The North Avenue Bridge can refer to one of three bridges that has carried North Avenue ( Illinois Route 64 ) over the North Branch of the Chicago River on the north side of Chicago, Illinois . A center-pier swing bridge built in 1877 was replaced in 1907 by a bascule bridge , allowing river traffic more room for maneuvering in and out of the North Canal, just north of Goose Island .
105-460: Due to deteriorating conditions and inadequate capacity, the bascule bridge was demolished in 2006 to make room for a hybrid suspension / cable-stayed bridge . The suspension/cable-stayed bridge fully opened on May 23, 2008. As Chicago grew into a center of industry and commerce in the late 19th century, numerous fixed-span crossings were replaced by center-pier swing bridges , the most common type of bridge that allowed pedestrians and wagons to cross
210-470: A Parker truss or Pratt truss than a true arch . In the Brown truss all vertical elements are under tension, with exception of the end posts. This type of truss is particularly suited for timber structures that use iron rods as tension members. See Lenticular truss below. This combines an arch with a truss to form a structure both strong and rigid. Most trusses have the lower chord under tension and
315-410: A cable-stayed bridge in which the deck is in compression. Cable-stayed bridges and suspension bridges may appear to be similar, but are quite different in principle and in their construction. In suspension bridges, large main cables (normally two) hang between the towers and are anchored at each end to the ground. The main cables, which are free to move on bearings in the towers, bear the load of
420-460: A 200 feet span (also termed Beose Bridge) was constructed near Sagar, India during 1828–1830 by Duncan Presgrave, Mint and Assay Master. The Clifton Suspension Bridge (designed in 1831, completed in 1864 with a 214 m central span), is similar to the Sagar bridge. It is one of the longest of the parabolic arc chain type. The current Marlow suspension bridge was designed by William Tierney Clark and
525-550: A Parker truss vary from near vertical in the center of the span to diagonal near each end, similar to a Warren truss. George H. Pegram , while the chief engineer of Edge Moor Iron Company in Wilmington, Delaware , patented this truss design in 1885. The Pegram truss consists of a Parker type design with the vertical posts leaning towards the center at an angle between 60 and 75°. The variable post angle and constant chord length allowed steel in existing bridges to be recycled into
630-492: A bridge has a tendency to collapse simply because of the gravitational forces acting on the materials of which the bridge is made. Live load refers to traffic that moves across the bridge as well as normal environmental factors such as changes in temperature, precipitation, and winds. Dynamic load refers to environmental factors that go beyond normal weather conditions, factors such as sudden gusts of wind and earthquakes. All three factors must be taken into consideration when building
735-468: A bridge. Silver Bridge (USA) was an eyebar chain highway bridge, built in 1928, that collapsed in late 1967, killing forty-six people. The bridge had a low-redundancy design that was difficult to inspect. The collapse inspired legislation to ensure that older bridges were regularly inspected and maintained. Following the collapse a bridge of similar design was immediately closed and eventually demolished. A second similarly-designed bridge had been built with
840-788: A bridge. The principles of suspension used on a large scale also appear in contexts less dramatic than road or rail bridges. Light cable suspension may prove less expensive and seem more elegant for a cycle or footbridge than strong girder supports. An example of this is the Nescio Bridge in the Netherlands, and the Roebling designed 1904 Riegelsville suspension pedestrian bridge across the Delaware River in Pennsylvania. The longest pedestrian suspension bridge, which spans
945-599: A common truss design during this time, with their arched top chords. Companies like the Massillon Bridge Company of Massillon, Ohio , and the King Bridge Company of Cleveland , became well-known, as they marketed their designs to cities and townships. The bowstring truss design fell out of favor due to a lack of durability, and gave way to the Pratt truss design, which was stronger. Again,
1050-435: A conventional truss into place or by building it in place using a "traveling support". In another method of construction, one outboard half of each balanced truss is built upon temporary falsework. When the outboard halves are completed and anchored the inboard halves may then be constructed and the center section completed as described above. The Fink truss was designed by Albert Fink of Germany in 1854. This type of bridge
1155-588: A hazard to navigation. In 1892, the directive was enforced in Chicago when a just-completed bridge at Canal Avenue was ordered removed by the U.S. Army Corps of Engineers . That year, the city's engineers began to study suitable alternatives to the hazardous swing-span bridge. The search generated disagreement between the Scherzer Rolling Lift Company of Chicago and Chicago Department of Public Works City Engineer John E. Ericson. Although
SECTION 10
#17327730966561260-403: A higher margin of safety and remained in service until 1991. The Tacoma Narrows Bridge , (USA), 1940, was vulnerable to structural vibration in sustained and moderately strong winds due to its plate-girder deck structure. Wind caused a phenomenon called aeroelastic fluttering that led to its collapse only months after completion. The collapse was captured on film. There were no human deaths in
1365-682: A large clearance around the bridge, preventing the development of docking facilities near the bridge. As open land along the Chicago River grew scarce, real estate and shipping companies grew increasingly critical of the swing spans. No progress was made on the issue until 1890, when the United States Congress gave the United States War Department the authorization to build new bridges over waterways, and to force changes to existing bridges that posed
1470-481: A limited number of truss bridges were built. The truss may carry its roadbed on top, in the middle, or at the bottom of the truss. Bridges with the roadbed at the top or the bottom are the most common as this allows both the top and bottom to be stiffened, forming a box truss . When the roadbed is atop the truss, it is a deck truss; an example of this was the I-35W Mississippi River bridge . When
1575-477: A lower chord (functioning as a suspension cable) that curves down and then up to meet at the same end points. Where the arches extend above and below the roadbed, it is called a lenticular pony truss bridge . The Pauli truss bridge is a specific variant of the lenticular truss, but the terms are not interchangeable. One type of lenticular truss consists of arcuate upper compression chords and lower eyebar chain tension links. Brunel 's Royal Albert Bridge over
1680-546: A model bridge that was patent-free, had a fixed center of gravity and simple mechanical motion, in 1900 Ericson prompted the Chicago City Council to allocate funding to replace five deteriorating swing-span bridges. The first five bridges were built at Clybourn Place (later Cortland Avenue) in 1902, Division Street over both the North Branch Canal (1903) and the Chicago River (1904), 95th Street over
1785-789: A new span using the Pegram truss design. This design also facilitated reassembly and permitted a bridge to be adjusted to fit different span lengths. There are twelve known remaining Pegram span bridges in the United States with seven in Idaho , two in Kansas , and one each in California , Washington , and Utah . The Pennsylvania (Petit) truss is a variation on the Pratt truss . The Pratt truss includes braced diagonal members in all panels;
1890-630: A pedestrian suspension bridge over the Machchhu River in the city of Morbi, Gujarat, India collapsed, leading to the deaths of at least 141 people. Pratt truss A truss bridge is a bridge whose load-bearing superstructure is composed of a truss , a structure of connected elements, usually forming triangular units. The connected elements, typically straight, may be stressed from tension , compression , or sometimes both in response to dynamic loads. There are several types of truss bridges, including some with simple designs that were among
1995-459: A pin-jointed structure, one where the only forces on the truss members are tension or compression, not bending. This is used in the teaching of statics, by the building of model bridges from spaghetti . Spaghetti is brittle and although it can carry a modest tension force, it breaks easily if bent. A model spaghetti bridge thus demonstrates the use of a truss structure to produce a usefully strong complete structure from individually weak elements. In
2100-647: A proposal by Robert Stevenson for a bridge over the River Almond near Edinburgh . Roebling's Delaware Aqueduct (begun 1847) consists of three sections supported by cables. The timber structure essentially hides the cables; and from a quick view, it is not immediately apparent that it is even a suspension bridge. The main suspension cables in older bridges were often made from a chain or linked bars, but modern bridge cables are made from multiple strands of wire. This not only adds strength but improves reliability (often called redundancy in engineering terms) because
2205-541: A sequence generally described as follows. Depending on length and size, construction may take anywhere between a year and a half (construction on the original Tacoma Narrows Bridge took only 19 months) up to as long as a decade (the Akashi-Kaikyō Bridge's construction began in May 1986 and was opened in May 1998 – a total of twelve years). Suspension bridges are typically ranked by the length of their main span. These are
SECTION 20
#17327730966562310-499: A temporary walkway. Poured sockets are used to make a high strength, permanent cable termination. They are created by inserting the suspender wire rope (at the bridge deck supports) into the narrow end of a conical cavity which is oriented in-line with the intended direction of strain. The individual wires are splayed out inside the cone or 'capel', and the cone is then filled with molten lead-antimony-tin (Pb80Sb15Sn5) solder. Most suspension bridges have open truss structures to support
2415-545: A variant of the lenticular truss, "with the top chord carefully shaped so that it has a constant force along the entire length of the truss." It is named after Friedrich Augustus von Pauli [ de ] , whose 1857 railway bridge (the Großhesseloher Brücke [ de ] ) spanned the Isar near Munich . ( See also Grosshesselohe Isartal station .) The term Pauli truss is not interchangeable with
2520-700: Is a Pratt truss design with a polygonal upper chord. A "camelback" is a subset of the Parker type, where the upper chord consists of exactly five segments. An example of a Parker truss is the Traffic Bridge in Saskatoon , Canada. An example of a camelback truss is the Woolsey Bridge near Woolsey, Arkansas . Designed and patented in 1872 by Reuben Partridge , after local bridge designs proved ineffective against road traffic and heavy rains. It became
2625-519: Is a hybrid between a Warren truss and a double-intersection Pratt truss. Invented in 1863 by Simeon S. Post, it is occasionally referred to as a Post patent truss although he never received a patent for it. The Ponakin Bridge and the Bell Ford Bridge are two examples of this truss. A Pratt truss includes vertical members and diagonals that slope down towards the center, the opposite of
2730-550: Is a type of bridge in which the deck is hung below suspension cables on vertical suspenders. The first modern examples of this type of bridge were built in the early 1800s. Simple suspension bridges , which lack vertical suspenders, have a long history in many mountainous parts of the world. Besides the bridge type most commonly called suspension bridges, covered in this article, there are other types of suspension bridges . The type covered here has cables suspended between towers , with vertical suspender cables that transfer
2835-645: Is considered the last remaining Inca rope bridge and is rebuilt annually. The first iron chain suspension bridge in the Western world was the Jacob's Creek Bridge (1801) in Westmoreland County, Pennsylvania , designed by inventor James Finley . Finley's bridge was the first to incorporate all of the necessary components of a modern suspension bridge, including a suspended deck which hung by trusses. Finley patented his design in 1808, and published it in
2940-832: Is named after the K formed in each panel by the vertical member and two oblique members. Examples include the Südbrücke rail bridge over the River Rhine, Mainz, Germany, the bridge on I-895 (Baltimore Harbor Tunnel Thruway) in Baltimore, Maryland, the Long–Allen Bridge in Morgan City, Louisiana (Morgan City Bridge) with three 600-foot-long spans, and the Wax Lake Outlet bridge in Calumet, Louisiana One of
3045-570: Is partly based on the Howe truss . The first Allan truss was completed on 13 August 1894 over Glennies Creek at Camberwell, New South Wales and the last Allan truss bridge was built over Mill Creek near Wisemans Ferry in 1929. Completed in March 1895, the Tharwa Bridge located at Tharwa, Australian Capital Territory , was the second Allan truss bridge to be built, the oldest surviving bridge in
3150-695: Is practical for use with spans up to 250 feet (76 m) and was a common configuration for railroad bridges as truss bridges moved from wood to metal. They are statically determinate bridges, which lend themselves well to long spans. They were common in the United States between 1844 and the early 20th century. Examples of Pratt truss bridges are the Governor's Bridge in Maryland ; the Hayden RR Bridge in Springfield, Oregon , built in 1882;
3255-457: Is required where rigid joints impose significant bending loads upon the elements, as in a Vierendeel truss . In the bridge illustrated in the infobox at the top, vertical members are in tension, lower horizontal members in tension, shear , and bending, outer diagonal and top members are in compression, while the inner diagonals are in tension. The central vertical member stabilizes the upper compression member, preventing it from buckling . If
North Avenue Bridge - Misplaced Pages Continue
3360-407: Is supported only at the ends and is fully independent of any adjacent spans. Each span must fully support the weight of any vehicles traveling over it (the live load ). In contrast, a continuous truss functions as a single rigid structure over multiple supports. This means that the live load on one span is partially supported by the other spans, and consequently it is possible to use less material in
3465-525: Is the Victoria Bridge on Prince Street, Picton, New South Wales . Also constructed of ironbark, the bridge is still in use today for pedestrian and light traffic. The Bailey truss was designed by the British in 1940–1941 for military uses during World War II. A short selection of prefabricated modular components could be easily and speedily combined on land in various configurations to adapt to
3570-770: The Australian Capital Territory and the oldest, longest continuously used Allan truss bridge. Completed in November 1895, the Hampden Bridge in Wagga Wagga, New South Wales , Australia, the first of the Allan truss bridges with overhead bracing, was originally designed as a steel bridge but was constructed with timber to reduce cost. In his design, Allan used Australian ironbark for its strength. A similar bridge also designed by Percy Allen
3675-690: The Calumet River (1903) and at Western Avenue over the North Branch Canal (1904). During the same period of time, the Scherzer Company built seven of their rolling lift bridges over the Chicago Sanitary and Ship Canal , which was widened to accommodate larger flows from the recently reversed Chicago River. These bridges, built under the authority of the Chicago Sanitary District, only needed to be approved by
3780-621: The Dearborn River High Bridge near Augusta, Montana, built in 1897; and the Fair Oaks Bridge in Fair Oaks, California , built 1907–09. The Scenic Bridge near Tarkio, Montana , is an example of a Pratt deck truss bridge, where the roadway is on top of the truss. The queenpost truss , sometimes called "queen post" or queenspost, is similar to a king post truss in that the outer supports are angled towards
3885-1316: The Fort Wayne Street Bridge in Goshen, Indiana , the Schell Bridge in Northfield, Massachusetts , the Inclined Plane Bridge in Johnstown, Pennsylvania , the Easton–Phillipsburg Toll Bridge in Easton, Pennsylvania , the Connecticut River Bridge in Brattleboro, Vermont , the Metropolis Bridge in Metropolis, Illinois , and the Healdsburg Memorial Bridge in Healdsburg, California . A Post truss
3990-445: The Howe truss . The interior diagonals are under tension under balanced loading and vertical elements under compression. If pure tension elements (such as eyebars ) are used in the diagonals, then crossing elements may be needed near the center to accept concentrated live loads as they traverse the span. It can be subdivided, creating Y- and K-shaped patterns. The Pratt truss was invented in 1844 by Thomas and Caleb Pratt. This truss
4095-836: The Mahakam River , located in Kutai Kartanegara Regency , East Kalimantan district on the Indonesia island of Borneo , was built in 1995, completed in 2001 and collapsed in 2011. Dozens of vehicles on the bridge fell into the Mahakam River . As a result of this incident, 24 people died and dozens of others were injured and were treated at the Aji Muhammad Parikesit Regional Hospital. Meanwhile, 12 people were reported missing, 31 people were seriously injured, and 8 people had minor injuries. Research findings indicate that
4200-481: The River Tamar between Devon and Cornwall uses a single tubular upper chord. As the horizontal tension and compression forces are balanced these horizontal forces are not transferred to the supporting pylons (as is the case with most arch types). This in turn enables the truss to be fabricated on the ground and then to be raised by jacking as supporting masonry pylons are constructed. This truss has been used in
4305-499: The United States , because wood was in abundance, early truss bridges would typically use carefully fitted timbers for members taking compression and iron rods for tension members , usually constructed as a covered bridge to protect the structure. In 1820, a simple form of truss, Town's lattice truss , was patented, and had the advantage of requiring neither high labor skills nor much metal. Few iron truss bridges were built in
North Avenue Bridge - Misplaced Pages Continue
4410-448: The live and dead loads of the deck below, upon which traffic crosses. This arrangement allows the deck to be level or to arc upward for additional clearance. Like other suspension bridge types, this type often is constructed without the use of falsework . The suspension cables must be anchored at each end of the bridge, since any load applied to the bridge is transformed into tension in these main cables. The main cables continue beyond
4515-416: The Chicago River were to be kept open and utilized for further development. The United States Coast Guard required the bridge to have a vertical clearance of 18 feet (5 m). Finally, the new crossing, situated at the northern tip of Goose Island and having a clear view to the Chicago skyline, was required to be aesthetically pleasing. Due to rising costs of steel, the construction of a new bascule bridge
4620-493: The Chicago River while also periodically allowing ship traffic below. In 1877, one of these bridges was constructed just north of Goose Island. The 1877 bridge and its counterparts, while the most common bridge of the mid-19th century, were criticized by both the shipping and real estate industries of Chicago. As the 19th century came to a close, shipping vessels had grown larger, and the swing bridges' center piers had become navigational hazards. In addition, each swing span required
4725-709: The Corps of Engineers, not the Department of Public Works. By 1904, the city had obtained permission to issue bonds to replace the rest of the swing bridges on the Chicago River. Ericson sent the Scherzer Company and the Sanitary District specifications for the bridge in 1905. A design by John W. Page, the inventor of a bascule bridge over the Sanitary and Ship Canal, was rejected in March 1905 due to noncompliance to specifications. The Scherzer Company waited until
4830-516: The Department of Public Works had "maliciously, fraudulently and unlawfully" prohibited Scherzer from bidding their bridge design, which they claimed was both superior in quality and less expensive. A settlement was reached in August 1905, and construction for the new North Avenue Bridge began in early 1906. Ericson was removed from the Public Works' bridge division and control over bridge design
4935-516: The North Avenue Bridge truss curved upwards, tapering towards the center of the span. Where the tail ends were tallest, deep lateral braces provided support for the bridge. The deck of the bridge was 60 feet (18 m) wide at the approaches. Upon construction, the roadway for the approaches consisted of wood blocks atop a steel-supported concrete slab. Approach sidewalks, made of concrete, had railings made of steel mesh that overlooked
5040-624: The Pennsylvania truss adds to this design half-length struts or ties in the top, bottom, or both parts of the panels. It is named after the Pennsylvania Railroad , which pioneered this design. It was once used for hundreds of bridges in the United States, but fell out of favor in the 1930s and very few examples of this design remain. Examples of this truss type include the Lower Trenton Bridge in Trenton, New Jersey ,
5145-777: The Philadelphia journal, The Port Folio , in 1810. Early British chain bridges included the Dryburgh Abbey Bridge (1817) and 137 m Union Bridge (1820), with spans rapidly increasing to 176 m with the Menai Bridge (1826), "the first important modern suspension bridge". The first chain bridge on the German speaking territories was the Chain Bridge in Nuremberg . The Sagar Iron Suspension Bridge with
5250-440: The River Paiva, Arouca Geopark , Portugal, opened in April 2021. The 516 metres bridge hangs 175 meters above the river. Where such a bridge spans a gap between two buildings, there is no need to construct towers, as the buildings can anchor the cables. Cable suspension may also be augmented by the inherent stiffness of a structure that has much in common with a tubular bridge . Typical suspension bridges are constructed using
5355-423: The United States before 1850. Truss bridges became a common type of bridge built from the 1870s through the 1930s. Examples of these bridges still remain across the US, but their numbers are dropping rapidly as they are demolished and replaced with new structures. As metal slowly started to replace timber, wrought iron bridges in the US started being built on a large scale in the 1870s. Bowstring truss bridges were
SECTION 50
#17327730966565460-461: The availability of machinery, and the cost of labor. In other cases, the appearance of the structure may take on greater importance and so influence the design decisions beyond mere matters of economics. Modern materials such as prestressed concrete and fabrication methods, such as automated welding , and the changing price of steel relative to that of labor have significantly influenced the design of modern bridges. A pure truss can be represented as
5565-480: The bidding deadline to submit two separate designs; both of these were also rejected due to noncompliance. Two contracts were bid out for the trunnion style bascule bridge that Ericson had pioneered; one contract for $ 81,369 (1905) went to the Jackson and Corbett Company for the substructure, and one for $ 111,983 (1905) went to the Roemheld and Gallery Company for superstructure work. After the decision, Scherzer brought its argument with Ericson into court, arguing that
5670-632: The bridge companies marketed their designs, with the Wrought Iron Bridge Company in the lead. As the 1880s and 1890s progressed, steel began to replace wrought iron as the preferred material. Other truss designs were used during this time, including the camel-back. By the 1910s, many states developed standard plan truss bridges, including steel Warren pony truss bridges. In the 1920s and 1930s, Pennsylvania and several states continued to build steel truss bridges, using massive steel through-truss bridges for long spans. Other states, such as Michigan , used standard plan concrete girder and beam bridges, and only
5775-406: The bridge deck, they are susceptible to being hit by overheight loads when used on highways. The I-5 Skagit River bridge collapsed after such a strike; before the collapse, similar incidents had been common and had necessitated frequent repairs. Truss bridges consisting of more than one span may be either a continuous truss or a series of simple trusses. In the simple truss design, each span
5880-432: The bridge deck. Before the deck is installed, the cables are under tension from their own weight. Along the main cables smaller cables or rods connect to the bridge deck, which is lifted in sections. As this is done, the tension in the cables increases, as it does with the live load of traffic crossing the bridge. The tension on the main cables is transferred to the ground at the anchorages and by downwards compression on
5985-493: The center, the opposite of the Pratt truss . In contrast to the Pratt truss, the diagonal web members are in compression and the vertical web members are in tension. Few of these bridges remain standing. Examples include Jay Bridge in Jay, New York ; McConnell's Mill Covered Bridge in Slippery Rock Township, Lawrence County, Pennsylvania ; Sandy Creek Covered Bridge in Jefferson County, Missouri ; and Westham Island Bridge in Delta, British Columbia , Canada. The K-truss
6090-435: The center. Many cantilever bridges, like the Quebec Bridge shown below, have two cantilever spans supporting a simple truss in the center. The bridge would remain standing if the simple truss section were removed. Bridges are the most widely known examples of truss use. There are many types, some of them dating back hundreds of years. Below are some of the more common designs. The Allan truss , designed by Percy Allan ,
6195-429: The chains are not attached to abutments as is usual, but instead are attached to the main girders, which are thus in compression. Here, the chains are made from flat wrought iron plates, eight inches (203 mm) wide by an inch and a half (38 mm) thick, rivetted together. The first wire-cable suspension bridge was the Spider Bridge at Falls of Schuylkill (1816), a modest and temporary footbridge built following
6300-526: The collapse of James Finley's nearby Chain Bridge at Falls of Schuylkill (1808). The footbridge's span was 124 m, although its deck was only 0.45 m wide. Development of wire-cable suspension bridges dates to the temporary simple suspension bridge at Annonay built by Marc Seguin and his brothers in 1822. It spanned only 18 m. The first permanent wire cable suspension bridge was Guillaume Henri Dufour 's Saint Antoine Bridge in Geneva of 1823, with two 40 m spans. The first with cables assembled in mid-air in
6405-453: The collapse was largely caused by the construction failure of the vertical hanging clamp. It was also found that poor maintenance, fatigue in the cable hanger construction materials, material quality, and bridge loads that exceed vehicle capacity, can also have an impact on bridge collapse. In 2013 the Kutai Kartanegara Bridge rebuilt the same location and completed in 2015 with a Through arch bridge design. On 30 October 2022, Jhulto Pul ,
SECTION 60
#17327730966566510-467: The collapse; several drivers escaped their cars on foot and reached the anchorages before the span dropped. Yarmouth suspension bridge (England) was built in 1829 and collapsed in 1845, killing 79 people. Peace River Suspension Bridge (Canada), which was completed in 1943, collapsed when the north anchor's soil support for the suspension bridge failed in October 1957. The entire bridge subsequently collapsed. Kutai Kartanegara Bridge (Indonesia) over
6615-414: The compression members and to control deflection. It is mainly used for rail bridges, showing off a simple and very strong design. In the Pratt truss the intersection of the verticals and the lower horizontal tension members are used to anchor the supports for the short-span girders under the tracks (among other things). With the Baltimore truss, there are almost twice as many points for this to happen because
6720-399: The construction of a stadium, with the upper chords of parallel trusses supporting a roof that may be rolled back. The Smithfield Street Bridge in Pittsburgh, Pennsylvania , is another example of this type. An example of a lenticular pony truss bridge that uses regular spans of iron is the Turn-of-River Bridge designed and manufactured by the Berlin Iron Bridge Co. The Pauli truss is
6825-414: The earliest examples is the Old Blenheim Bridge , which with a span of 210 feet (64 m) and a total length of 232 feet (71 m) long was the second-longest covered bridge in the United States, until its destruction from flooding in 2011. The Busching bridge, often erroneously used as an example of a Long truss, is an example of a Howe truss, as the verticals are metal rods. A Parker truss bridge
6930-464: The failure of a few flawed strands in the hundreds used pose very little threat of failure, whereas a single bad link or eyebar can cause failure of an entire bridge. (The failure of a single eyebar was found to be the cause of the collapse of the Silver Bridge over the Ohio River .) Another reason is that as spans increased, engineers were unable to lift larger chains into position, whereas wire strand cables can be formulated one by one in mid-air from
7035-476: The feet of the bridge to the tops of the pylons, supports the middle portion of the center span. The deck of the bridge is post-tensioned to allow horizontal forces of the bridge to be transferred to anchor blocks at the ends of the span. It was constructed with 10 inches (25 cm) of high-performance concrete, and with a 2-inch (5 cm) latex overlay. The total thickness of the deck is only 4 feet (1 m). Suspension bridge A suspension bridge
7140-420: The first bridges designed in the 19th and early 20th centuries. A truss bridge is economical to construct primarily because it uses materials efficiently. The nature of a truss allows the analysis of its structure using a few assumptions and the application of Newton's laws of motion according to the branch of physics known as statics . For purposes of analysis, trusses are assumed to be pin jointed where
7245-432: The highway, which may be supported by suspender cables or their own trusswork . In cases where trusswork supports the spans, there will be very little arc in the outboard main cables. The earliest suspension bridges were ropes slung across a chasm, with a deck possibly at the same level or hung below the ropes such that the rope had a catenary shape. The Tibetan siddha and bridge-builder Thangtong Gyalpo originated
7350-483: The live loads. In an underspanned suspension bridge, also called under-deck cable-stayed bridge, the main cables hang entirely below the bridge deck, but are still anchored into the ground in a similar way to the conventional type. Very few bridges of this nature have been built, as the deck is inherently less stable than when suspended below the cables. Examples include the Pont des Bergues of 1834 designed by Guillaume Henri Dufour ; James Smith's Micklewood Bridge; and
7455-408: The mid-1920s, the Department of Public Works had floated a proposal to replace the moving bridges with fixed spans through a ten-year period from 1925–1935, citing high maintenance costs. The proposal was not acted upon, partially due to opposition by the Army Corps of Engineers; however, except for a brief resurgence in traffic during World War II , shipping volume remained low. The historical bridge
7560-639: The modern method was Joseph Chaley 's Grand Pont Suspendu in Fribourg , in 1834. In the United States, the first major wire-cable suspension bridge was the Wire Bridge at Fairmount in Philadelphia, Pennsylvania. Designed by Charles Ellet Jr. and completed in 1842, it had a span of 109 m. Ellet's Niagara Falls suspension bridge (1847–48) was abandoned before completion. It was used as scaffolding for John A. Roebling 's double decker railroad and carriage bridge (1855). The Otto Beit Bridge (1938–1939)
7665-412: The needs at the site and allow rapid deployment of completed trusses. In the image, note the use of pairs of doubled trusses to adapt to the span and load requirements. In other applications the trusses may be stacked vertically, and doubled as necessary. The Baltimore truss is a subclass of the Pratt truss. A Baltimore truss has additional bracing in the lower section of the truss to prevent buckling in
7770-406: The pillars to deck-level supports, and further continue to connections with anchors in the ground. The roadway is supported by vertical suspender cables or rods, called hangers. In some circumstances, the towers may sit on a bluff or canyon edge where the road may proceed directly to the main span. Otherwise, the bridge will typically have two smaller spans, running between either pair of pillars and
7875-413: The railing and the walking layer of Gyalpo's bridges used wires. The stress points that carried the screed were reinforced by the iron chains. Before the use of iron chains it is thought that Gyalpo used ropes from twisted willows or yak skins. He may have also used tightly bound cloth. The Inca used rope bridges , documented as early as 1615. It is not known when they were first made. Queshuachaca
7980-414: The relocation of utilities, construction of an improved river wall and uninterrupted substructure construction for the new bridge. The center span was constructed on three barges in the Chicago River, because of Coast Guard regulations that required the channel to be open at all times. After the center span was constructed, it was towed to the bridge, where 16 jacks lifted the span into place. The new bridge
8085-436: The river. On the movable leaves, a 42-foot (13 m) wide wooden deck was centered between two 9-foot (3 m) metal brackets that held plank sidewalks. The roadway itself was separated by the center truss. Originally, streetcar tracks ran on both sides of the bridge. After new manufacturing facilities opened on the Calumet River in the southern portion of Chicago, shipping traffic on the Chicago River fell dramatically. By
8190-612: The roadbed, particularly owing to the unfavorable effects of using plate girders, discovered from the Tacoma Narrows Bridge (1940) bridge collapse. In the 1960s, developments in bridge aerodynamics allowed the re-introduction of plate structures as shallow box girders , first seen on the Severn bridge , built 1961–1966. In the picture of the Yichang Bridge , note the very sharp entry edge and sloping undergirders in
8295-465: The rolling lift bridge (a type of bascule bridge) was mechanically the most simple alternative, engineers soon discovered that the span applied its load in a rolling motion on its foundation, crumbling poorly built foundations. Ericson directed his staff to investigate other bridges in the U.S. and Europe, eventually finding that the Tower Bridge (1894) would be an appropriate starting point. With
8400-574: The short verticals will also be used to anchor the supports. Thus the short-span girders can be made lighter because their span is shorter. A good example of the Baltimore truss is the Amtrak Old Saybrook – Old Lyme Bridge in Connecticut , United States. The Bollman Truss Railroad Bridge at Savage, Maryland , United States is the only surviving example of a revolutionary design in the history of American bridge engineering. The type
8505-451: The simplest truss styles to implement, the king post consists of two angled supports leaning into a common vertical support. This type of bridge uses a substantial number of lightweight elements, easing the task of construction. Truss elements are usually of wood, iron, or steel. A lenticular truss bridge includes a lens-shape truss, with trusses between an upper chord functioning as an arch that curves up and then down to end points, and
8610-454: The standard for covered bridges built in central Ohio in the late 1800s and early 1900s. The Pegram truss is a hybrid between the Warren and Parker trusses where the upper chords are all of equal length and the lower chords are longer than the corresponding upper chord. Because of the difference in upper and lower chord length, each panel is not square. The members which would be vertical in
8715-464: The straight components meet, meaning that taken alone, every joint on the structure is functionally considered to be a flexible joint as opposed to a rigid joint with the strength to maintain its shape, and the resulting shape and strength of the structure are only maintained by the interlocking of the components. This assumption means that members of the truss (chords, verticals, and diagonals) will act only in tension or compression. A more complex analysis
8820-438: The structure to any interested parties for relocation and preservation elsewhere. Because of the complexity of the outdated lifting mechanism, no cities offered to take the bridge. Due to age and the high cost of maintenance, a replacement fixed-span bridge was built through 2007–2008. The new bridge is a fixed-span, hybrid suspension / cable-stayed bridge of the same height but nearly twice as long in length. The original bridge
8925-401: The suspension bridge shown. This enables this type of construction to be used without the danger of vortex shedding and consequent aeroelastic effects, such as those that destroyed the original Tacoma Narrows bridge. Three kinds of forces operate on any bridge: the dead load, the live load, and the dynamic load. Dead load refers to the weight of the bridge itself. Like any other structure,
9030-514: The ten bridges with the longest spans, followed by the length of the span and the year the bridge opened for traffic: (Chronological) Broughton Suspension Bridge (England) was an iron chain bridge built in 1826. One of Europe's first suspension bridges, it collapsed in 1831 due to mechanical resonance induced by troops marching in step. As a result of the incident, the British Army issued an order that troops should "break step" when crossing
9135-481: The term lenticular truss and, according to Thomas Boothby, the casual use of the term has clouded the literature. The Long truss was designed by Stephen H. Long in 1830. The design resembles a Howe truss , but is entirely made of wood instead of a combination of wood and metal. The longest surviving example is the Eldean Covered Bridge north of Troy, Ohio , spanning 224 feet (68 m). One of
9240-442: The top member is sufficiently stiff then this vertical element may be eliminated. If the lower chord (a horizontal member of a truss) is sufficiently resistant to bending and shear, the outer vertical elements may be eliminated, but with additional strength added to other members in compensation. The ability to distribute the forces in various ways has led to a large variety of truss bridge types. Some types may be more advantageous when
9345-489: The towers. In cable-stayed bridges, the towers are the primary load-bearing structures that transmit the bridge loads to the ground. A cantilever approach is often used to support the bridge deck near the towers, but lengths further from them are supported by cables running directly to the towers. By design, all static horizontal forces of the cable-stayed bridge are balanced so that the supporting towers do not tend to tilt or slide and so must only resist horizontal forces from
9450-552: The truss members are both above and below the roadbed it is called a through truss; an example of this is the Pulaski Skyway , and where the sides extend above the roadbed but are not connected, a pony truss or half-through truss. Sometimes both the upper and lower chords support roadbeds, forming a double-decked truss . This can be used to separate rail from road traffic or to separate the two directions of road traffic. Since through truss bridges have supports located over
9555-471: The truss. Continuous truss bridges were not very common before the mid-20th century because they are statically indeterminate , which makes them difficult to design without the use of computers . A multi-span truss bridge may also be constructed using cantilever spans, which are supported at only one end rather than both ends like other types of trusses. Unlike a continuous truss, a cantilever truss does not need to be connected rigidly, or indeed at all, at
9660-428: The upper chord under compression. In a cantilever truss the situation is reversed, at least over a portion of the span. The typical cantilever truss bridge is a "balanced cantilever", which enables the construction to proceed outward from a central vertical spar in each direction. Usually these are built in pairs until the outer sections may be anchored to footings. A central gap, if present, can then be filled by lifting
9765-568: The use of iron chains in his version of simple suspension bridges . In 1433, Gyalpo built eight bridges in eastern Bhutan . The last surviving chain-linked bridge of Gyalpo's was the Thangtong Gyalpo Bridge in Duksum en route to Trashi Yangtse , which was finally washed away in 2004. Gyalpo's iron chain bridges did not include a suspended-deck bridge , which is the standard on all modern suspension bridges today. Instead, both
9870-423: The weight of the cables is small compared to the weight of the deck. One can see the shape from the constant increase of the gradient of the cable with linear (deck) distance, this increase in gradient at each connection with the deck providing a net upward support force. Combined with the relatively simple constraints placed upon the actual deck, that makes the suspension bridge much simpler to design and analyze than
9975-430: The wood is employed for compression elements while other types may be easier to erect in particular site conditions, or when the balance between labor, machinery, and material costs has certain favorable proportions. The inclusion of the elements shown is largely an engineering decision based upon economics, being a balance between the costs of raw materials, off-site fabrication, component transportation, on-site erection,
10080-414: Was also easy to assemble. Wells Creek Bollman Bridge is the only other bridge designed by Wendel Bollman still in existence, but it is a Warren truss configuration. The bowstring truss bridge was patented in 1841 by Squire Whipple . While similar in appearance to a tied-arch bridge , a bowstring truss has diagonal load-bearing members: these diagonals result in a structure that more closely matches
10185-661: Was built between 1829 and 1832, replacing a wooden bridge further downstream which collapsed in 1828. It is the only suspension bridge across the non-tidal Thames. The Széchenyi Chain Bridge , (designed in 1840, opened in 1849), spanning the River Danube in Budapest, was also designed by William Clark and it is a larger-scale version of Marlow Bridge. An interesting variation is Thornewill and Warham 's Ferry Bridge in Burton-on-Trent , Staffordshire (1889), where
10290-417: Was completed in 22 months, and cost US$ 25,000,000 to build. The bridge is anchored by four pairs of pylons, with each pylon weighing 95,000 pounds (43,091 kg). The pylons rest on 10 smaller micropiles that extend 90 feet (27 m) into bedrock. From the pylons, a total of 24 cable-stays support the approach spans, as well as the ends of the center span. A suspension cable, running from anchorages at
10395-410: Was last raised in 1972. By the 1990s, the Corps of Engineers agreed to city plans to convert the Chicago River's lift bridges to fixed spans. As the surrounding area transformed from primarily industrial to residential and commercial in nature, traffic volumes on the aging bridge increasing, causing bottlenecks. As required by National Historic Preservation Act Section 106 regulations, the city offered
10500-405: Was named after its inventor, Wendel Bollman , a self-educated Baltimore engineer. It was the first successful all-metal bridge design (patented in 1852) to be adopted and consistently used on a railroad. The design employs wrought iron tension members and cast iron compression members. The use of multiple independent tension elements reduces the likelihood of catastrophic failure. The structure
10605-414: Was passed to a separate administrative entity headed by Thomas G. Pihlfeldt. However, under Pihlfeldt's guidance the city continued to express preference for the trunnion bascule design. The bridge measured about 260 feet (79 m) from one abutment to the other. The bridge took the general form of a Pratt truss ; however, where most Pratt trusses would incline downwards at the shoreline, the tail ends of
10710-683: Was popular with the Baltimore and Ohio Railroad . The Appomattox High Bridge on the Norfolk and Western Railway included 21 Fink deck truss spans from 1869 until their replacement in 1886. There are also inverted Fink truss bridges such as the Moody Pedestrian Bridge in Austin, Texas. The Howe truss , patented in 1840 by Massachusetts millwright William Howe , includes vertical members and diagonals that slope up towards
10815-432: Was ruled out. The length of the crossing proved to be too short for a pure suspension bridge, while a pure cable-stayed bridge would require a larger tower than preferred for the site. As a result, engineers turned to the concept of a hybrid suspension/cable-stayed bridge. Prior to work on the new bridge, work crews constructed and opened a temporary bridge just to the north of the new bridge. The temporary bridge allowed for
10920-404: Was the first modern suspension bridge outside the United States built with parallel wire cables. Two towers/pillars, two suspension cables, four suspension cable anchors, multiple suspender cables, the bridge deck. The main cables of a suspension bridge will form a catenary when hanging under their own weight only. When supporting the deck, the cables will instead form a parabola , assuming
11025-436: Was two lanes wide; the new bridge has four lanes plus sidewalks, helping to reduce congestion caused by the 40,000 cars/day that travel on the bridge. James McHugh Construction Company served as the general contractor for the new bridge. Designs for the new North Avenue Bridge were constrained by several factors. An active railroad line runs along the eastern bank of the river, requiring a level-crossing or overpass. The banks of
#655344