range control by offsetting the vehicle's center of mass from its axis of symmetry, allowing the lift force to be directed left or right by rolling the capsule on its longitudinal axis . Other examples of
1230-443: A counter measure to United States bomber planes in the 1950s. The Tsiolkovsky-influenced Sergey Korolev became the chief rocket designer, and derivatives of his R-7 Semyorka missiles were used to launch the world's first artificial Earth satellite , Sputnik 1 , on October 4, 1957. The U.S., after the launch of Sputnik and two embarrassing failures of Vanguard rockets , launched Explorer 1 on February 1, 1958. Three years later,
1353-416: A flight that normally lasts over twenty hours , could be traversed in less than one hour. While no company offers this type of transportation today, SpaceX has revealed plans to do so as early as the 2020s using Starship . Suborbital spaceflight over an intercontinental distance requires a vehicle velocity that is only a little lower than the velocity required to reach low Earth orbit. If rockets are used,
SECTION 10
#17327650207561476-455: A gas in equilibrium with fixed pressure and temperature can be determined through the Gibbs free energy method . Gibbs free energy is simply the total enthalpy of the gas minus its total entropy times temperature. A chemical equilibrium program normally does not require chemical formulas or reaction-rate equations. The program works by preserving the original elemental abundances specified for
1599-572: A gas that are important to aeronautical engineers who design heat shields: Almost all aeronautical engineers are taught the perfect (ideal) gas model during their undergraduate education. Most of the important perfect gas equations along with their corresponding tables and graphs are shown in NACA Report 1135. Excerpts from NACA Report 1135 often appear in the appendices of thermodynamics textbooks and are familiar to most aeronautical engineers who design supersonic aircraft. The perfect gas theory
1722-574: A heat shield designer must use a real gas model . An entry vehicle's pitching moment can be significantly influenced by real-gas effects. Both the Apollo command module and the Space Shuttle were designed using incorrect pitching moments determined through inaccurate real-gas modelling. The Apollo-CM's trim-angle angle of attack was higher than originally estimated, resulting in a narrower lunar return entry corridor. The actual aerodynamic center of
1845-451: A launch tower and flame trench. It is surrounded by equipment used to erect, fuel, and maintain launch vehicles. Before launch, the rocket can weigh hundreds of tons. The Space Shuttle Columbia , on STS-1 , weighed 2030 metric tons (4,480,000 lb) at takeoff. The most commonly used definition of outer space is everything beyond the Kármán line , which is 100 kilometers (62 mi) above
1968-595: A liquid-fueled rocket on March 16, 1926. During World War II , the first guided rocket, the V-2 , was developed and employed as a weapon by Nazi Germany . During a test flight in June 1944, one such rocket reached space at an altitude of 189 kilometers (102 nautical miles), becoming the first human-made object to reach space. At the end of World War II, most of the V-2 rocket team, including its head, Wernher von Braun , surrendered to
2091-656: A mock-up of the ablative material to be analyzed within a hypersonic wind tunnel. Testing of ablative materials occurs at the Ames Arc Jet Complex. Many spacecraft thermal protection systems have been tested in this facility, including the Apollo, space shuttle, and Orion heat shield materials. Carbon phenolic was originally developed as a rocket nozzle throat material (used in the Space Shuttle Solid Rocket Booster ) and for reentry-vehicle nose tips. The thermal conductivity of
2214-454: A nose radius of 1 meter, i.e., time of travel is about 18 microseconds. This is roughly the time required for shock-wave-initiated chemical dissociation to approach chemical equilibrium in a shock layer for a 7.8 km/s entry into air during peak heat flux. Consequently, as air approaches the entry vehicle's stagnation point, the air effectively reaches chemical equilibrium thus enabling an equilibrium model to be usable. For this case, most of
2337-402: A nose radius of 2.34 cm, a forward-frustum half-angle of 10.4°, an inter-frustum radius of 14.6 cm, aft-frustum half-angle of 6°, and an axial length of 2.079 meters. No accurate diagram or picture of AMaRV has ever appeared in the open literature. However, a schematic sketch of an AMaRV-like vehicle along with trajectory plots showing hairpin turns has been published. AMaRV's attitude
2460-461: A particular TPS material is usually proportional to the material's density. Carbon phenolic is a very effective ablative material, but also has high density which is undesirable. The NASA Galileo Probe used carbon phenolic for its TPS material. If the heat flux experienced by an entry vehicle is insufficient to cause pyrolysis then the TPS material's conductivity could allow heat flux conduction into
2583-421: A perfect gas model, the ratio of specific heats (also called isentropic exponent , adiabatic index , gamma , or kappa ) is assumed to be constant along with the gas constant . For a real gas, the ratio of specific heats can wildly oscillate as a function of temperature. Under a perfect gas model there is an elegant set of equations for determining thermodynamic state along a constant entropy stream line called
SECTION 20
#17327650207562706-611: A pre-programmed list of operations that will be executed unless otherwise instructed. A robotic spacecraft for scientific measurements is often called a space probe or space observatory . Many space missions are more suited to telerobotic rather than crewed operation, due to lower cost and risk factors. In addition, some planetary destinations such as Venus or the vicinity of Jupiter are too hostile for human survival, given current technology. Outer planets such as Saturn , Uranus , and Neptune are too distant to reach with current crewed spaceflight technology, so telerobotic probes are
2829-428: A specific destination on the surface at zero velocity while keeping stresses on the spacecraft and any passengers within acceptable limits. This may be accomplished by propulsive or aerodynamic (vehicle characteristics or parachute ) means, or by some combination. There are several basic shapes used in designing entry vehicles: The simplest axisymmetric shape is the sphere or spherical section. This can either be
2952-407: A sphere-cone shape and were the first American example of a non-munition entry vehicle ( Discoverer-I , launched on 28 February 1959). The sphere-cone was later used for space exploration missions to other celestial bodies or for return from open space; e.g., Stardust probe. Unlike with military RVs, the advantage of the blunt body's lower TPS mass remained with space exploration entry vehicles like
3075-521: A stream of vaporized metal making it very visible to radar . These defects made the Mk-2 overly susceptible to anti-ballistic missile (ABM) systems. Consequently, an alternative sphere-cone RV to the Mk-2 was developed by General Electric. This new RV was the Mk-6 which used a non-metallic ablative TPS, a nylon phenolic. This new TPS was so effective as a reentry heat shield that significantly reduced bluntness
3198-411: A trailing vortex behind the entry vehicle. Correctly modelling the flow in the wake of an entry vehicle is very difficult. Thermal protection shield (TPS) heating in the vehicle's afterbody is usually not very high, but the geometry and unsteadiness of the vehicle's wake can significantly influence aerodynamics (pitching moment) and particularly dynamic stability. A thermal protection system , or TPS,
3321-531: Is another entry vehicle geometry and was used with the X-23 PRIME (Precision Recovery Including Maneuvering Entry) vehicle. Objects entering an atmosphere from space at high velocities relative to the atmosphere will cause very high levels of heating . Atmospheric entry heating comes principally from two sources: As velocity increases, both convective and radiative heating increase, but at different rates. At very high speeds, radiative heating will dominate
3444-465: Is at 400,000 feet (122 km), the main heating during controlled entry takes place at altitudes of 65 to 35 kilometres (213,000 to 115,000 ft), peaking at 58 kilometres (190,000 ft). At typical reentry temperatures, the air in the shock layer is both ionized and dissociated . This chemical dissociation necessitates various physical models to describe the shock layer's thermal and chemical properties. There are four basic physical models of
3567-506: Is based upon a single ordinary differential equation and one algebraic equation. The five species model is based upon 5 ordinary differential equations and 17 algebraic equations. Because the 5 ordinary differential equations are tightly coupled, the system is numerically "stiff" and difficult to solve. The five species model is only usable for entry from low Earth orbit where entry velocity is approximately 7.8 km/s (28,000 km/h; 17,000 mph). For lunar return entry of 11 km/s,
3690-491: Is done by a set of orbital maneuvers called space rendezvous . After rendezvousing with the space station, the space vehicle then docks or berths with the station. Docking refers to joining of two separate free-flying space vehicles, while berthing refers to mating operations where an inactive vehicle is placed into the mating interface of another space vehicle by using a robotic arm . Vehicles in orbit have large amounts of kinetic energy. This energy must be discarded if
3813-887: Is effective mainly because of its ability to sustain thrust even as the atmosphere thins. Many ways to reach space other than rocket engines have been proposed. Ideas such as the space elevator , and momentum exchange tethers like rotovators or skyhooks require new materials much stronger than any currently known. Electromagnetic launchers such as launch loops might be feasible with current technology. Other ideas include rocket-assisted aircraft/spaceplanes such as Reaction Engines Skylon (currently in early stage development), scramjet powered spaceplanes, and RBCC powered spaceplanes. Gun launch has been proposed for cargo. On some missions beyond LEO (Low Earth Orbit) , spacecraft are inserted into parking orbits, or lower intermediary orbits. The parking orbit approach greatly simplified Apollo mission planning in several important ways. It acted as
Mission control center - Misplaced Pages Continue
3936-448: Is elegant and extremely useful for designing aircraft but assumes that the gas is chemically inert. From the standpoint of aircraft design, air can be assumed to be inert for temperatures less than 550 K (277 °C; 530 °F) at one atmosphere pressure. The perfect gas theory begins to break down at 550 K and is not usable at temperatures greater than 2,000 K (1,730 °C; 3,140 °F). For temperatures greater than 2,000 K,
4059-586: Is impossible. To date several academics have studied intergalactic travel in a serious manner. Spacecraft are vehicles designed to operate in space. The first 'true spacecraft' is sometimes said to be Apollo Lunar Module , since this was the only crewed vehicle to have been designed for, and operated only in space; and is notable for its non-aerodynamic shape. Spacecraft today predominantly use rockets for propulsion , but other propulsion techniques such as ion drives are becoming more common, particularly for uncrewed vehicles, and this can significantly reduce
4182-541: Is known as Kessler syndrome . There are several terms that refer to a flight into or through outer space . A space mission refers to a spaceflight intended to achieve an objective. Objectives for space missions may include space exploration , space research , and national firsts in spaceflight. Space transport is the use of spacecraft to transport people or cargo into or through outer space. This may include human spaceflight and cargo spacecraft flight. The first theoretical proposal of space travel using rockets
4305-466: Is lower than other high-heat-flux-ablative materials, such as conventional carbon phenolics. PICA was patented by NASA Ames Research Center in the 1990s and was the primary TPS material for the Stardust aeroshell. The Stardust sample-return capsule was the fastest man-made object ever to reenter Earth's atmosphere, at 28,000 mph (ca. 12.5 km/s) at 135 km altitude. This was faster than
4428-647: Is more fuel-efficient for a craft to burn its fuel as close as possible to its periapsis (lowest point); see Oberth effect . Astrodynamics is the study of spacecraft trajectories, particularly as they relate to gravitational and propulsion effects. Astrodynamics allows for a spacecraft to arrive at its destination at the correct time without excessive propellant use. An orbital maneuvering system may be needed to maintain or change orbits. Non-rocket orbital propulsion methods include solar sails , magnetic sails , plasma-bubble magnetic systems , and using gravitational slingshot effects. The term "transfer energy" means
4551-455: Is not generally recognized by the public that the increase in potential energy required to pass the Kármán line is only about 3% of the orbital energy (potential plus kinetic energy) required by the lowest possible Earth orbit (a circular orbit just above the Kármán line.) In other words, it is far easier to reach space than to stay there. On May 17, 2004, Civilian Space eXploration Team launched
4674-528: Is pre-bonded to the aeroshell's structure thus enabling construction of a large heat shield. Phenolic-impregnated carbon ablator (PICA), a carbon fiber preform impregnated in phenolic resin , is a modern TPS material and has the advantages of low density (much lighter than carbon phenolic) coupled with efficient ablative ability at high heat flux. It is a good choice for ablative applications such as high-peak-heating conditions found on sample-return missions or lunar-return missions. PICA's thermal conductivity
4797-446: Is slowly reduced such that chemical reactions can continue then the gas can remain in equilibrium. However, it is possible for gas pressure to be so suddenly reduced that almost all chemical reactions stop. For that situation the gas is considered frozen. The distinction between equilibrium and frozen is important because it is possible for a gas such as air to have significantly different properties (speed-of-sound, viscosity etc.) for
4920-457: Is the barrier that protects a spacecraft during the searing heat of atmospheric reentry. Multiple approaches for the thermal protection of spacecraft are in use, among them ablative heat shields, passive cooling, and active cooling of spacecraft surfaces. In general they can be divided into two categories: ablative TPS and reusable TPS. Ablative TPS are required when space craft reach a relatively low altitude before slowing down. Spacecraft like
5043-650: Is the fifth spacecraft put on an escape trajectory leaving the Solar System . Voyager 1 , Voyager 2 , Pioneer 10 , Pioneer 11 are the earlier ones. The one farthest from the Sun is Voyager 1 , which is more than 100 AU distant and is moving at 3.6 AU per year. In comparison, Proxima Centauri , the closest star other than the Sun, is 267,000 AU distant. It will take Voyager 1 over 74,000 years to reach this distance. Vehicle designs using other techniques, such as nuclear pulse propulsion are likely to be able to reach
Mission control center - Misplaced Pages Continue
5166-412: Is the only way of expending this, as it is highly impractical to use retrorockets for the entire reentry procedure. Ballistic warheads and expendable vehicles do not require slowing at reentry, and in fact, are made streamlined so as to maintain their speed. Furthermore, slow-speed returns to Earth from near-space such as high-altitude parachute jumps from balloons do not require heat shielding because
5289-453: Is typically better than that of a spherical section. The vehicle enters sphere-first. With a sufficiently small half-angle and properly placed center of mass, a sphere-cone can provide aerodynamic stability from Keplerian entry to surface impact. (The half-angle is the angle between the cone's axis of rotational symmetry and its outer surface, and thus half the angle made by the cone's surface edges.) The original American sphere-cone aeroshell
5412-490: The Columbia was upstream from the calculated value due to real-gas effects. On Columbia ' s maiden flight ( STS-1 ), astronauts John Young and Robert Crippen had some anxious moments during reentry when there was concern about losing control of the vehicle. An equilibrium real-gas model assumes that a gas is chemically reactive, but also assumes all chemical reactions have had time to complete and all components of
5535-642: The G77 Fortran compiler. A non-equilibrium real gas model is the most accurate model of a shock layer's gas physics, but is more difficult to solve than an equilibrium model. The simplest non-equilibrium model is the Lighthill-Freeman model developed in 1958. The Lighthill-Freeman model initially assumes a gas made up of a single diatomic species susceptible to only one chemical formula and its reverse; e.g., N 2 = N + N and N + N = N 2 (dissociation and recombination). Because of its simplicity,
5658-592: The Galileo Probe with a half-angle of 45° or the Viking aeroshell with a half-angle of 70°. Space exploration sphere-cone entry vehicles have landed on the surface or entered the atmospheres of Mars , Venus , Jupiter , and Titan . The biconic is a sphere-cone with an additional frustum attached. The biconic offers a significantly improved L/D ratio. A biconic designed for Mars aerocapture typically has an L/D of approximately 1.0 compared to an L/D of 0.368 for
5781-625: The Launch Control Center (LCC) located at NASA 's Kennedy Space Center on Merritt Island, Florida . Responsibility for the booster and spacecraft remains with the Launch Control Center until the booster has cleared the launch tower. After liftoff, responsibility is handed over to NASA's Mission Control Center in Houston, Texas (abbreviated MCC-H, full name Christopher C. Kraft Jr. Mission Control Center ), at
5904-782: The Lyndon B. Johnson Space Center . NASA's Mission Control Center in Houston also manages the U.S. portions of the International Space Station (ISS). The Mission Control Center of the Russian Federal Space Agency ( Russian : Центр управления полётами ), also known by its acronym ЦУП ("TsUP") is located in Korolyov , near the RKK Energia plant. It contains an active control room for
6027-697: The Shenzhou missions. The building is inside a complex nicknamed Aerospace City. The city is located in a suburb northwest of Beijing. The Jet Propulsion Laboratory (JPL) in Pasadena, California manages all of NASA's uncrewed spacecraft outside Earth's orbit and several research probes within along with the Deep Space Network from the Space Flight Operations Facility . Spaceflight Spaceflights include
6150-480: The Soyuz ), or unbounded (e.g., meteors ) trajectories. Various advanced technologies have been developed to enable atmospheric reentry and flight at extreme velocities. An alternative method of controlled atmospheric entry is buoyancy which is suitable for planetary entry where thick atmospheres, strong gravity, or both factors complicate high-velocity hyperbolic entry, such as the atmospheres of Venus , Titan and
6273-484: The Tsiolkovsky rocket equation , can be used to find the total Δ v {\displaystyle \Delta v} , or potential change in velocity. This formula, which is still used by engineers, is a key concept of spaceflight. Spaceflight became a practical possibility with the work of Robert H. Goddard 's publication in 1919 of his paper A Method of Reaching Extreme Altitudes . His application of
SECTION 50
#17327650207566396-461: The USSR made one orbit around the Earth. In official Soviet documents, there is no mention of the fact that Gagarin parachuted the final seven miles. As of 2020, the only spacecraft regularly used for human spaceflight are Soyuz , Shenzhou , and Crew Dragon . The U.S. Space Shuttle fleet operated from April 1981 until July 2011. SpaceShipOne has conducted three human suborbital space flights. On
6519-563: The V-2 , stabilization and aerodynamic stress were important issues (many V-2s broke apart during reentry), but heating was not a serious problem. Medium-range missiles like the Soviet R-5 , with a 1,200-kilometer (650-nautical-mile) range, required ceramic composite heat shielding on separable reentry vehicles (it was no longer possible for the entire rocket structure to survive reentry). The first ICBMs , with ranges of 8,000 to 12,000 km (4,300 to 6,500 nmi), were only possible with
6642-457: The de Laval nozzle to liquid-fuel rockets improved efficiency enough for interplanetary travel to become possible. After further research, Goddard attempted to secure an Army contract for a rocket-propelled weapon in the first World War but his plans were foiled by the November 11, 1918 armistice with Germany . After choosing to work with private financial support, he was the first to launch
6765-408: The giant planets . The concept of the ablative heat shield was described as early as 1920 by Robert Goddard : "In the case of meteors, which enter the atmosphere with speeds as high as 30 miles (48 km) per second, the interior of the meteors remains cold, and the erosion is due, to a large extent, to chipping or cracking of the suddenly heated surface. For this reason, if the outer surface of
6888-419: The isentropic chain . For a real gas, the isentropic chain is unusable and a Mollier diagram would be used instead for manual calculation. However, graphical solution with a Mollier diagram is now considered obsolete with modern heat shield designers using computer programs based upon a digital lookup table (another form of Mollier diagram) or a chemistry based thermodynamics program. The chemical composition of
7011-548: The 70° sphere-cone entry vehicles sent by NASA to Mars other than the Mars Science Laboratory (MSL). SLA-561V begins significant ablation at a heat flux of approximately 110 W/cm , but will fail for heat fluxes greater than 300 W/cm . The MSL aeroshell TPS is currently designed to withstand a peak heat flux of 234 W/cm . The peak heat flux experienced by the Viking 1 aeroshell which landed on Mars
7134-634: The Apollo mission capsules and 70% faster than the Shuttle. PICA was critical for the viability of the Stardust mission, which returned to Earth in 2006. Stardust's heat shield (0.81 m base diameter) was made of one monolithic piece sized to withstand a nominal peak heating rate of 1.2 kW/cm . A PICA heat shield was also used for the Mars Science Laboratory entry into the Martian atmosphere . An improved and easier to produce version called PICA-X
7257-787: The Apollo-CM. The higher L/D makes a biconic shape better suited for transporting people to Mars due to the lower peak deceleration. Arguably, the most significant biconic ever flown was the Advanced Maneuverable Reentry Vehicle (AMaRV). Four AMaRVs were made by the McDonnell Douglas Corp. and represented a significant leap in RV sophistication. Three AMaRVs were launched by Minuteman-1 ICBMs on 20 December 1979, 8 October 1980 and 4 October 1981. AMaRV had an entry mass of approximately 470 kg,
7380-676: The DC-X also served as the basis for an unsuccessful proposal for what eventually became the Lockheed Martin X-33 . Non- axisymmetric shapes have been used for crewed entry vehicles. One example is the winged orbit vehicle that uses a delta wing for maneuvering during descent much like a conventional glider. This approach has been used by the American Space Shuttle and the Soviet Buran . The lifting body
7503-452: The Earth under the influence of Earth's gravity , and are slowed by friction upon encountering Earth's atmosphere. Meteors are also often travelling quite fast relative to the Earth simply because their own orbital path is different from that of the Earth before they encounter Earth's gravity well . Most objects enter at hypersonic speeds due to their sub-orbital (e.g., intercontinental ballistic missile reentry vehicles), orbital (e.g.,
SECTION 60
#17327650207567626-403: The Earth's surface. (The United States defines outer space as everything beyond 50 miles (80 km) in altitude.) Rocket engines remain the only currently practical means of reaching space, with planes and high-altitude balloons failing due to lack of atmosphere and alternatives such as space elevators not yet being built. Chemical propulsion, or the acceleration of gases at high velocities,
7749-697: The Gemini program ended just before the Apollo 1 tragedy. Following multiple uncrewed test flights of the Saturn 1B and the Saturn V , the U.S. launched the crewed Apollo 7 mission into low earth orbit . Shortly after its successful completion, the U.S. launched Apollo 8 (first mission to orbit the moon), Apollo 9 (first Apollo mission to launch with both the CSM and the LEM ) and Apollo 10 (first mission to nearly land on
7872-459: The GoFast rocket on a suborbital flight, the first amateur spaceflight. On June 21, 2004, SpaceShipOne was used for the first privately funded human spaceflight . Point-to-point, or Earth to Earth transportation, is a category of sub-orbital spaceflight in which a spacecraft provides rapid transport between two terrestrial locations. A conventional airline route between London and Sydney ,
7995-661: The ISS. It also houses a memorial control room for the Mir where the last few orbits of Mir before it burned up in the atmosphere are shown on the display screens. The Mission Control Center of the Indian Space Research Organisation is located at Satish Dhawan Space Centre , Sriharikota, India. Beijing Aerospace Command and Control Center is a command center for the Chinese space program which includes
8118-533: The Lighthill-Freeman model is a useful pedagogical tool, but is too simple for modelling non-equilibrium air. Air is typically assumed to have a mole fraction composition of 0.7812 molecular nitrogen, 0.2095 molecular oxygen and 0.0093 argon. The simplest real gas model for air is the five species model , which is based upon N 2 , O 2 , NO, N, and O. The five species model assumes no ionization and ignores trace species like carbon dioxide. When running
8241-459: The Moon and developed continuous crewed human presence in space with a series of space stations , ranging from the Salyut program to the International Space Station . Rockets are the only means currently capable of reaching orbit or beyond. Other non-rocket spacelaunch technologies have yet to be built, or remain short of orbital speeds. A rocket launch for a spaceflight usually starts from
8364-423: The Moon and other planets generally use direct injection to maximize performance by limiting the boil off of cryogenic propellants . Although some might coast briefly during the launch sequence, they do not complete one or more full parking orbits before the burn that injects them onto an Earth escape trajectory. The escape velocity from a celestial body decreases as the distance from the body increases. However, it
8487-488: The TPS bondline material thus leading to TPS failure. Consequently, for entry trajectories causing lower heat flux, carbon phenolic is sometimes inappropriate and lower-density TPS materials such as the following examples can be better design choices: SLA in SLA-561V stands for super light-weight ablator . SLA-561V is a proprietary ablative made by Lockheed Martin that has been used as the primary TPS material on all of
8610-459: The USA on the 20th anniversary of Yuri Gagarin 's flight, on 12 April 1981. During the Shuttle era, six orbiters were built, all of which flown in the atmosphere and five of which flown in space. The Enterprise was used only for approach and landing tests, launching from the back of a Boeing 747 and gliding to deadstick landings at Edwards AFB, California . The first Space Shuttle to fly into space
8733-537: The USSR launched Vostok 1, carrying cosmonaut Yuri Gagarin into orbit. The US responded with the suborbital launch of Alan Shepard on May 5, 1961, and the orbital launch of John Glenn on February 20, 1962. These events were followed by a pledge from U.S. President John F. Kennedy to go to the moon and the creation of the Gemini and Apollo programs. After successfully performing a rendezvous and docking and an EVA ,
8856-644: The United States, and were expatriated to work on American missiles at what became the Army Ballistic Missile Agency , producing missiles such as Juno I and Atlas . The Soviet Union , in turn, captured several V2 production facilities and built several replicas, with 5 of their 11 rockets successfully reaching their targets. (This was relatively consistent with Nazi Germany's success rate.) The Soviet Union developed intercontinental ballistic missiles to carry nuclear weapons as
8979-432: The ability to deorbit themselves. This becomes a major issue when large numbers of uncontrollable spacecraft exist in frequently used orbits, increasing the risk of debris colliding with functional satellites. This problem is exacerbated when large objects, often upper stages, break up in orbit or collide with other objects, creating often hundreds of small, hard to find pieces of debris. This problem of continuous collisions
9102-442: The apparatus were to consist of layers of a very infusible hard substance with layers of a poor heat conductor between, the surface would not be eroded to any considerable extent, especially as the velocity of the apparatus would not be nearly so great as that of the average meteor." Practical development of reentry systems began as the range, and reentry velocity of ballistic missiles increased. For early short-range missiles, like
9225-422: The atmospheric entry returns to the same body that the vehicle had launched from, the event is referred to as reentry (almost always referring to Earth entry). The fundamental design objective in atmospheric entry of a spacecraft is to dissipate the energy of a spacecraft that is traveling at hypersonic speed as it enters an atmosphere such that equipment, cargo, and any passengers are slowed and land near
9348-469: The case of the Galileo probe's entry into Jupiter's atmosphere, the shock layer was mostly in equilibrium during peak heat flux due to the very high pressures experienced (this is counterintuitive given the free stream velocity was 39 km/s during peak heat flux). Determining the thermodynamic state of the stagnation point is more difficult under an equilibrium gas model than a perfect gas model. Under
9471-402: The center of curvature (dynamic stability is more problematic). Pure spheres have no lift. However, by flying at an angle of attack , a spherical section has modest aerodynamic lift thus providing some cross-range capability and widening its entry corridor. In the late 1950s and early 1960s, high-speed computers were not yet available and computational fluid dynamics was still embryonic. Because
9594-418: The convective heat fluxes, as radiative heating is proportional to the eighth power of velocity, while convective heating is proportional to the third power of velocity. Radiative heating thus predominates early in atmospheric entry, while convection predominates in the later phases. During certain intensity of ionization, a radio-blackout with the spacecraft is produced. While NASA's Earth entry interface
9717-524: The development of modern ablative heat shields and blunt-shaped vehicles. In the United States, this technology was pioneered by H. Julian Allen and A. J. Eggers Jr. of the National Advisory Committee for Aeronautics (NACA) at Ames Research Center . In 1951, they made the counterintuitive discovery that a blunt shape (high drag) made the most effective heat shield. From simple engineering principles, Allen and Eggers showed that
9840-447: The gas and varying the different molecular combinations of the elements through numerical iteration until the lowest possible Gibbs free energy is calculated (a Newton–Raphson method is the usual numerical scheme). The data base for a Gibbs free energy program comes from spectroscopic data used in defining partition functions . Among the best equilibrium codes in existence is the program Chemical Equilibrium with Applications (CEA) which
9963-432: The gas have the same temperature (this is called thermodynamic equilibrium ). When air is processed by a shock wave, it is superheated by compression and chemically dissociates through many different reactions. Direct friction upon the reentry object is not the main cause of shock-layer heating. It is caused mainly from isentropic heating of the air molecules within the compression wave. Friction based entropy increases of
10086-583: The gases of an atmosphere of a planet , dwarf planet , or natural satellite . There are two main types of atmospheric entry: uncontrolled entry , such as the entry of astronomical objects , space debris , or bolides ; and controlled entry (or reentry ) of a spacecraft capable of being navigated or following a predetermined course. Technologies and procedures allowing the controlled atmospheric entry, descent, and landing of spacecraft are collectively termed as EDL . Objects entering an atmosphere experience atmospheric drag , which puts mechanical stress on
10209-596: The gravitational acceleration of an object starting at relative rest from within the atmosphere itself (or not far above it) cannot create enough velocity to cause significant atmospheric heating. For Earth, atmospheric entry occurs by convention at the Kármán line at an altitude of 100 km (62 miles; 54 nautical miles) above the surface, while at Venus atmospheric entry occurs at 250 km (160 mi; 130 nmi) and at Mars atmospheric entry at about 80 km (50 mi; 43 nmi). Uncontrolled objects reach high velocities while accelerating through space toward
10332-408: The heat load experienced by an entry vehicle was inversely proportional to the drag coefficient ; i.e., the greater the drag, the less the heat load. If the reentry vehicle is made blunt, air cannot "get out of the way" quickly enough, and acts as an air cushion to push the shock wave and heated shock layer forward (away from the vehicle). Since most of the hot gases are no longer in direct contact with
10455-444: The hot shock layer gas away from the heat shield's outer wall (creating a cooler boundary layer ). The boundary layer comes from blowing of gaseous reaction products from the heat shield material and provides protection against all forms of heat flux. The overall process of reducing the heat flux experienced by the heat shield's outer wall by way of a boundary layer is called blockage . Ablation occurs at two levels in an ablative TPS:
10578-403: The launches of Earth observation and telecommunications satellites, interplanetary missions , the rendezvouses and dockings with space stations , and crewed spaceflights on scientific or tourist missions. Spaceflight can be achieved conventionally via multistage rockets , which provide the thrust to overcome the force of gravity and propel spacecraft onto suborbital trajectories . If
10701-554: The mission is orbital , the spacecraft usually separates the first stage and ignites the second stage , which propels the spacecraft to high enough speeds that it reaches orbit. Once in orbit, spacecraft are at high enough speeds that they fall around the Earth rather than fall back to the surface. Most spacecraft, and all crewed spacecraft, are designed to deorbit themselves or, in the case of uncrewed spacecraft in high-energy orbits, to boost themselves into graveyard orbits . Used upper stages or failed spacecraft, however, often lack
10824-438: The molecules within the wave also account for some heating. The distance from the shock wave to the stagnation point on the entry vehicle's leading edge is called shock wave stand off . An approximate rule of thumb for shock wave standoff distance is 0.14 times the nose radius. One can estimate the time of travel for a gas molecule from the shock wave to the stagnation point by assuming a free stream velocity of 7.8 km/s and
10947-409: The moon). These events culminated with the first crewed moon landing, Apollo 11 , and six subsequent missions, five of which successfully landed on the moon. Spaceflight has been widely employed by numerous government and commercial entities for placing satellites into orbit around Earth for a broad range of purposes. Certain government agencies have also sent uncrewed spacecraft exploring space beyond
11070-406: The nearest star significantly faster. Another possibility that could allow for human interstellar spaceflight is to make use of time dilation , as this would make it possible for passengers in a fast-moving vehicle to travel further into the future while aging very little, in that their great speed slows down the rate of passage of on-board time. However, attaining such high speeds would still require
11193-595: The object, and aerodynamic heating —caused mostly by compression of the air in front of the object, but also by drag. These forces can cause loss of mass ( ablation ) or even complete disintegration of smaller objects, and objects with lower compressive strength can explode. Reentry has been achieved with speeds ranging from 7.8 km/s for low Earth orbit to around 12.5 km/s for the Stardust probe. Crewed space vehicles must be slowed to subsonic speeds before parachutes or air brakes may be deployed. Such vehicles have high kinetic energies, and atmospheric dissipation
11316-402: The only way to explore them. Telerobotics also allows exploration of regions that are vulnerable to contamination by Earth micro-organisms since spacecraft can be sterilized. Humans can not be sterilized in the same way as a spaceship, as they coexist with numerous micro-organisms, and these micro-organisms are also hard to contain within a spaceship or spacesuit. The first uncrewed space mission
11439-481: The outer surface of the TPS material chars, melts, and sublimes , while the bulk of the TPS material undergoes pyrolysis and expels product gases. The gas produced by pyrolysis is what drives blowing and causes blockage of convective and catalytic heat flux. Pyrolysis can be measured in real time using thermogravimetric analysis , so that the ablative performance can be evaluated. Ablation can also provide blockage against radiative heat flux by introducing carbon into
11562-399: The position of celestial bodies and orbits relative to the launch site. The biggest influence is often the rotation of the Earth. Once launched, orbits are normally located within relatively constant flat planes at a fixed angle to the axis of the Earth, and the Earth rotates within this orbit. A launch pad is a fixed structure designed to dispatch airborne vehicles. It generally consists of
11685-464: The remainder heats the atmosphere. The Mercury , Gemini , and Apollo capsules splashed down in the sea. These capsules were designed to land at relatively low speeds with the help of a parachute. Soviet/Russian capsules for Soyuz make use of a big parachute and braking rockets to touch down on land. Spaceplanes like the Space Shuttle land like a glider . After a successful landing,
11808-451: The same thermodynamic state; e.g., pressure and temperature. Frozen gas can be a significant issue in the wake behind an entry vehicle. During reentry, free stream air is compressed to high temperature and pressure by the entry vehicle's shock wave. Non-equilibrium air in the shock layer is then transported past the entry vehicle's leading side into a region of rapidly expanding flow that causes freezing. The frozen air can then be entrained into
11931-430: The shock layer between the shock wave and leading edge of an entry vehicle is chemically reacting and not in a state of equilibrium. The Fay–Riddell equation , which is of extreme importance towards modeling heat flux, owes its validity to the stagnation point being in chemical equilibrium. The time required for the shock layer gas to reach equilibrium is strongly dependent upon the shock layer's pressure. For example, in
12054-447: The shock layer contains a significant amount of ionized nitrogen and oxygen. The five-species model is no longer accurate and a twelve-species model must be used instead. Atmospheric entry interface velocities on a Mars–Earth trajectory are on the order of 12 km/s (43,000 km/h; 27,000 mph). Modeling high-speed Mars atmospheric entry—which involves a carbon dioxide, nitrogen and argon atmosphere—is even more complex requiring
12177-540: The shock layer thus making it optically opaque. Radiative heat flux blockage was the primary thermal protection mechanism of the Galileo Probe TPS material (carbon phenolic). Early research on ablation technology in the USA was centered at NASA 's Ames Research Center located at Moffett Field , California. Ames Research Center was ideal, since it had numerous wind tunnels capable of generating varying wind velocities. Initial experiments typically mounted
12300-399: The shock wave dissociating ambient atmospheric gas followed by recombination within the shock layer into new molecular species. The newly formed diatomic molecules initially have a very high vibrational temperature that efficiently transforms the vibrational energy into radiant energy ; i.e., radiative heat flux. The whole process takes place in less than a millisecond which makes modelling
12423-463: The size of the rocket relative to the payload is similar to an Intercontinental Ballistic Missile (ICBM). Any intercontinental spaceflight has to surmount problems of heating during atmospheric re-entry that are nearly as large as those faced by orbital spaceflight. A minimal orbital spaceflight requires much higher velocities than a minimal sub-orbital flight, and so it is technologically much more challenging to achieve. To achieve orbital spaceflight,
12546-408: The space shuttle are designed to slow down at high altitude so that they can use reuseable TPS. (see: Space Shuttle thermal protection system ). Thermal protection systems are tested in high enthalpy ground testing or plasma wind tunnels that reproduce the combination of high enthalpy and high stagnation pressure using Induction plasma or DC plasma. The ablative heat shield functions by lifting
12669-640: The spacecraft, its occupants, and cargo can be recovered. In some cases, recovery has occurred before landing: while a spacecraft is still descending on its parachute, it can be snagged by a specially designed aircraft. This mid-air retrieval technique was used to recover the film canisters from the Corona spy satellites. Uncrewed spacecraft or robotic spacecraft are spacecraft without people on board. Uncrewed spacecraft may have varying levels of autonomy from human input, such as remote control , or remote guidance. They may also be autonomous , in which they have
12792-471: The spherical section geometry in crewed capsules are Soyuz / Zond , Gemini , and Mercury . Even these small amounts of lift allow trajectories that have very significant effects on peak g-force , reducing it from 8–9 g for a purely ballistic (slowed only by drag) trajectory to 4–5 g, as well as greatly reducing the peak reentry heat. The sphere-cone is a spherical section with a frustum or blunted cone attached. The sphere-cone's dynamic stability
12915-483: The spherical section was amenable to closed-form analysis, that geometry became the default for conservative design. Consequently, crewed capsules of that era were based upon the spherical section. Pure spherical entry vehicles were used in the early Soviet Vostok and Voskhod capsules and in Soviet Mars and Venera descent vehicles. The Apollo command module used a spherical section forebody heat shield with
13038-610: The tangential velocity around the Earth is as important as altitude. In order to perform a stable and lasting flight in space, the spacecraft must reach the minimal orbital speed required for a closed orbit . Interplanetary spaceflight is flight between planets within a single planetary system . In practice, the use of the term is confined to travel between the planets of our Solar System . Plans for future crewed interplanetary spaceflight missions often include final vehicle assembly in Earth orbit, such as NASA's Constellation program and Russia's Kliper / Parom tandem. New Horizons
13161-411: The total amount of energy imparted by a rocket stage to its payload. This can be the energy imparted by a first stage of a launch vehicle to an upper stage plus payload, or by an upper stage or spacecraft kick motor to a spacecraft . In order to reach a space station , a spacecraft would have to arrive at the same orbit and approach to a very close distance (e.g. within visual contact). This
13284-460: The use of some new, advanced method of propulsion . Dynamic soaring as a way to travel across interstellar space has been proposed as well. Intergalactic travel involves spaceflight between galaxies, and is considered much more technologically demanding than even interstellar travel and, by current engineering terms, is considered science fiction . However, theoretically speaking, there is nothing to conclusively indicate that intergalactic travel
13407-413: The vehicle is to land safely without vaporizing in the atmosphere. Typically this process requires special methods to protect against aerodynamic heating . The theory behind reentry was developed by Harry Julian Allen . Based on this theory, reentry vehicles present blunt shapes to the atmosphere for reentry. Blunt shapes mean that less than 1% of the kinetic energy ends up as heat reaching the vehicle, and
13530-515: The vehicle using ground stations . Personnel supporting the mission from an MCC can include representatives of the attitude control system , power , propulsion , thermal, attitude dynamics , orbital operations and other subsystem disciplines. The training for these missions usually falls under the responsibility of the flight controllers, typically including extensive rehearsals in the MCC. United States missions are, prior to liftoff, controlled from
13653-460: The vehicle's mass and increase its delta-v . Launch systems are used to carry a payload from Earth's surface into outer space. Most current spaceflight uses multi-stage expendable launch systems to reach space. The first reusable spacecraft, the X-15 , was air-launched on a suborbital trajectory on 19 July 1963. The first partially reusable orbital spacecraft, the Space Shuttle , was launched by
13776-455: The vehicle, the heat energy would stay in the shocked gas and simply move around the vehicle to later dissipate into the atmosphere. The Allen and Eggers discovery, though initially treated as a military secret, was eventually published in 1958. When atmospheric entry is part of a spacecraft landing or recovery, particularly on a planetary body other than Earth, entry is part of a phase referred to as entry, descent, and landing , or EDL. When
13899-453: Was Sputnik , launched October 4, 1957 to orbit the Earth. Nearly all satellites , landers and rovers are robotic spacecraft. Not every uncrewed spacecraft is a robotic spacecraft; for example, a reflector ball is a non-robotic uncrewed spacecraft. Space missions where other animals but no humans are on-board are called uncrewed missions. The first human spaceflight was Vostok 1 on April 12, 1961, on which cosmonaut Yuri Gagarin of
14022-402: Was 21 W/cm . For Viking 1 , the TPS acted as a charred thermal insulator and never experienced significant ablation. Viking 1 was the first Mars lander and based upon a very conservative design. The Viking aeroshell had a base diameter of 3.54 meters (the largest used on Mars until Mars Science Laboratory). SLA-561V is applied by packing the ablative material into a honeycomb core that
14145-480: Was NASA's first space probe intended to reach the Moon. A partial failure caused it to instead follow a suborbital trajectory to an altitude of 113,854 kilometers (70,746 mi) before reentering the Earth's atmosphere 43 hours after launch. The most generally recognized boundary of space is the Kármán line 100 km (62 mi) above sea level. (NASA alternatively defines an astronaut as someone who has flown more than 80 km (50 mi) above sea level.) It
14268-418: Was controlled through a split body flap (also called a split-windward flap ) along with two yaw flaps mounted on the vehicle's sides. Hydraulic actuation was used for controlling the flaps. AMaRV was guided by a fully autonomous navigation system designed for evading anti-ballistic missile (ABM) interception. The McDonnell Douglas DC-X (also a biconic) was essentially a scaled-up version of AMaRV. AMaRV and
14391-657: Was developed by SpaceX in 2006–2010 for the Dragon space capsule . The first reentry test of a PICA-X heat shield was on the Dragon C1 mission on 8 December 2010. The PICA-X heat shield was designed, developed and fully qualified by a small team of a dozen engineers and technicians in less than four years. PICA-X is ten times less expensive to manufacture than the NASA PICA heat shield material. A second enhanced version of PICA—called PICA-3—was developed by SpaceX during
14514-544: Was just sufficiently understood to ensure Apollo's success. However, radiative heat flux in carbon dioxide (Mars entry) is still barely understood and will require major research. The frozen gas model describes a special case of a gas that is not in equilibrium. The name "frozen gas" can be misleading. A frozen gas is not "frozen" like ice is frozen water. Rather a frozen gas is "frozen" in time (all chemical reactions are assumed to have stopped). Chemical reactions are normally driven by collisions between molecules. If gas pressure
14637-498: Was possible. However, the Mk-6 was a huge RV with an entry mass of 3,360 kg, a length of 3.1 m and a half-angle of 12.5°. Subsequent advances in nuclear weapon and ablative TPS design allowed RVs to become significantly smaller with a further reduced bluntness ratio compared to the Mk-6. Since the 1960s, the sphere-cone has become the preferred geometry for modern ICBM RVs with typical half-angles being between 10° and 11°. Reconnaissance satellite RVs (recovery vehicles) also used
14760-663: Was published by Scottish astronomer and mathematician William Leitch , in an 1861 essay "A Journey Through Space". More well-known is Konstantin Tsiolkovsky 's work, " Исследование мировых пространств реактивными приборами " ( The Exploration of Cosmic Space by Means of Reaction Devices ), published in 1903. In his work, Tsiolkovsky describes the fundamental rocket equation: Δ v = v e ln m 0 m f {\displaystyle \Delta v=v_{e}\ln {\frac {m_{0}}{m_{f}}}} Where: This equation, known as
14883-630: Was the Columbia , followed by the Challenger , Discovery , Atlantis , and Endeavour . The Endeavour was built to replace the Challenger , which was lost in January 1986. The Columbia broke up during reentry in February 2003. Deorbit Atmospheric entry (sometimes listed as V impact or V entry ) is the movement of an object from outer space into and through
15006-604: Was the Mk-2 RV (reentry vehicle), which was developed in 1955 by the General Electric Corp. The Mk-2's design was derived from blunt-body theory and used a radiatively cooled thermal protection system (TPS) based upon a metallic heat shield (the different TPS types are later described in this article). The Mk-2 had significant defects as a weapon delivery system, i.e., it loitered too long in the upper atmosphere due to its lower ballistic coefficient and also trailed
15129-483: Was written by Bonnie J. McBride and Sanford Gordon at NASA Lewis (now renamed "NASA Glenn Research Center"). Other names for CEA are the "Gordon and McBride Code" and the "Lewis Code". CEA is quite accurate up to 10,000 K for planetary atmospheric gases, but unusable beyond 20,000 K ( double ionization is not modelled). CEA can be downloaded from the Internet along with full documentation and will compile on Linux under
#755244