Misplaced Pages

National Center for Atmospheric Research

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The US National Center for Atmospheric Research ( NCAR / ˈ ɛ n k ɑːr / ) is a US federally funded research and development center (FFRDC) managed by the nonprofit University Corporation for Atmospheric Research (UCAR) and funded by the National Science Foundation (NSF). NCAR has multiple facilities, including the I. M. Pei -designed Mesa Laboratory headquarters in Boulder, Colorado . Studies include meteorology , climate science , atmospheric chemistry , solar-terrestrial interactions, environmental and societal impacts.

#549450

125-661: NCAR was instrumental in developing lidar , light radar, now a key archaeological tool, as well as providing a broad array of tools and technologies to the scientific community for studying Earth's atmosphere , including, The center is staffed by scientists, engineers, technicians, and support personnel. Key research areas include: Notable scientists on the current staff at the center include Tom Wigley , Kevin Trenberth , Clara Deser , and Caspar Ammann, and in past have included Paul Crutzen (Nobel Prize in chemistry, 1995); Paul Julian , who with colleague Roland Madden discovered

250-417: A time-of-flight camera is used to collect information about both the 3-D location and intensity of the light incident on it in every frame. However, in scanning lidar, this camera contains only a point sensor, while in flash lidar, the camera contains either a 1-D or a 2-D sensor array , each pixel of which collects 3-D location and intensity information. In both cases, the depth information is collected using

375-522: A Martian solar day ( sol ) is equal to 24.6 hours, and a Martian solar year is equal to 1.88 Earth years (687 Earth days). Mars has two natural satellites that are small and irregular in shape: Phobos and Deimos . The relatively flat plains in northern parts of Mars strongly contrast with the cratered terrain in southern highlands – this terrain observation is known as the Martian dichotomy . Mars hosts many enormous extinct volcanoes (the tallest

500-489: A classical albedo feature it contains. In April 2023, The New York Times reported an updated global map of Mars based on images from the Hope spacecraft . A related, but much more detailed, global Mars map was released by NASA on 16 April 2023. The vast upland region Tharsis contains several massive volcanoes, which include the shield volcano Olympus Mons . The edifice is over 600 km (370 mi) wide. Because

625-399: A combination with a polygon mirror, and a dual axis scanner . Optic choices affect the angular resolution and range that can be detected. A hole mirror or a beam splitter are options to collect a return signal. Two main photodetector technologies are used in lidar: solid state photodetectors, such as silicon avalanche photodiodes , or photomultipliers . The sensitivity of the receiver

750-423: A different principle described in a Flash Lidar below. Microelectromechanical mirrors (MEMS) are not entirely solid-state. However, their tiny form factor provides many of the same cost benefits. A single laser is directed to a single mirror that can be reoriented to view any part of the target field. The mirror spins at a rapid rate. However, MEMS systems generally operate in a single plane (left to right). To add

875-738: A distance requires a powerful burst of light. The power is limited to levels that do not damage human retinas. Wavelengths must not affect human eyes. However, low-cost silicon imagers do not read light in the eye-safe spectrum. Instead, gallium-arsenide imagers are required, which can boost costs to $ 200,000. Gallium-arsenide is the same compound used to produce high-cost, high-efficiency solar panels usually used in space applications. Lidar can be oriented to nadir , zenith , or laterally. For example, lidar altimeters look down, an atmospheric lidar looks up, and lidar-based collision avoidance systems are side-looking. Laser projections of lidars can be manipulated using various methods and mechanisms to produce

1000-416: A few peak returns, while more recent systems acquire and digitize the entire reflected signal. Scientists analysed the waveform signal for extracting peak returns using Gaussian decomposition . Zhuang et al, 2017 used this approach for estimating aboveground biomass. Handling the huge amounts of full-waveform data is difficult. Therefore, Gaussian decomposition of the waveforms is effective, since it reduces

1125-422: A global magnetic field, the types and distribution of auroras there differ from those on Earth; rather than being mostly restricted to polar regions as is the case on Earth, a Martian aurora can encompass the planet. In September 2017, NASA reported radiation levels on the surface of the planet Mars were temporarily doubled , and were associated with an aurora 25 times brighter than any observed earlier, due to

1250-550: A green spectrum (532 nm) laser beam. Two beams are projected onto a fast rotating mirror, which creates an array of points. One of the beams penetrates the water and also detects the bottom surface of the water under favorable conditions. Water depth measurable by lidar depends on the clarity of the water and the absorption of the wavelength used. Water is most transparent to green and blue light, so these will penetrate deepest in clean water. Blue-green light of 532 nm produced by frequency doubled solid-state IR laser output

1375-488: A high ratio of deuterium in Gale Crater , though not significantly high enough to suggest the former presence of an ocean. Other scientists caution that these results have not been confirmed, and point out that Martian climate models have not yet shown that the planet was warm enough in the past to support bodies of liquid water. Near the northern polar cap is the 81.4 kilometres (50.6 mi) wide Korolev Crater , which

SECTION 10

#1732780252550

1500-490: A low of 30  Pa (0.0044  psi ) on Olympus Mons to over 1,155 Pa (0.1675 psi) in Hellas Planitia , with a mean pressure at the surface level of 600 Pa (0.087 psi). The highest atmospheric density on Mars is equal to that found 35 kilometres (22 mi) above Earth's surface. The resulting mean surface pressure is only 0.6% of Earth's 101.3 kPa (14.69 psi). The scale height of

1625-442: A massive, and unexpected, solar storm in the middle of the month. Mars has seasons, alternating between its northern and southern hemispheres, similar to on Earth. Additionally the orbit of Mars has, compared to Earth's, a large eccentricity and approaches perihelion when it is summer in its southern hemisphere and winter in its northern, and aphelion when it is winter in its southern hemisphere and summer in its northern. As

1750-410: A microscopic array of individual antennas. Controlling the timing (phase) of each antenna steers a cohesive signal in a specific direction. Phased arrays have been used in radar since the 1940s. On the order of a million optical antennas are used to see a radiation pattern of a certain size in a certain direction. To achieve this the phase of each individual antenna (emitter) are precisely controlled. It

1875-542: A minimum thickness of 6 kilometres (3.7 mi) in Isidis Planitia , and a maximum thickness of 117 kilometres (73 mi) in the southern Tharsis plateau. For comparison, Earth's crust averages 27.3 ± 4.8 km in thickness. The most abundant elements in the Martian crust are silicon , oxygen , iron , magnesium , aluminium , calcium , and potassium . Mars is confirmed to be seismically active; in 2019 it

2000-413: A moving vehicle to collect data along a path. These scanners are almost always paired with other kinds of equipment, including GNSS receivers and IMUs . One example application is surveying streets, where power lines, exact bridge heights, bordering trees, etc. all need to be taken into account. Instead of collecting each of these measurements individually in the field with a tachymeter , a 3-D model from

2125-513: A new imaging chip with more than 16,384 pixels, each able to image a single photon, enabling them to capture a wide area in a single image. An earlier generation of the technology with one fourth as many pixels was dispatched by the U.S. military after the January 2010 Haiti earthquake. A single pass by a business jet at 3,000 m (10,000 ft) over Port-au-Prince was able to capture instantaneous snapshots of 600 m (2,000 ft) squares of

2250-431: A point cloud can be created where all of the measurements needed can be made, depending on the quality of the data collected. This eliminates the problem of forgetting to take a measurement, so long as the model is available, reliable and has an appropriate level of accuracy. Terrestrial lidar mapping involves a process of occupancy grid map generation . The process involves an array of cells divided into grids which employ

2375-407: A process to store the height values when lidar data falls into the respective grid cell. A binary map is then created by applying a particular threshold to the cell values for further processing. The next step is to process the radial distance and z-coordinates from each scan to identify which 3-D points correspond to each of the specified grid cell leading to the process of data formation. There are

2500-473: A record of erosion caused by the catastrophic release of water from subsurface aquifers, though some of these structures have been hypothesized to result from the action of glaciers or lava. One of the larger examples, Ma'adim Vallis , is 700 kilometres (430 mi) long, much greater than the Grand Canyon, with a width of 20 kilometres (12 mi) and a depth of 2 kilometres (1.2 mi) in places. It

2625-588: A remnant of that ring. The geological history of Mars can be split into many periods, but the following are the three primary periods: Geological activity is still taking place on Mars. The Athabasca Valles is home to sheet-like lava flows created about 200 million years ago. Water flows in the grabens called the Cerberus Fossae occurred less than 20 million years ago, indicating equally recent volcanic intrusions. The Mars Reconnaissance Orbiter has captured images of avalanches. Mars

SECTION 20

#1732780252550

2750-460: A result, the seasons in its southern hemisphere are more extreme and the seasons in its northern are milder than would otherwise be the case. The summer temperatures in the south can be warmer than the equivalent summer temperatures in the north by up to 30 °C (54 °F). Martian surface temperatures vary from lows of about −110 °C (−166 °F) to highs of up to 35 °C (95 °F) in equatorial summer. The wide range in temperatures

2875-490: A scanning effect: the standard spindle-type, which spins to give a 360-degree view; solid-state lidar, which has a fixed field of view, but no moving parts, and can use either MEMS or optical phased arrays to steer the beams; and flash lidar, which spreads a flash of light over a large field of view before the signal bounces back to a detector. Lidar applications can be divided into airborne and terrestrial types. The two types require scanners with varying specifications based on

3000-400: A second dimension generally requires a second mirror that moves up and down. Alternatively, another laser can hit the same mirror from another angle. MEMS systems can be disrupted by shock/vibration and may require repeated calibration. Image development speed is affected by the speed at which they are scanned. Options to scan the azimuth and elevation include dual oscillating plane mirrors,

3125-471: A small crater (later called Airy-0 ), located in the Sinus Meridiani ("Middle Bay" or "Meridian Bay"), was chosen by Merton E. Davies , Harold Masursky , and Gérard de Vaucouleurs for the definition of 0.0° longitude to coincide with the original selection. Because Mars has no oceans, and hence no " sea level ", a zero-elevation surface had to be selected as a reference level; this is called

3250-504: A stand-alone word in 1963 suggests that it originated as a portmanteau of " light " and "radar": "Eventually the laser may provide an extremely sensitive detector of particular wavelengths from distant objects. Meanwhile, it is being used to study the Moon by 'lidar' (light radar) ..." The name " photonic radar " is sometimes used to mean visible-spectrum range finding like lidar. Lidar's first applications were in meteorology, for which

3375-481: A storm over a small area, to gigantic storms that cover the entire planet. They tend to occur when Mars is closest to the Sun, and have been shown to increase global temperature. Seasons also produce dry ice covering polar ice caps . Large areas of the polar regions of Mars While Mars contains water in larger amounts , most of it is dust covered water ice at the Martian polar ice caps . The volume of water ice in

3500-491: A very thick lithosphere compared to Earth. Below this the mantle gradually becomes more ductile, and the seismic wave velocity starts to grow again. The Martian mantle does not appear to have a thermally insulating layer analogous to Earth's lower mantle ; instead, below 1050 km in depth, it becomes mineralogically similar to Earth's transition zone . At the bottom of the mantle lies a basal liquid silicate layer approximately 150–180 km thick. Mars's iron and nickel core

3625-440: A wide range of materials, including non-metallic objects, rocks, rain, chemical compounds, aerosols , clouds and even single molecules . A narrow laser beam can map physical features with very high resolutions ; for example, an aircraft can map terrain at 30-centimetre (12 in) resolution or better. The essential concept of lidar was originated by E. H. Synge in 1930, who envisaged the use of powerful searchlights to probe

3750-544: A wide variety of lidar applications, in addition to the applications listed below, as it is often mentioned in National lidar dataset programs. These applications are largely determined by the range of effective object detection; resolution, which is how accurately the lidar identifies and classifies objects; and reflectance confusion, meaning how well the lidar can see something in the presence of bright objects, like reflective signs or bright sun. Companies are working to cut

3875-471: A year, there are large surface temperature swings on the surface between −78.5 °C (−109.3 °F) to 5.7 °C (42.3 °F) similar to Earth's seasons , as both planets have significant axial tilt . Mars was formed approximately 4.5 billion years ago. During the Noachian period (4.5 to 3.5 billion years ago), Mars's surface was marked by meteor impacts , valley formation, erosion, and

National Center for Atmospheric Research - Misplaced Pages Continue

4000-537: Is Olympus Mons , 21.9 km or 13.6 mi tall) and one of the largest canyons in the Solar System ( Valles Marineris , 4,000 km or 2,500 mi long). Geologically , the planet is fairly active with marsquakes trembling underneath the ground, dust devils sweeping across the landscape, and cirrus clouds . Carbon dioxide is substantially present in Mars's polar ice caps and thin atmosphere . During

4125-452: Is Syrtis Major Planum . The permanent northern polar ice cap is named Planum Boreum . The southern cap is called Planum Australe . Mars's equator is defined by its rotation, but the location of its Prime Meridian was specified, as was Earth's (at Greenwich ), by choice of an arbitrary point; Mädler and Beer selected a line for their first maps of Mars in 1830. After the spacecraft Mariner 9 provided extensive imagery of Mars in 1972,

4250-636: Is a case study that used the voxelisation approach for detecting dead standing Eucalypt trees in Australia. Terrestrial applications of lidar (also terrestrial laser scanning ) happen on the Earth's surface and can be either stationary or mobile. Stationary terrestrial scanning is most common as a survey method, for example in conventional topography, monitoring, cultural heritage documentation and forensics. The 3-D point clouds acquired from these types of scanners can be matched with digital images taken of

4375-406: Is a light albedo feature clearly visible from Earth. There are other notable impact features, such as Argyre , which is around 1,800 kilometres (1,100 mi) in diameter, and Isidis , which is around 1,500 kilometres (930 mi) in diameter. Due to the smaller mass and size of Mars, the probability of an object colliding with the planet is about half that of Earth. Mars is located closer to

4500-454: Is a method for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. Lidar may operate in a fixed direction (e.g., vertical) or it may scan multiple directions, in which case it is known as lidar scanning or 3D laser scanning , a special combination of 3-D scanning and laser scanning . Lidar has terrestrial, airborne, and mobile applications. Lidar

4625-447: Is another parameter that has to be balanced in a lidar design. Lidar sensors mounted on mobile platforms such as airplanes or satellites require instrumentation to determine the absolute position and orientation of the sensor. Such devices generally include a Global Positioning System receiver and an inertial measurement unit (IMU). Lidar uses active sensors that supply their own illumination source. The energy source hits objects and

4750-432: Is approximately half the diameter of Earth, with a surface area only slightly less than the total area of Earth's dry land. Mars is less dense than Earth, having about 15% of Earth's volume and 11% of Earth's mass , resulting in about 38% of Earth's surface gravity . Mars is the only presently known example of a desert planet , a rocky planet with a surface akin to that of Earth's hot deserts . The red-orange appearance of

4875-438: Is commonly used to make high-resolution maps, with applications in surveying , geodesy , geomatics , archaeology , geography , geology , geomorphology , seismology , forestry , atmospheric physics , laser guidance , airborne laser swathe mapping (ALSM), and laser altimetry . It is used to make digital 3-D representations of areas on the Earth's surface and ocean bottom of the intertidal and near coastal zone by varying

5000-766: Is completely molten, with no solid inner core. It is around half of Mars's radius, approximately 1650–1675 km, and is enriched in light elements such as sulfur , oxygen, carbon , and hydrogen . Mars is a terrestrial planet with a surface that consists of minerals containing silicon and oxygen, metals , and other elements that typically make up rock . The Martian surface is primarily composed of tholeiitic basalt , although parts are more silica -rich than typical basalt and may be similar to andesitic rocks on Earth, or silica glass. Regions of low albedo suggest concentrations of plagioclase feldspar , with northern low albedo regions displaying higher than normal concentrations of sheet silicates and high-silicon glass. Parts of

5125-429: Is divided into two kinds of areas, with differing albedo. The paler plains covered with dust and sand rich in reddish iron oxides were once thought of as Martian "continents" and given names like Arabia Terra ( land of Arabia ) or Amazonis Planitia ( Amazonian plain ). The dark features were thought to be seas, hence their names Mare Erythraeum , Mare Sirenum and Aurorae Sinus . The largest dark feature seen from Earth

National Center for Atmospheric Research - Misplaced Pages Continue

5250-426: Is due to the thin atmosphere which cannot store much solar heat, the low atmospheric pressure (about 1% that of the atmosphere of Earth ), and the low thermal inertia of Martian soil. The planet is 1.52 times as far from the Sun as Earth, resulting in just 43% of the amount of sunlight. Mars has the largest dust storms in the Solar System, reaching speeds of over 160 km/h (100 mph). These can vary from

5375-460: Is for the green laser light to penetrate water about one and a half to two times Secchi depth in Indonesian waters. Water temperature and salinity have an effect on the refractive index which has a small effect on the depth calculation. The data obtained shows the full extent of the land surface exposed above the sea floor. This technique is extremely useful as it will play an important role in

5500-418: Is not visible in night vision goggles , unlike the shorter 1,000 nm infrared laser. Airborne topographic mapping lidars generally use 1,064 nm diode-pumped YAG lasers, while bathymetric (underwater depth research) systems generally use 532 nm frequency-doubled diode pumped YAG lasers because 532 nm penetrates water with much less attenuation than 1,064 nm. Laser settings include

5625-559: Is open to the public daily at no charge. Guided tours and self-guided tablet tours include video and audio on one of the first supercomputers built by Seymour Cray as well as NCAR's modern supercomputer fleet, many hands-on educational exhibits demonstrating weather phenomena and the changes in Earth's climate brought on by global warming, and a scenic outdoor weather trail. Lidar Lidar ( / ˈ l aɪ d ɑːr / , also LIDAR , LiDAR or LADAR , an acronym of "light detection and ranging" or "laser imaging, detection, and ranging" )

5750-556: Is orange-red because it is covered in iron(III) oxide dust, giving it the nickname " the Red Planet ". Mars is among the brightest objects in Earth's sky , and its high-contrast albedo features have made it a common subject for telescope viewing. It is classified as a terrestrial planet and is the second smallest of the Solar System 's planets with a diameter of 6,779 km (4,212 mi). In terms of orbital motion,

5875-448: Is processed using a toolbox called Toolbox for Lidar Data Filtering and Forest Studies (TIFFS) for lidar data filtering and terrain study software. The data is interpolated to digital terrain models using the software. The laser is directed at the region to be mapped and each point's height above the ground is calculated by subtracting the original z-coordinate from the corresponding digital terrain model elevation. Based on this height above

6000-519: Is striking: northern plains flattened by lava flows contrast with the southern highlands, pitted and cratered by ancient impacts. It is possible that, four billion years ago, the Northern Hemisphere of Mars was struck by an object one-tenth to two-thirds the size of Earth's Moon . If this is the case, the Northern Hemisphere of Mars would be the site of an impact crater 10,600 by 8,500 kilometres (6,600 by 5,300 mi) in size, or roughly

6125-708: Is the ability to filter out reflections from vegetation from the point cloud model to create a digital terrain model which represents ground surfaces such as rivers, paths, cultural heritage sites, etc., which are concealed by trees. Within the category of airborne lidar, there is sometimes a distinction made between high-altitude and low-altitude applications, but the main difference is a reduction in both accuracy and point density of data acquired at higher altitudes. Airborne lidar can also be used to create bathymetric models in shallow water. The main constituents of airborne lidar include digital elevation models (DEM) and digital surface models (DSM). The points and ground points are

6250-417: Is the standard for airborne bathymetry. This light can penetrate water but pulse strength attenuates exponentially with distance traveled through the water. Lidar can measure depths from about 0.9 to 40 m (3 to 131 ft), with vertical accuracy in the order of 15 cm (6 in). The surface reflection makes water shallower than about 0.9 m (3 ft) difficult to resolve, and absorption limits

6375-606: Is thought to have been carved by flowing water early in Mars's history. The youngest of these channels is thought to have formed only a few million years ago. Elsewhere, particularly on the oldest areas of the Martian surface, finer-scale, dendritic networks of valleys are spread across significant proportions of the landscape. Features of these valleys and their distribution strongly imply that they were carved by runoff resulting from precipitation in early Mars history. Subsurface water flow and groundwater sapping may play important subsidiary roles in some networks, but precipitation

SECTION 50

#1732780252550

6500-476: Is very difficult, if possible at all, to use the same technique in a lidar. The main problems are that all individual emitters must be coherent (technically coming from the same "master" oscillator or laser source), have dimensions about the wavelength of the emitted light (1 micron range) to act as a point source with their phases being controlled with high accuracy. Several companies are working on developing commercial solid-state lidar units but these units utilize

6625-550: The areoid of Mars, analogous to the terrestrial geoid . Zero altitude was defined by the height at which there is 610.5  Pa (6.105  mbar ) of atmospheric pressure. This pressure corresponds to the triple point of water, and it is about 0.6% of the sea level surface pressure on Earth (0.006 atm). For mapping purposes, the United States Geological Survey divides the surface of Mars into thirty cartographic quadrangles , each named for

6750-521: The Hughes Aircraft Company introduced the first lidar-like system in 1961, shortly after the invention of the laser. Intended for satellite tracking, this system combined laser-focused imaging with the ability to calculate distances by measuring the time for a signal to return using appropriate sensors and data acquisition electronics. It was originally called "Colidar" an acronym for "coherent light detecting and ranging", derived from

6875-545: The Madden–Julian oscillation ; Stephen Schneider . Greg Holland initiated the multiscale modeling project "Predicting the Earth System Across Scales". NCAR is currently organized into seven laboratories and two programs: Laboratories Programs NCAR's service to the universities and larger geosciences community is reinforced by the offerings of UCAR's community programs . NCAR is managed by

7000-646: The National Center for Atmospheric Research used it to measure clouds and pollution. The general public became aware of the accuracy and usefulness of lidar systems in 1971 during the Apollo ;15 mission, when astronauts used a laser altimeter to map the surface of the Moon. Although the English language no longer treats "radar" as an acronym, (i.e., uncapitalized), the word "lidar" was capitalized as "LIDAR" or "LiDAR" in some publications beginning in

7125-656: The Yellowknife Bay area in the Glenelg terrain. In September 2015, NASA announced that they had found strong evidence of hydrated brine flows in recurring slope lineae , based on spectrometer readings of the darkened areas of slopes. These streaks flow downhill in Martian summer, when the temperature is above −23 °C, and freeze at lower temperatures. These observations supported earlier hypotheses, based on timing of formation and their rate of growth, that these dark streaks resulted from water flowing just below

7250-415: The asteroid belt , so it has an increased chance of being struck by materials from that source. Mars is more likely to be struck by short-period comets , i.e. , those that lie within the orbit of Jupiter . Martian craters can have a morphology that suggests the ground became wet after the meteor impact. The large canyon, Valles Marineris (Latin for " Mariner Valleys", also known as Agathodaemon in

7375-469: The possible presence of water oceans . The Hesperian period (3.5 to 3.3–2.9 billion years ago) was dominated by widespread volcanic activity and flooding that carved immense outflow channels . The Amazonian period, which continues to the present, has been marked by the wind as a dominant influence on geological processes . Due to Mars's geological history, the possibility of past or present life on Mars remains of great scientific interest. Since

7500-416: The time of flight of the laser pulse (i.e., the time it takes each laser pulse to hit the target and return to the sensor), which requires the pulsing of the laser and acquisition by the camera to be synchronized. The result is a camera that takes pictures of distance, instead of colors. Flash lidar is especially advantageous, when compared to scanning lidar, when the camera, scene, or both are moving, since

7625-506: The 1980s. No consensus exists on capitalization. Various publications refer to lidar as "LIDAR", "LiDAR", "LIDaR", or "Lidar". The USGS uses both "LIDAR" and "lidar", sometimes in the same document; the New York Times predominantly uses "lidar" for staff-written articles, although contributing news feeds such as Reuters may use Lidar. Lidar uses ultraviolet , visible , or near infrared light to image objects. It can target

SECTION 60

#1732780252550

7750-524: The 2020s no such mission is planned. Scientists have theorized that during the Solar System's formation , Mars was created as the result of a random process of run-away accretion of material from the protoplanetary disk that orbited the Sun. Mars has many distinctive chemical features caused by its position in the Solar System. Elements with comparatively low boiling points, such as chlorine , phosphorus , and sulfur , are much more common on Mars than on Earth; these elements were probably pushed outward by

7875-540: The Late Heavy Bombardment. There is evidence of an enormous impact basin in the Northern Hemisphere of Mars, spanning 10,600 by 8,500 kilometres (6,600 by 5,300 mi), or roughly four times the size of the Moon's South Pole–Aitken basin , which would be the largest impact basin yet discovered if confirmed. It has been hypothesized that the basin was formed when Mars was struck by a Pluto -sized body about four billion years ago. The event, thought to be

8000-478: The Martian ionosphere , lowering the atmospheric density by stripping away atoms from the outer layer. Both Mars Global Surveyor and Mars Express have detected ionized atmospheric particles trailing off into space behind Mars, and this atmospheric loss is being studied by the MAVEN orbiter. Compared to Earth, the atmosphere of Mars is quite rarefied. Atmospheric pressure on the surface today ranges from

8125-538: The Martian sky a tawny color when seen from the surface. It may take on a pink hue due to iron oxide particles suspended in it. The concentration of methane in the Martian atmosphere fluctuates from about 0.24 ppb during the northern winter to about 0.65 ppb during the summer. Estimates of its lifetime range from 0.6 to 4 years, so its presence indicates that an active source of the gas must be present. Methane could be produced by non-biological process such as serpentinization involving water, carbon dioxide, and

8250-415: The Martian surface is caused by ferric oxide , or rust . It can look like butterscotch ; other common surface colors include golden, brown, tan, and greenish, depending on the minerals present. Like Earth, Mars is differentiated into a dense metallic core overlaid by less dense rocky layers. The outermost layer is the crust, which is on average about 42–56 kilometres (26–35 mi) thick, with

8375-542: The Moon, Johann Heinrich von Mädler and Wilhelm Beer were the first areographers. They began by establishing that most of Mars's surface features were permanent and by more precisely determining the planet's rotation period. In 1840, Mädler combined ten years of observations and drew the first map of Mars. Features on Mars are named from a variety of sources. Albedo features are named for classical mythology. Craters larger than roughly 50 km are named for deceased scientists and writers and others who have contributed to

8500-462: The area of Europe, Asia, and Australia combined, surpassing Utopia Planitia and the Moon's South Pole–Aitken basin as the largest impact crater in the Solar System. Mars is scarred by a number of impact craters: a total of 43,000 observed craters with a diameter of 5 kilometres (3.1 mi) or greater have been found. The largest exposed crater is Hellas , which is 2,300 kilometres (1,400 mi) wide and 7,000 metres (23,000 ft) deep, and

8625-419: The atmosphere is about 10.8 kilometres (6.7 mi), which is higher than Earth's 6 kilometres (3.7 mi), because the surface gravity of Mars is only about 38% of Earth's. The atmosphere of Mars consists of about 96% carbon dioxide , 1.93% argon and 1.89% nitrogen along with traces of oxygen and water. The atmosphere is quite dusty, containing particulates about 1.5 μm in diameter which give

8750-406: The atmosphere is small, but enough to produce larger clouds of water ice and different cases of snow and frost , often mixed with snow of carbon dioxide dry ice . Landforms visible on Mars strongly suggest that liquid water has existed on the planet's surface. Huge linear swathes of scoured ground, known as outflow channels , cut across the surface in about 25 places. These are thought to be

8875-489: The atmosphere. Indeed, lidar has since been used extensively for atmospheric research and meteorology . Lidar instruments fitted to aircraft and satellites carry out surveying and mapping – a recent example being the U.S. Geological Survey Experimental Advanced Airborne Research Lidar. NASA has identified lidar as a key technology for enabling autonomous precision safe landing of future robotic and crewed lunar-landing vehicles. Wavelengths vary to suit

9000-467: The broken fragments of "Tintina" rock and "Sutton Inlier" rock as well as in veins and nodules in other rocks like "Knorr" rock and "Wernicke" rock . Analysis using the rover's DAN instrument provided evidence of subsurface water, amounting to as much as 4% water content, down to a depth of 60 centimetres (24 in), during the rover's traverse from the Bradbury Landing site to

9125-831: The captured frames do not need to be stitched together, and the system is not sensitive to platform motion. This results in less distortion. 3-D imaging can be achieved using both scanning and non-scanning systems. "3-D gated viewing laser radar" is a non-scanning laser ranging system that applies a pulsed laser and a fast gated camera. Research has begun for virtual beam steering using Digital Light Processing (DLP) technology. Imaging lidar can also be performed using arrays of high speed detectors and modulation sensitive detector arrays typically built on single chips using complementary metal–oxide–semiconductor (CMOS) and hybrid CMOS/ Charge-coupled device (CCD) fabrication techniques. In these devices each pixel performs some local processing such as demodulation or gating at high speed, downconverting

9250-466: The cause of the Martian hemispheric dichotomy , created the smooth Borealis basin that covers 40% of the planet. A 2023 study shows evidence, based on the orbital inclination of Deimos (a small moon of Mars), that Mars may once have had a ring system 3.5 billion years to 4 billion years ago. This ring system may have been formed from a moon, 20 times more massive than Phobos , orbiting Mars billions of years ago; and Phobos would be

9375-420: The city at a resolution of 30 cm (1 ft), displaying the precise height of rubble strewn in city streets. The new system is ten times better, and could produce much larger maps more quickly. The chip uses indium gallium arsenide (InGaAs), which operates in the infrared spectrum at a relatively long wavelength that allows for higher power and longer ranges. In many applications, such as self-driving cars,

9500-475: The cost of lidar sensors, currently anywhere from about US$ 1,200 to more than $ 12,000. Lower prices will make lidar more attractive for new markets. Agricultural robots have been used for a variety of purposes ranging from seed and fertilizer dispersions, sensing techniques as well as crop scouting for the task of weed control . Mars Mars is the fourth planet from the Sun . The surface of Mars

9625-461: The data and is supported by existing workflows that support interpretation of 3-D point clouds . Recent studies investigated voxelisation . The intensities of the waveform samples are inserted into a voxelised space (3-D grayscale image) building up a 3-D representation of the scanned area. Related metrics and information can then be extracted from that voxelised space. Structural information can be extracted using 3-D metrics from local areas and there

9750-546: The data's purpose, the size of the area to be captured, the range of measurement desired, the cost of equipment, and more. Spaceborne platforms are also possible, see satellite laser altimetry . Airborne lidar (also airborne laser scanning ) is when a laser scanner, while attached to an aircraft during flight, creates a 3-D point cloud model of the landscape. This is currently the most detailed and accurate method of creating digital elevation models , replacing photogrammetry . One major advantage in comparison with photogrammetry

9875-458: The edges of boulders and other obstacles in their path. The commonly accepted hypotheses include that they are dark underlying layers of soil revealed after avalanches of bright dust or dust devils . Several other explanations have been put forward, including those that involve water or even the growth of organisms. Environmental radiation levels on the surface are on average 0.64 millisieverts of radiation per day, and significantly less than

10000-412: The entire field of view is illuminated with a wide diverging laser beam in a single pulse. This is in contrast to conventional scanning lidar, which uses a collimated laser beam that illuminates a single point at a time, and the beam is raster scanned to illuminate the field of view point-by-point. This illumination method requires a different detection scheme as well. In both scanning and flash lidar,

10125-408: The entire scene is illuminated at the same time. With scanning lidar, motion can cause "jitter" from the lapse in time as the laser rasters over the scene. As with all forms of lidar, the onboard source of illumination makes flash lidar an active sensor. The signal that is returned is processed by embedded algorithms to produce a nearly instantaneous 3-D rendering of objects and terrain features within

10250-514: The field of view of the sensor. The laser pulse repetition frequency is sufficient for generating 3-D videos with high resolution and accuracy. The high frame rate of the sensor makes it a useful tool for a variety of applications that benefit from real-time visualization, such as highly precise remote landing operations. By immediately returning a 3-D elevation mesh of target landscapes, a flash sensor can be used to identify optimal landing zones in autonomous spacecraft landing scenarios. Seeing at

10375-429: The flanks of the volcano Arsia Mons . The caves, named after loved ones of their discoverers, are collectively known as the "seven sisters". Cave entrances measure from 100 to 252 metres (328 to 827 ft) wide and they are estimated to be at least 73 to 96 metres (240 to 315 ft) deep. Because light does not reach the floor of most of the caves, they may extend much deeper than these lower estimates and widen below

10500-471: The ground the non-vegetation data is obtained which may include objects such as buildings, electric power lines, flying birds, insects, etc. The rest of the points are treated as vegetation and used for modeling and mapping. Within each of these plots, lidar metrics are calculated by calculating statistics such as mean, standard deviation, skewness, percentiles, quadratic mean, etc. Multiple commercial lidar systems for unmanned aerial vehicles are currently on

10625-408: The intensity of the returned signal. The name "photonic radar" is sometimes used to mean visible-spectrum range finding like lidar, although photonic radar more strictly refers to radio-frequency range finding using photonics components. A lidar determines the distance of an object or a surface with the formula : where c is the speed of light , d is the distance between the detector and

10750-436: The lander showed that the Martian soil has a basic pH of 7.7, and contains 0.6% perchlorate by weight, concentrations that are toxic to humans . Streaks are common across Mars and new ones appear frequently on steep slopes of craters, troughs, and valleys. The streaks are dark at first and get lighter with age. The streaks can start in a tiny area, then spread out for hundreds of metres. They have been seen to follow

10875-540: The laser is limited, or an automatic shut-off system which turns the laser off at specific altitudes is used in order to make it eye-safe for the people on the ground. One common alternative, 1,550 nm lasers, are eye-safe at relatively high power levels since this wavelength is not strongly absorbed by the eye. A trade-off though is that current detector technology is less advanced, so these wavelengths are generally used at longer ranges with lower accuracies. They are also used for military applications because 1,550 nm

11000-441: The laser repetition rate (which controls the data collection speed). Pulse length is generally an attribute of the laser cavity length, the number of passes required through the gain material (YAG, YLF , etc.), and Q-switch (pulsing) speed. Better target resolution is achieved with shorter pulses, provided the lidar receiver detectors and electronics have sufficient bandwidth. A phased array can illuminate any direction by using

11125-659: The laser, typically on the order of one microjoule , and are often "eye-safe", meaning they can be used without safety precautions. High-power systems are common in atmospheric research, where they are widely used for measuring atmospheric parameters: the height, layering and densities of clouds, cloud particle properties ( extinction coefficient , backscatter coefficient, depolarization ), temperature, pressure, wind, humidity, and trace gas concentration (ozone, methane, nitrous oxide , etc.). Lidar systems consist of several major components. 600–1,000  nm lasers are most common for non-scientific applications. The maximum power of

11250-567: The late 20th century, Mars has been explored by uncrewed spacecraft and rovers , with the first flyby by the Mariner 4 probe in 1965, the first orbit by the Mars 2 probe in 1971, and the first landing by the Viking 1 probe in 1976. As of 2023, there are at least 11 active probes orbiting Mars or on the Martian surface. Mars is an attractive target for future human exploration missions , though in

11375-415: The major sea floor mapping program. The mapping yields onshore topography as well as underwater elevations. Sea floor reflectance imaging is another solution product from this system which can benefit mapping of underwater habitats. This technique has been used for three-dimensional image mapping of California's waters using a hydrographic lidar. Airborne lidar systems were traditionally able to acquire only

11500-464: The market. These platforms can systematically scan large areas, or provide a cheaper alternative to manned aircraft for smaller scanning operations. The airborne lidar bathymetric technological system involves the measurement of time of flight of a signal from a source to its return to the sensor. The data acquisition technique involves a sea floor mapping component and a ground truth component that includes video transects and sampling. It works using

11625-620: The maximum depth. Turbidity causes scattering and has a significant role in determining the maximum depth that can be resolved in most situations, and dissolved pigments can increase absorption depending on wavelength. Other reports indicate that water penetration tends to be between two and three times Secchi depth. Bathymetric lidar is most useful in the 0–10 m (0–33 ft) depth range in coastal mapping. On average in fairly clear coastal seawater lidar can penetrate to about 7 m (23 ft), and in turbid water up to about 3 m (10 ft). An average value found by Saputra et al, 2021,

11750-474: The mineral jarosite . This forms only in the presence of acidic water, showing that water once existed on Mars. The Spirit rover found concentrated deposits of silica in 2007 that indicated wet conditions in the past, and in December 2011, the mineral gypsum , which also forms in the presence of water, was found on the surface by NASA's Mars rover Opportunity. It is estimated that the amount of water in

11875-613: The mineral olivine , which is known to be common on Mars, or by Martian life. Compared to Earth, its higher concentration of atmospheric CO 2 and lower surface pressure may be why sound is attenuated more on Mars, where natural sources are rare apart from the wind. Using acoustic recordings collected by the Perseverance rover, researchers concluded that the speed of sound there is approximately 240 m/s for frequencies below 240 Hz, and 250 m/s for those above. Auroras have been detected on Mars. Because Mars lacks

12000-427: The mountain is so large, with complex structure at its edges, giving a definite height to it is difficult. Its local relief, from the foot of the cliffs which form its northwest margin to its peak, is over 21 km (13 mi), a little over twice the height of Mauna Kea as measured from its base on the ocean floor. The total elevation change from the plains of Amazonis Planitia , over 1,000 km (620 mi) to

12125-431: The movement of dry dust. No partially degraded gullies have formed by weathering and no superimposed impact craters have been observed, indicating that these are young features, possibly still active. Other geological features, such as deltas and alluvial fans preserved in craters, are further evidence for warmer, wetter conditions at an interval or intervals in earlier Mars history. Such conditions necessarily require

12250-400: The new system will lower costs by not requiring a mechanical component to aim the chip. InGaAs uses less hazardous wavelengths than conventional silicon detectors, which operate at visual wavelengths. New technologies for infrared single-photon counting LIDAR are advancing rapidly, including arrays and cameras in a variety of semiconductor and superconducting platforms. In flash lidar,

12375-448: The nonprofit UCAR and is one of the NSF 's Federally Funded Research and Development Centers , with approximately 95% of its funding coming from the federal government. However, it is not a federal agency and its employees are not part of the federal personnel system. NCAR employs about 761 staff. Its annual expenditures in fiscal year 2015 were $ 167.8 million. The founding director of NCAR

12500-514: The northwest, to the summit approaches 26 km (16 mi), roughly three times the height of Mount Everest , which in comparison stands at just over 8.8 kilometres (5.5 mi). Consequently, Olympus Mons is either the tallest or second-tallest mountain in the Solar System ; the only known mountain which might be taller is the Rheasilvia peak on the asteroid Vesta , at 20–25 km (12–16 mi). The dichotomy of Martian topography

12625-402: The object or surface being detected, and t is the time spent for the laser light to travel to the object or surface being detected, then travel back to the detector. The two kinds of lidar detection schemes are "incoherent" or direct energy detection (which principally measures amplitude changes of the reflected light) and coherent detection (best for measuring Doppler shifts, or changes in

12750-468: The old canal maps ), has a length of 4,000 kilometres (2,500 mi) and a depth of up to 7 kilometres (4.3 mi). The length of Valles Marineris is equivalent to the length of Europe and extends across one-fifth the circumference of Mars. By comparison, the Grand Canyon on Earth is only 446 kilometres (277 mi) long and nearly 2 kilometres (1.2 mi) deep. Valles Marineris was formed due to

12875-842: The past. This paleomagnetism of magnetically susceptible minerals is similar to the alternating bands found on Earth's ocean floors . One hypothesis, published in 1999 and re-examined in October ;2005 (with the help of the Mars Global Surveyor ), is that these bands suggest plate tectonic activity on Mars four billion years ago, before the planetary dynamo ceased to function and the planet's magnetic field faded. The Phoenix lander returned data showing Martian soil to be slightly alkaline and containing elements such as magnesium , sodium , potassium and chlorine . These nutrients are found in soils on Earth. They are necessary for growth of plants. Experiments performed by

13000-504: The phase of the reflected light). Coherent systems generally use optical heterodyne detection . This is more sensitive than direct detection and allows them to operate at much lower power, but requires more complex transceivers. Both types employ pulse models: either micropulse or high energy . Micropulse systems utilize intermittent bursts of energy. They developed as a result of ever-increasing computer power, combined with advances in laser technology. They use considerably less energy in

13125-566: The radiation of 1.84 millisieverts per day or 22 millirads per day during the flight to and from Mars. For comparison the radiation levels in low Earth orbit , where Earth's space stations orbit, are around 0.5 millisieverts of radiation per day. Hellas Planitia has the lowest surface radiation at about 0.342 millisieverts per day, featuring lava tubes southwest of Hadriacus Mons with potentially levels as low as 0.064 millisieverts per day, comparable to radiation levels during flights on Earth. Although better remembered for mapping

13250-463: The reflected energy is detected and measured by sensors. Distance to the object is determined by recording the time between transmitted and backscattered pulses and by using the speed of light to calculate the distance traveled. Flash lidar allows for 3-D imaging because of the camera's ability to emit a larger flash and sense the spatial relationships and dimensions of area of interest with the returned energy. This allows for more accurate imaging because

13375-401: The scanned area from the scanner's location to create realistic looking 3-D models in a relatively short time when compared to other technologies. Each point in the point cloud is given the colour of the pixel from the image taken at the same location and direction as the laser beam that created the point. Mobile lidar (also mobile laser scanning ) is when two or more scanners are attached to

13500-463: The signals to video rate so that the array can be read like a camera. Using this technique many thousands of pixels / channels may be acquired simultaneously. High resolution 3-D lidar cameras use homodyne detection with an electronic CCD or CMOS shutter . A coherent imaging lidar uses synthetic array heterodyne detection to enable a staring single element receiver to act as though it were an imaging array. In 2014, Lincoln Laboratory announced

13625-467: The size of Earth's Arctic Ocean . This finding was derived from the ratio of protium to deuterium in the modern Martian atmosphere compared to that ratio on Earth. The amount of Martian deuterium (D/H = 9.3 ± 1.7 10 ) is five to seven times the amount on Earth (D/H = 1.56 10 ), suggesting that ancient Mars had significantly higher levels of water. Results from the Curiosity rover had previously found

13750-422: The south polar ice cap, if melted, would be enough to cover most of the surface of the planet with a depth of 11 metres (36 ft). Water in its liquid form cannot prevail on the surface of Mars due to the low atmospheric pressure on Mars, which is less than 1% that of Earth, only at the lowest of elevations pressure and temperature is high enough for water being able to be liquid for short periods. Water in

13875-461: The southern highlands include detectable amounts of high-calcium pyroxenes . Localized concentrations of hematite and olivine have been found. Much of the surface is deeply covered by finely grained iron(III) oxide dust. Although Mars has no evidence of a structured global magnetic field , observations show that parts of the planet's crust have been magnetized, suggesting that alternating polarity reversals of its dipole field have occurred in

14000-505: The study of Mars. Smaller craters are named for towns and villages of the world with populations of less than 100,000. Large valleys are named for the word "Mars" or "star" in various languages; smaller valleys are named for rivers. Large albedo features retain many of the older names but are often updated to reflect new knowledge of the nature of the features. For example, Nix Olympica (the snows of Olympus) has become Olympus Mons (Mount Olympus). The surface of Mars as seen from Earth

14125-513: The surface. However, later work suggested that the lineae may be dry, granular flows instead, with at most a limited role for water in initiating the process. A definitive conclusion about the presence, extent, and role of liquid water on the Martian surface remains elusive. Researchers suspect much of the low northern plains of the planet were covered with an ocean hundreds of meters deep, though this theory remains controversial. In March 2015, scientists stated that such an ocean might have been

14250-430: The surface. "Dena" is the only exception; its floor is visible and was measured to be 130 metres (430 ft) deep. The interiors of these caverns may be protected from micrometeoroids, UV radiation, solar flares and high energy particles that bombard the planet's surface. Mars lost its magnetosphere 4 billion years ago, possibly because of numerous asteroid strikes, so the solar wind interacts directly with

14375-625: The swelling of the Tharsis area, which caused the crust in the area of Valles Marineris to collapse. In 2012, it was proposed that Valles Marineris is not just a graben , but a plate boundary where 150 kilometres (93 mi) of transverse motion has occurred, making Mars a planet with possibly a two- tectonic plate arrangement. Images from the Thermal Emission Imaging System (THEMIS) aboard NASA's Mars Odyssey orbiter have revealed seven possible cave entrances on

14500-527: The target: from about 10  micrometers ( infrared ) to approximately 250  nanometers ( ultraviolet ). Typically, light is reflected via backscattering , as opposed to pure reflection one might find with a mirror. Different types of scattering are used for different lidar applications: most commonly Rayleigh scattering , Mie scattering , Raman scattering , and fluorescence . Suitable combinations of wavelengths can allow remote mapping of atmospheric contents by identifying wavelength-dependent changes in

14625-449: The term " radar ", itself an acronym for "radio detection and ranging". All laser rangefinders , laser altimeters and lidar units are derived from the early colidar systems. The first practical terrestrial application of a colidar system was the "Colidar Mark II", a large rifle-like laser rangefinder produced in 1963, which had a range of 11 km and an accuracy of 4.5 m, to be used for military targeting. The first mention of lidar as

14750-507: The upper mantle of Mars, represented by hydroxyl ions contained within Martian minerals, is equal to or greater than that of Earth at 50–300 parts per million of water, which is enough to cover the entire planet to a depth of 200–1,000 metres (660–3,280 ft). On 18 March 2013, NASA reported evidence from instruments on the Curiosity rover of mineral hydration , likely hydrated calcium sulfate , in several rock samples including

14875-495: The vectors of discrete points while DEM and DSM are interpolated raster grids of discrete points. The process also involves capturing of digital aerial photographs. To interpret deep-seated landslides for example, under the cover of vegetation, scarps, tension cracks or tipped trees airborne lidar is used. Airborne lidar digital elevation models can see through the canopy of forest cover, perform detailed measurements of scarps, erosion and tilting of electric poles. Airborne lidar data

15000-429: The wavelength of light. It has also been increasingly used in control and navigation for autonomous cars and for the helicopter Ingenuity on its record-setting flights over the terrain of Mars . The evolution of quantum technology has given rise to the emergence of Quantum Lidar, demonstrating higher efficiency and sensitivity when compared to conventional lidar systems. Under the direction of Malcolm Stitch,

15125-420: The widespread presence of crater lakes across a large proportion of the surface, for which there is independent mineralogical, sedimentological and geomorphological evidence. Further evidence that liquid water once existed on the surface of Mars comes from the detection of specific minerals such as hematite and goethite , both of which sometimes form in the presence of water. In 2004, Opportunity detected

15250-414: The young Sun's energetic solar wind . After the formation of the planets, the inner Solar System may have been subjected to the so-called Late Heavy Bombardment . About 60% of the surface of Mars shows a record of impacts from that era, whereas much of the remaining surface is probably underlain by immense impact basins caused by those events. However, more recent modeling has disputed the existence of

15375-462: Was Walter Orr Roberts . The current director is Everette Joseph. NCAR has many opportunities for scientific visits to the facilities for workshops, colloquia, and collaboration by colleagues in academia, government labs, and the private sector. Many NCAR staff also visit colleagues at universities and labs and serve as adjunct or visiting faculty. The Visitor Center at the Mesa Laboratory

15500-629: Was probably the root cause of the incision in almost all cases. Along craters and canyon walls, there are thousands of features that appear similar to terrestrial gullies . The gullies tend to be in the highlands of the Southern Hemisphere and face the Equator; all are poleward of 30° latitude. A number of authors have suggested that their formation process involves liquid water, probably from melting ice, although others have argued for formation mechanisms involving carbon dioxide frost or

15625-437: Was reported that InSight had detected and recorded over 450 marsquakes and related events. Beneath the crust is a silicate mantle responsible for many of the tectonic and volcanic features on the planet's surface. The upper Martian mantle is a low-velocity zone , where the velocity of seismic waves is lower than surrounding depth intervals. The mantle appears to be rigid down to the depth of about 250 km, giving Mars

#549450