Misplaced Pages

List of rivers of Fiji

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Geomorphology (from Ancient Greek : γῆ , gê , 'earth'; μορφή , morphḗ , 'form'; and λόγος , lógos , 'study') is the scientific study of the origin and evolution of topographic and bathymetric features generated by physical, chemical or biological processes operating at or near Earth's surface . Geomorphologists seek to understand why landscapes look the way they do, to understand landform and terrain history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling . Geomorphologists work within disciplines such as physical geography , geology , geodesy , engineering geology , archaeology , climatology , and geotechnical engineering . This broad base of interests contributes to many research styles and interests within the field.

#163836

121-422: This is a list of the rivers of Fiji . They are listed by island in clockwise order, starting at the north end of each island. Tributaries are listed under the parent stream. River A river is a natural freshwater stream that flows on land or inside caves towards another body of water at a lower elevation , such as an ocean , lake , or another river. A river may run dry before reaching

242-582: A lake , an ocean , or another river. A stream refers to water that flows in a natural channel , a geographic feature that can contain flowing water. A stream may also be referred to as a watercourse. The study of the movement of water as it occurs on Earth is called hydrology , and their effect on the landscape is covered by geomorphology . Rivers are part of the water cycle , the continuous processes by which water moves about Earth. This means that all water that flows in rivers must ultimately come from precipitation . The sides of rivers have land that

363-547: A trip hammer , and grind grains with a millstone . In the Middle Ages , water mills began to automate many aspects of manual labor , and spread rapidly. By 1300, there were at least 10,000 mills in England alone. A medieval watermill could do the work of 30–60 human workers. Water mills were often used in conjunction with dams to focus and increase the speed of the water. Water wheels continued to be used up to and through

484-740: A boat along certain stretches. In these religions, such as that of the Altai in Russia , the river is considered a living being that must be afforded respect. Rivers are some of the most sacred places in Hinduism. There is archeological evidence that mass ritual bathing in rivers at least 5,000 years ago in the Indus river valley . While most rivers in India are revered, the Ganges is most sacred. The river has

605-515: A central role in various Hindu myths, and its water is said to have properties of healing as well as absolution from sins. Hindus believe that when the cremated remains of a person is released into the Ganges, their soul is released from the mortal world. Freshwater fish make up 40% of the world's fish species, but 20% of these species are known to have gone extinct in recent years. Human uses of rivers make these species especially vulnerable. Dams and other engineered changes to rivers can block

726-413: A common outlet. Rivers have a great effect on the landscape around them. They may regularly overflow their banks and flood the surrounding area, spreading nutrients to the surrounding area. Sediment or alluvium carried by rivers shapes the landscape around it, forming deltas and islands where the flow slows down. Rivers rarely run in a straight line, instead, they bend or meander ; the locations of

847-414: A concept of physiographic regions while a conflicting trend among geographers was to equate physiography with "pure morphology", separated from its geological heritage. In the period following World War II, the emergence of process, climatic, and quantitative studies led to a preference by many earth scientists for the term "geomorphology" in order to suggest an analytical approach to landscapes rather than

968-408: A continuous flow of water throughout the year. This may be because an arid climate is too dry depending on the season to support a stream, or because a river is seasonally frozen in the winter (such as in an area with substantial permafrost ), or in the headwaters of rivers in mountains, where snowmelt is required to fuel the river. These rivers can appear in a variety of climates, and still provide

1089-491: A decline in the popularity of climatic geomorphology in the late 20th century. Stoddart criticized climatic geomorphology for applying supposedly "trivial" methodologies in establishing landform differences between morphoclimatic zones, being linked to Davisian geomorphology and by allegedly neglecting the fact that physical laws governing processes are the same across the globe. In addition some conceptions of climatic geomorphology, like that which holds that chemical weathering

1210-438: A descriptive one. During the age of New Imperialism in the late 19th century European explorers and scientists traveled across the globe bringing descriptions of landscapes and landforms. As geographical knowledge increased over time these observations were systematized in a search for regional patterns. Climate emerged thus as prime factor for explaining landform distribution at a grand scale. The rise of climatic geomorphology

1331-574: A fictional dialogue where the immortal Magu explained that the territory of the East China Sea was once a land filled with mulberry trees . The term geomorphology seems to have been first used by Laumann in an 1858 work written in German. Keith Tinkler has suggested that the word came into general use in English, German and French after John Wesley Powell and W. J. McGee used it during

SECTION 10

#1732775879164

1452-564: A habitat for aquatic life and perform other ecological functions. Subterranean rivers may flow underground through flooded caves. This can happen in karst systems, where rock dissolves to form caves. These rivers provide a habitat for diverse microorganisms and have become an important target of study by microbiologists . Other rivers and streams have been covered over or converted to run in tunnels due to human development. These rivers do not typically host any life, and are often used only for stormwater or flood control. One such example

1573-495: A large scale. This has been attributed to unusually large floods destroying infrastructure; however, there is evidence that permanent changes to climate causing higher aridity and lower river flow may have been the determining factor in what river civilizations succeeded or dissolved. Water wheels began to be used at least 2,000 years ago to harness the energy of rivers. Water wheels turn an axle that can supply rotational energy to move water into aqueducts , work metal using

1694-435: A mountain belt to promote further erosion as mass is removed from the chain and the belt uplifts. Long-term plate tectonic dynamics give rise to orogenic belts , large mountain chains with typical lifetimes of many tens of millions of years, which form focal points for high rates of fluvial and hillslope processes and thus long-term sediment production. Features of deeper mantle dynamics such as plumes and delamination of

1815-556: A peak in the 1970s, when between two or three dams were completed every day, and has since begun to decline. New dam projects are primarily focused in China , India , and other areas in Asia . The first civilizations of Earth were born on floodplains between 5,500 and 3,500 years ago. The freshwater, fertile soil, and transportation provided by rivers helped create the conditions for complex societies to emerge. Three such civilizations were

1936-891: A ritualistic sense has been compared to the Christian ritual of baptism , famously the Baptism of Jesus in the Jordan River . Floods also appear in Norse mythology , where the world is said to emerge from a void that eleven rivers flowed into. Aboriginal Australian religion and Mesoamerican mythology also have stories of floods, some of which contain no survivors, unlike the Abrahamic flood. Along with mythological rivers, religions have also cared for specific rivers as sacred rivers. The Ancient Celtic religion saw rivers as goddesses. The Nile had many gods attached to it. The tears of

2057-425: A river can take several forms. Tidal rivers (often part of an estuary ) have their levels rise and fall with the tide . Since the levels of these rivers are often already at or near sea level, the flow of alluvium and the brackish water that flows in these rivers may be either upriver or downriver depending on the time of day. Rivers that are not tidal may form deltas that continuously deposit alluvium into

2178-1026: A river's banks can change frequently. Rivers get their alluvium from erosion , which carves rock into canyons and valleys . Rivers have sustained human and animal life for millennia, including the first human civilizations . The organisms that live around or in a river such as fish , aquatic plants , and insects have different roles, including processing organic matter and predation . Rivers have produced abundant resources for humans, including food , transportation , drinking water , and recreation. Humans have engineered rivers to prevent flooding, irrigate crops, perform work with water wheels , and produce hydroelectricity from dams. People associate rivers with life and fertility and have strong religious, political, social, and mythological attachments to them. Rivers and river ecosystems are threatened by water pollution , climate change , and human activity. The construction of dams, canals , levees , and other engineered structures has eliminated habitats, has caused

2299-460: A section of the river behind them into a lake or reservoir. This can provide nearby cities with a predictable supply of drinking water. Hydroelectricity is desirable as a form of renewable energy that does not require any inputs beyond the river itself. Dams are very common worldwide, with at least 75,000 higher than 6 feet (1.8 m) in the U.S. Globally, reservoirs created by dams cover 193,500 square miles (501,000 km ). Dam-building reached

2420-490: A valley causes abrasion and plucking of the underlying rock . Abrasion produces fine sediment, termed glacial flour . The debris transported by the glacier, when the glacier recedes, is termed a moraine . Glacial erosion is responsible for U-shaped valleys, as opposed to the V-shaped valleys of fluvial origin. The way glacial processes interact with other landscape elements, particularly hillslope and fluvial processes,

2541-659: A very brief outline of some of the major figures and events in its development. The study of landforms and the evolution of the Earth's surface can be dated back to scholars of Classical Greece . In the 5th century BC, Greek historian Herodotus argued from observations of soils that the Nile delta was actively growing into the Mediterranean Sea , and estimated its age. In the 4th century BC, Greek philosopher Aristotle speculated that due to sediment transport into

SECTION 20

#1732775879164

2662-438: A water body is that body's riparian zone . Plants in the riparian zone of a river help stabilize its banks to prevent erosion and filter alluvium deposited by the river on the shore, including processing the nitrogen and other nutrients it contains. Forests in a riparian zone also provide important animal habitats . River ecosystems have also been categorized based on the variety of aquatic life they can sustain, also known as

2783-501: A water cycle that involved precipitation. The term flumen , in planetary geology , refers to channels on Saturn 's moon Titan that may carry liquid. Titan's rivers flow with liquid methane and ethane . There are river valleys that exhibit wave erosion , seas, and oceans. Scientists hope to study these systems to see how coasts erode without the influence of human activity, something that isn't possible when studying terrestrial rivers. Geomorphology Earth 's surface

2904-445: Is a tributary , and the place they meet is a confluence . Rivers must flow to lower altitudes due to gravity . The bed of a river is typically within a river valley between hills or mountains . Rivers flowing through an impermeable section of land such as rocks will erode the slopes on the sides of the river. When a river carves a plateau or a similar high-elevation area, a canyon can form, with cliffs on either side of

3025-504: Is also important for the lumber industry , as logs can be shipped via river. Countries with dense forests and networks of rivers like Sweden have historically benefited the most from this method of trade. The rise of highways and the automobile has made this practice less common. One of the first large canals was the Canal du Midi , connecting rivers within France to create a path from

3146-514: Is an ancient dam built on the Nile 4,500 years ago. The Ancient Roman civilization used aqueducts to transport water to urban areas . Spanish Muslims used mills and water wheels beginning in the seventh century. Between 130 and 1492, larger dams were built in Japan, Afghanistan, and India, including 20 dams higher than 15 metres (49 ft). Canals began to be cut in Egypt as early as 3000 BC, and

3267-603: Is an important aspect of Plio-Pleistocene landscape evolution and its sedimentary record in many high mountain environments. Environments that have been relatively recently glaciated but are no longer may still show elevated landscape change rates compared to those that have never been glaciated. Nonglacial geomorphic processes which nevertheless have been conditioned by past glaciation are termed paraglacial processes. This concept contrasts with periglacial processes, which are directly driven by formation or melting of ice or frost. Soil , regolith , and rock move downslope under

3388-448: Is at a higher elevation than the river itself, and in these areas, water flows downhill into the river. The headwaters of a river are the smaller streams that feed a river, and make up the river's source. These streams may be small and flow rapidly down the sides of mountains . All of the land uphill of a river that feeds it with water in this way is in that river's drainage basin or watershed. A ridge of higher elevation land

3509-405: Is because any natural impediment to the flow of the river may cause the current to deflect in a different direction. When this happens, the alluvium carried by the river can build up against this impediment, redirecting the course of the river. The flow is then directed against the opposite bank of the river, which will erode into a more concave shape to accommodate the flow. The bank will still block

3630-453: Is correlated with and thus can be used to predict certain data points related to rivers, such as the size of the drainage basin (drainage area), and the length of the channel. The ecosystem of a river includes the life that lives in its water, on its banks, and in the surrounding land. The width of the channel of a river, its velocity, and how shaded it is by nearby trees. Creatures in a river ecosystem may be divided into many roles based on

3751-699: Is extremely important in sedimentology . Weathering is the chemical and physical disruption of earth materials in place on exposure to atmospheric or near surface agents, and is typically studied by soil scientists and environmental chemists , but is an essential component of geomorphology because it is what provides the material that can be moved in the first place. Civil and environmental engineers are concerned with erosion and sediment transport, especially related to canals , slope stability (and natural hazards ), water quality , coastal environmental management, transport of contaminants, and stream restoration . Glaciers can cause extensive erosion and deposition in

List of rivers of Fiji - Misplaced Pages Continue

3872-497: Is in part because of a projected loss of snowpack in mountains, meaning that melting snow can't replenish rivers during warm summer months, leading to lower water levels. Lower-level rivers also have warmer temperatures, threatening species like salmon that prefer colder upstream temperatures. Attempts have been made to regulate the exploitation of rivers to preserve their ecological functions. Many wetland areas have become protected from development. Water restrictions can prevent

3993-420: Is modified by a combination of surface processes that shape landscapes, and geologic processes that cause tectonic uplift and subsidence , and shape the coastal geography . Surface processes comprise the action of water, wind, ice, wildfire , and life on the surface of the Earth, along with chemical reactions that form soils and alter material properties, the stability and rate of change of topography under

4114-611: Is more rapid in tropical climates than in cold climates proved to not be straightforwardly true. Geomorphology was started to be put on a solid quantitative footing in the middle of the 20th century. Following the early work of Grove Karl Gilbert around the turn of the 20th century, a group of mainly American natural scientists, geologists and hydraulic engineers including William Walden Rubey , Ralph Alger Bagnold , Hans Albert Einstein , Frank Ahnert , John Hack , Luna Leopold , A. Shields , Thomas Maddock , Arthur Strahler , Stanley Schumm , and Ronald Shreve began to research

4235-402: Is part of permafrost ice caps, or trace amounts of water vapor in the atmosphere. However, there is evidence that rivers flowed on Mars for at least 100,000 years. The Hellas Planitia is a crater left behind by an impact from an asteroid. It has sedimentary rock that was formed 3.7 billion years ago, and lava fields that are 3.3 billion years old. High resolution images of the surface of

4356-444: Is probably of profound importance for the terrestrial geomorphic system as a whole. Biology can influence very many geomorphic processes, ranging from biogeochemical processes controlling chemical weathering , to the influence of mechanical processes like burrowing and tree throw on soil development, to even controlling global erosion rates through modulation of climate through carbon dioxide balance. Terrestrial landscapes in which

4477-633: Is rarely static, the exact location of a river border may be called into question by countries. The Rio Grande between the United States and Mexico is regulated by the International Boundary and Water Commission to manage the right to fresh water from the river, as well as mark the exact location of the border. Up to 60% of fresh water used by countries comes from rivers that cross international borders. This can cause disputes between countries that live upstream and downstream of

4598-415: Is since the 1990s no longer accepted by mainstream scholarship as a basis for geomorphological studies. Albeit having its importance diminished, climatic geomorphology continues to exist as field of study producing relevant research. More recently concerns over global warming have led to a renewed interest in the field. Despite considerable criticism, the cycle of erosion model has remained part of

4719-701: Is that of the Mississippi River , whose drainage basin covers 40% of the contiguous United States . The river was then used for shipping crops from the American Midwest and cotton from the American South to other states as well as the Atlantic Ocean. The role of urban rivers has evolved from when they were a center of trade, food, and transportation to modern times when these uses are less necessary. Rivers remain central to

4840-553: Is the Sunswick Creek in New York City, which was covered in the 1800s and now exists only as a sewer-like pipe. While rivers may flow into lakes or man-made features such as reservoirs , the water they contain will always tend to flow down toward the ocean . However, if human activity siphons too much water away from a river for other uses, the riverbed may run dry before reaching the sea. The outlets mouth of

4961-842: Is what typically separates drainage basins; water on one side of a ridge will flow into one set of rivers, and water on the other side will flow into another. One example of this is the Continental Divide of the Americas in the Rocky Mountains . Water on the western side of the divide flows into the Pacific Ocean , whereas water on the other side flows into the Atlantic Ocean . Not all precipitation flows directly into rivers; some water seeps into underground aquifers . These, in turn, can still feed rivers via

List of rivers of Fiji - Misplaced Pages Continue

5082-599: The 2024 Summer Olympics . Another example is the restoration of the Isar in Munich from being a fully canalized channel with hard embankments to being wider with naturally sloped banks and vegetation. This has improved wildlife habitat in the Isar, and provided more opportunities for recreation in the river. As a natural barrier , rivers are often used as a border between countries , cities, and other territories . For example,

5203-420: The Atlantic Ocean to the Mediterranean Sea . The nineteenth century saw canal-building become more common, with the U.S. building 4,400 miles (7,100 km) of canals by 1830. Rivers began to be used by cargo ships at a larger scale, and these canals were used in conjunction with river engineering projects like dredging and straightening to ensure the efficient flow of goods. One of the largest such projects

5324-597: The Bulletin of the Geological Society of America , and received only few citations prior to 2000 (they are examples of "sleeping beauties" ) when a marked increase in quantitative geomorphology research occurred. Quantitative geomorphology can involve fluid dynamics and solid mechanics , geomorphometry , laboratory studies, field measurements, theoretical work, and full landscape evolution modeling . These approaches are used to understand weathering and

5445-501: The Industrial Revolution as a source of power for textile mills and other factories, but were eventually supplanted by steam power . Rivers became more industrialized with the growth of technology and the human population . As fish and water could be brought from elsewhere, and goods and people could be transported via railways , pre-industrial river uses diminished in favor of more complex uses. This meant that

5566-791: The Lamari River in New Guinea separates the Angu and the Fore people in New Guinea. The two cultures speak different languages and rarely mix. 23% of international borders are large rivers (defined as those over 30 meters wide). The traditional northern border of the Roman Empire was the Danube , a river that today forms the border of Hungary and Slovakia . Since the flow of a river

5687-525: The Nile and the Ganges . The Quran describes these four rivers as flowing with water, milk, wine, and honey, respectively. The book of Genesis also contains a story of a great flood . Similar myths are present in the Epic of Gilgamesh , Sumerian mythology, and in other cultures. In Genesis, the flood's role was to cleanse Earth of the wrongdoing of humanity. The act of water working to cleanse humans in

5808-568: The River Continuum Concept . "Shredders" are organisms that consume this organic material. The role of a "grazer" or "scraper" organism is to feed on the algae that collects on rocks and plants. "Collectors" consume the detritus of dead organisms. Lastly, predators feed on living things to survive. The river can then be modeled by the availability of resources for each creature's role. A shady area with deciduous trees might experience frequent deposits of organic matter in

5929-627: The River Lethe to forget their previous life. Rivers also appear in descriptions of paradise in Abrahamic religions , beginning with the story of Genesis . A river beginning in the Garden of Eden waters the garden and then splits into four rivers that flow to provide water to the world. These rivers include the Tigris and Euphrates , and two rivers that are possibly apocryphal but may refer to

6050-787: The Sumerians in the Tigris–Euphrates river system , the Ancient Egyptian civilization in the Nile, and the Indus Valley Civilization on the Indus River . The desert climates of the surrounding areas made these societies especially reliant on rivers for survival, leading to people clustering in these areas to form the first cities . It is also thought that these civilizations were the first to organize

6171-485: The climate . The alluvium carried by rivers, laden with minerals, is deposited into the floodplain when the banks spill over, providing new nutrients to the soil, allowing them to support human activity like farming as well as a host of plant and animal life. Deposited sediment from rivers can form temporary or long-lasting fluvial islands . These islands exist in almost every river. About half of all waterways on Earth are intermittent rivers , which do not always have

SECTION 50

#1732775879164

6292-685: The cultural identity of cities and nations. Famous examples include the River Thames 's relationship to London , the Seine to Paris , and the Hudson River to New York City . The restoration of water quality and recreation to urban rivers has been a goal of modern administrations. For example, swimming was banned in the Seine for over 100 years due to concerns about pollution and the spread of E. coli , until cleanup efforts to allow its use in

6413-484: The discharge of a river, the amount of water passing through it at a particular time. The flow of a river can act as a means of transportation for plant and animal species, as well as a barrier. For example, the Amazon River is so wide in parts that the variety of species on either side of its basin are distinct. Some fish may swim upstream to spawn as part of a seasonal migration . Species that travel from

6534-465: The extinction of some species, and lowered the amount of alluvium flowing through rivers. Decreased snowfall from climate change has resulted in less water available for rivers during the summer. Regulation of pollution, dam removal , and sewage treatment have helped to improve water quality and restore river habitats. A river is a natural flow of freshwater that flows on or through land towards another body of water downhill. This flow can be into

6655-436: The sea . The sediment yield of a river is the quantity of sand per unit area within a watershed that is removed over a period of time. The monitoring of the sediment yield of a river is important for ecologists to understand the health of its ecosystems, the rate of erosion of the river's environment, and the effects of human activity. Rivers rarely run in a straight direction, instead preferring to bend or meander . This

6776-521: The water table , the groundwater beneath the surface of the land stored in the soil . Water flows into rivers in places where the river's elevation is lower than that of the water table. This phenomenon is why rivers can still flow even during times of drought . Rivers are also fed by the melting of snow glaciers present in higher elevation regions. In summer months, higher temperatures melt snow and ice, causing additional water to flow into rivers. Glacier melt can supplement snow melt in times like

6897-667: The Earth illustrate this intersection of surface and subsurface action. Mountain belts are uplifted due to geologic processes. Denudation of these high uplifted regions produces sediment that is transported and deposited elsewhere within the landscape or off the coast. On progressively smaller scales, similar ideas apply, where individual landforms evolve in response to the balance of additive processes (uplift and deposition) and subtractive processes ( subsidence and erosion ). Often, these processes directly affect each other: ice sheets, water, and sediment are all loads that change topography through flexural isostasy . Topography can modify

7018-655: The Earth, biological processes such as burrowing or tree throw may play important roles in setting the rates of some hillslope processes. Both volcanic (eruptive) and plutonic (intrusive) igneous processes can have important impacts on geomorphology. The action of volcanoes tends to rejuvenize landscapes, covering the old land surface with lava and tephra , releasing pyroclastic material and forcing rivers through new paths. The cones built by eruptions also build substantial new topography, which can be acted upon by other surface processes. Plutonic rocks intruding then solidifying at depth can cause both uplift or subsidence of

7139-530: The International Geological Conference of 1891. John Edward Marr in his The Scientific Study of Scenery considered his book as, 'an Introductory Treatise on Geomorphology, a subject which has sprung from the union of Geology and Geography'. An early popular geomorphic model was the geographical cycle or cycle of erosion model of broad-scale landscape evolution developed by William Morris Davis between 1884 and 1899. It

7260-441: The availability of sediment itself and on the river's discharge . Rivers are also capable of eroding into rock and forming new sediment, both from their own beds and also by coupling to the surrounding hillslopes. In this way, rivers are thought of as setting the base level for large-scale landscape evolution in nonglacial environments. Rivers are key links in the connectivity of different landscape elements. As rivers flow across

7381-695: The bodies of humans and animals worldwide, as well as in the soil, with potentially negative health effects. Research into how to remove it from the environment, and how harmful exposure is, is ongoing. Fertilizer from farms can lead to a proliferation of algae on the surface of rivers and oceans, which prevents oxygen and light from dissolving into water, making it impossible for underwater life to survive in these so-called dead zones . Urban rivers are typically surrounded by impermeable surfaces like stone, asphalt , and concrete. Cities often have storm drains that direct this water to rivers. This can cause flooding risk as large amounts of water are directed into

SECTION 60

#1732775879164

7502-539: The centuries. He inferred that the land was reshaped and formed by soil erosion of the mountains and by deposition of silt , after observing strange natural erosions of the Taihang Mountains and the Yandang Mountain near Wenzhou . Furthermore, he promoted the theory of gradual climate change over centuries of time once ancient petrified bamboos were found to be preserved underground in

7623-405: The complete draining of rivers. Limits on the construction of dams, as well as dam removal , can restore the natural habitats of river species. Regulators can also ensure regular releases of water from dams to keep animal habitats supplied with water. Limits on pollutants like pesticides can help improve water quality. Today, the surface of Mars does not have liquid water. All water on Mars

7744-457: The cycle over. In the decades following Davis's development of this idea, many of those studying geomorphology sought to fit their findings into this framework, known today as "Davisian". Davis's ideas are of historical importance, but have been largely superseded today, mainly due to their lack of predictive power and qualitative nature. In the 1920s, Walther Penck developed an alternative model to Davis's. Penck thought that landform evolution

7865-571: The dry, northern climate zone of Yanzhou , which is now modern day Yan'an , Shaanxi province. Previous Chinese authors also presented ideas about changing landforms. Scholar-official Du Yu (222–285) of the Western Jin dynasty predicted that two monumental stelae recording his achievements, one buried at the foot of a mountain and the other erected at the top, would eventually change their relative positions over time as would hills and valleys. Daoist alchemist Ge Hong (284–364) created

7986-413: The early 1900s, the study of regional-scale geomorphology was termed "physiography". Physiography later was considered to be a contraction of " physi cal" and "ge ography ", and therefore synonymous with physical geography , and the concept became embroiled in controversy surrounding the appropriate concerns of that discipline. Some geomorphologists held to a geological basis for physiography and emphasized

8107-495: The early 19th century, authors – especially in Europe – had tended to attribute the form of landscapes to local climate , and in particular to the specific effects of glaciation and periglacial processes. In contrast, both Davis and Penck were seeking to emphasize the importance of evolution of landscapes through time and the generality of the Earth's surface processes across different landscapes under different conditions. During

8228-436: The effect of normalizing the effects of rivers; the greatest floods are smaller and more predictable, and larger sections are open for navigation by boats and other watercraft. A major effect of river engineering has been a reduced sediment output of large rivers. For example, the Mississippi River produced 400 million tons of sediment per year. Due to the construction of reservoirs , sediment buildup in man-made levees , and

8349-531: The end of its course if it runs out of water, or only flow during certain seasons. Rivers are regulated by the water cycle , the processes by which water moves around the Earth. Water first enters rivers through precipitation , whether from rainfall, the runoff of water down a slope, the melting of glaciers or snow , or seepage from aquifers beneath the surface of the Earth. Rivers flow in channeled watercourses and merge in confluences to form drainage basins , areas where surface water eventually flows to

8470-430: The field of geomorphology encompasses a very wide range of different approaches and interests. Modern researchers aim to draw out quantitative "laws" that govern Earth surface processes, but equally, recognize the uniqueness of each landscape and environment in which these processes operate. Particularly important realizations in contemporary geomorphology include: According to Karna Lidmar-Bergström , regional geography

8591-451: The fish zonation concept. Smaller rivers can only sustain smaller fish that can comfortably fit in its waters, whereas larger rivers can contain both small fish and large fish. This means that larger rivers can host a larger variety of species. This is analogous to the species-area relationship , the concept of larger habitats being host to more species. In this case, it is known as the species-discharge relationship, referring specifically to

8712-673: The floating of wood on rivers to transport it, was especially important. Rivers also were an important source of drinking water . For civilizations built around rivers, fish were an important part of the diet of humans. Some rivers supported fishing activities, but were ill-suited to farming, such as those in the Pacific Northwest . Other animals that live in or near rivers like frogs , mussels , and beavers could provide food and valuable goods such as fur . Humans have been building infrastructure to use rivers for thousands of years. The Sadd el-Kafara dam near Cairo , Egypt,

8833-412: The flow of the river beneath its surface. These help rivers flow straighter by increasing the speed of the water at the middle of the channel, helping to control floods. Levees are also used for this purpose. They can be thought of as dams constructed on the sides of rivers, meant to hold back water from flooding the surrounding area during periods of high rainfall. They are often constructed by building up

8954-399: The flow, causing it to reflect in the other direction. Thus, a bend in the river is created. Rivers may run through low, flat regions on their way to the sea. These places may have floodplains that are periodically flooded when there is a high level of water running through the river. These events may be referred to as "wet seasons' and "dry seasons" when the flooding is predictable due to

9075-590: The force of gravity via creep , slides , flows, topples, and falls. Such mass wasting occurs on both terrestrial and submarine slopes, and has been observed on Earth , Mars , Venus , Titan and Iapetus . Ongoing hillslope processes can change the topology of the hillslope surface, which in turn can change the rates of those processes. Hillslopes that steepen up to certain critical thresholds are capable of shedding extremely large volumes of material very quickly, making hillslope processes an extremely important element of landscapes in tectonically active areas. On

9196-401: The force of gravity , and other factors, such as (in the very recent past) human alteration of the landscape. Many of these factors are strongly mediated by climate . Geologic processes include the uplift of mountain ranges , the growth of volcanoes , isostatic changes in land surface elevation (sometimes in response to surface processes), and the formation of deep sedimentary basins where

9317-494: The form of landscape elements such as rivers and hillslopes by taking systematic, direct, quantitative measurements of aspects of them and investigating the scaling of these measurements. These methods began to allow prediction of the past and future behavior of landscapes from present observations, and were later to develop into the modern trend of a highly quantitative approach to geomorphic problems. Many groundbreaking and widely cited early geomorphology studies appeared in

9438-650: The form of leaves. In this type of ecosystem, collectors and shredders will be most active. As the river becomes deeper and wider, it may move slower and receive more sunlight . This supports invertebrates and a variety of fish , as well as scrapers feeding on algae. Further downstream, the river may get most of its energy from organic matter that was already processed upstream by collectors and shredders. Predators may be more active here, including fish that feed on plants, plankton , and other fish. The flood pulse concept focuses on habitats that flood seasonally, including lakes and marshes . The land that interfaces with

9559-670: The formation of soils , sediment transport , landscape change, and the interactions between climate, tectonics, erosion, and deposition. In Sweden Filip Hjulström 's doctoral thesis, "The River Fyris" (1935), contained one of the first quantitative studies of geomorphological processes ever published. His students followed in the same vein, making quantitative studies of mass transport ( Anders Rapp ), fluvial transport ( Åke Sundborg ), delta deposition ( Valter Axelsson ), and coastal processes ( John O. Norrman ). This developed into "the Uppsala School of Physical Geography ". Today,

9680-427: The geologic and atmospheric history of those planets but also extends geomorphological study of the Earth. Planetary geomorphologists often use Earth analogues to aid in their study of surfaces of other planets. Other than some notable exceptions in antiquity, geomorphology is a relatively young science, growing along with interest in other aspects of the earth sciences in the mid-19th century. This section provides

9801-508: The goddess Isis were said to be the cause of the river's yearly flooding, itself personified by the goddess Hapi . Many African religions regard certain rivers as the originator of life. In Yoruba religion , Yemọja rules over the Ogun River in modern-day Nigeria and is responsible for creating all children and fish. Some sacred rivers have religious prohibitions attached to them, such as not being allowed to drink from them or ride in

9922-428: The irrigation of desert environments for growing food. Growing food at scale allowed people to specialize in other roles, form hierarchies, and organize themselves in new ways, leading to the birth of civilization. In pre-industrial society , rivers were a source of transportation and abundant resources. Many civilizations depended on what resources were local to them to survive. Shipping of commodities, especially

10043-677: The landscape, they generally increase in size, merging with other rivers. The network of rivers thus formed is a drainage system . These systems take on four general patterns: dendritic, radial, rectangular, and trellis. Dendritic happens to be the most common, occurring when the underlying stratum is stable (without faulting). Drainage systems have four primary components: drainage basin , alluvial valley, delta plain, and receiving basin. Some geomorphic examples of fluvial landforms are alluvial fans , oxbow lakes , and fluvial terraces . Glaciers , while geographically restricted, are effective agents of landscape change. The gradual movement of ice down

10164-474: The landscape. Fluvial geomorphologists focus on rivers , how they transport sediment , migrate across the landscape , cut into bedrock , respond to environmental and tectonic changes, and interact with humans. Soils geomorphologists investigate soil profiles and chemistry to learn about the history of a particular landscape and understand how climate, biota, and rock interact. Other geomorphologists study how hillslopes form and change. Still others investigate

10285-434: The late summer, when there may be less snow left to melt, helping to ensure that the rivers downstream of the glaciers have a continuous supply of water. Rivers flow downhill, with their direction determined by gravity . A common misconception holds that all or most rivers flow from North to South, but this is not true. As rivers flow downstream, they eventually merge to form larger rivers. A river that feeds into another

10406-474: The level of river branching in a drainage basin. Several systems of stream order exist, one of which is the Strahler number . In this system, the first tributaries of a river are 1st order rivers. When two 1st order rivers merge, the resulting river is 2nd order. If a river of a higher order and a lower order merge, the order is incremented from whichever of the previous rivers had the higher order. Stream order

10527-691: The local climate, for example through orographic precipitation , which in turn modifies the topography by changing the hydrologic regime in which it evolves. Many geomorphologists are particularly interested in the potential for feedbacks between climate and tectonics , mediated by geomorphic processes. In addition to these broad-scale questions, geomorphologists address issues that are more specific or more local. Glacial geomorphologists investigate glacial deposits such as moraines , eskers , and proglacial lakes , as well as glacial erosional features, to build chronologies of both small glaciers and large ice sheets and understand their motions and effects upon

10648-561: The local ecosystems of rivers needed less protection as humans became less reliant on them for their continued flourishing. River engineering began to develop projects that enabled industrial hydropower , canals for the more efficient movement of goods, as well as projects for flood prevention . River transportation has historically been significantly cheaper and faster than transportation by land. Rivers helped fuel urbanization as goods such as grain and fuel could be floated downriver to supply cities with resources. River transportation

10769-465: The lower lithosphere have also been hypothesised to play important roles in the long term (> million year), large scale (thousands of km) evolution of the Earth's topography (see dynamic topography ). Both can promote surface uplift through isostasy as hotter, less dense, mantle rocks displace cooler, denser, mantle rocks at depth in the Earth. Marine processes are those associated with the action of waves, marine currents and seepage of fluids through

10890-407: The mechanical shadoof began to be used to raise the elevation of water. Drought years harmed crop yields, and leaders of society were incentivized to ensure regular water and food availability to remain in power. Engineering projects like the shadoof and canals could help prevent these crises. Despite this, there is evidence that floodplain-based civilizations may have been abandoned occasionally at

11011-516: The mid-20th century considered both un-innovative and dubious. Early climatic geomorphology developed primarily in continental Europe while in the English-speaking world the tendency was not explicit until L.C. Peltier's 1950 publication on a periglacial cycle of erosion. Climatic geomorphology was criticized in a 1969 review article by process geomorphologist D.R. Stoddart . The criticism by Stoddart proved "devastating" sparking

11132-400: The migration routes of fish and destroy habitats. Rivers that flow freely from headwaters to the sea have better water quality, and also retain their ability to transport nutrient-rich alluvium and other organic material downstream, keeping the ecosystem healthy. The creation of a lake changes the habitat of that portion of water, and blocks the transportation of sediment, as well as preventing

11253-399: The natural meandering of the river. Dams block the migration of fish such as salmon for which fish ladder and other bypass systems have been attempted, but these are not always effective. Pollution from factories and urban areas can also damage water quality. " Per- and polyfluoroalkyl substances (PFAS) is a widely used chemical that breaks down at a slow rate. It has been found in

11374-429: The natural terrain with soil or clay. Some levees are supplemented with floodways, channels used to redirect floodwater away from farms and populated areas. Dams restrict the flow of water through a river. They can be built for navigational purposes, providing a higher level of water upstream for boats to travel in. They may also be used for hydroelectricity , or power generation from rivers. Dams typically transform

11495-857: The physics of landscapes. Geomorphologists may rely on geochronology , using dating methods to measure the rate of changes to the surface. Terrain measurement techniques are vital to quantitatively describe the form of the Earth's surface, and include differential GPS , remotely sensed digital terrain models and laser scanning , to quantify, study, and to generate illustrations and maps. Practical applications of geomorphology include hazard assessment (such as landslide prediction and mitigation ), river control and stream restoration , and coastal protection. Planetary geomorphology studies landforms on other terrestrial planets such as Mars. Indications of effects of wind , fluvial , glacial , mass wasting , meteor impact , tectonics and volcanic processes are studied. This effort not only helps better understand

11616-425: The plain show evidence of a river network, and even river deltas. These images reveal channels formed in the rock, recognized by geologists who study rivers on Earth as being formed by rivers, as well as "bench and slope" landforms, outcroppings of rock that show evidence of river erosion. Not only do these formations suggest that rivers once existed, but that they flowed for extensive time periods, and were part of

11737-423: The relationships between ecology and geomorphology. Because geomorphology is defined to comprise everything related to the surface of the Earth and its modification, it is a broad field with many facets. Geomorphologists use a wide range of techniques in their work. These may include fieldwork and field data collection, the interpretation of remotely sensed data, geochemical analyses, and the numerical modelling of

11858-448: The removal of natural banks replaced with revetments , this sediment output has been reduced by 60%. The most basic river projects involve the clearing of obstructions like fallen trees. This can scale up to dredging , the excavation of sediment buildup in a channel, to provide a deeper area for navigation. These activities require regular maintenance as the location of the river banks changes over time, floods bring foreign objects into

11979-536: The reverse, death and destruction, especially through floods . This power has caused rivers to have a central role in religion , ritual , and mythology . In Greek mythology , the underworld is bordered by several rivers. Ancient Greeks believed that the souls of those who perished had to be borne across the River Styx on a boat by Charon in exchange for money. Souls that were judged to be good were admitted to Elysium and permitted to drink water from

12100-468: The river, and natural sediment buildup continues. Artificial channels are often constructed to "cut off" winding sections of a river with a shorter path, or to direct the flow of a river in a straighter direction. This effect, known as channelization, has made the distance required to traverse the Missouri River in 116 kilometres (72 mi) shorter. Dikes are channels built perpendicular to

12221-552: The river. Areas of a river with softer rock weather faster than areas with harder rock, causing a difference in elevation between two points of a river. This can cause the formation of a waterfall as the river's flow falls down a vertical drop. A river in a permeable area does not exhibit this behavior and may even have raised banks due to sediment. Rivers also change their landscape through their transportation of sediment , often known as alluvium when applied specifically to rivers. This debris comes from erosion performed by

12342-625: The river. A country that is downstream of another may object to the upstream country diverting too much water for agricultural uses, pollution, as well as the creation of dams that change the river's flow characteristics. For example, Egypt has an agreement with Sudan requiring a specific minimum volume of water to pass into the Nile yearly over the Aswan Dam , to maintain both countries access to water. The importance of rivers throughout human history has given them an association with life and fertility . They have also become associated with

12463-457: The rivers themselves, debris swept into rivers by rainfall, as well as erosion caused by the slow movement of glaciers. The sand in deserts and the sediment that forms bar islands is from rivers. The particle size of the debris is gradually sorted by the river, with heavier particles like rocks sinking to the bottom, and finer particles like sand or silt carried further downriver . This sediment may be deposited in river valleys or carried to

12584-412: The rivers. Due to these impermeable surfaces, these rivers often have very little alluvium carried in them, causing more erosion once the river exits the impermeable area. It has historically been common for sewage to be directed directly to rivers via sewer systems without being treated, along with pollution from industry. This has resulted in a loss of animal and plant life in urban rivers, as well as

12705-487: The role of biology in mediating surface processes can be definitively excluded are extremely rare, but may hold important information for understanding the geomorphology of other planets, such as Mars . Rivers and streams are not only conduits of water, but also of sediment . The water, as it flows over the channel bed, is able to mobilize sediment and transport it downstream, either as bed load , suspended load or dissolved load . The rate of sediment transport depends on

12826-760: The science of historical geology . While acknowledging its shortcomings, modern geomorphologists Andrew Goudie and Karna Lidmar-Bergström have praised it for its elegance and pedagogical value respectively. Geomorphically relevant processes generally fall into (1) the production of regolith by weathering and erosion , (2) the transport of that material, and (3) its eventual deposition . Primary surface processes responsible for most topographic features include wind , waves , chemical dissolution , mass wasting , groundwater movement, surface water flow, glacial action , tectonism , and volcanism . Other more exotic geomorphic processes might include periglacial (freeze-thaw) processes, salt-mediated action, changes to

12947-409: The science of geomorphology. The model or theory has never been proved wrong, but neither has it been proven. The inherent difficulties of the model have instead made geomorphological research to advance along other lines. In contrast to its disputed status in geomorphology, the cycle of erosion model is a common approach used to establish denudation chronologies , and is thus an important concept in

13068-409: The sea from their mouths. Depending on the activity of waves, the strength of the river, and the strength of the tidal current, the sediment can accumulate to form new land. When viewed from above, a delta can appear to take the form of several triangular shapes as the river mouth appears to fan out from the original coastline . In hydrology , a stream order is a positive integer used to describe

13189-414: The sea to breed in freshwater rivers are anadromous. Salmon are an anadromous fish that may die in the river after spawning, contributing nutrients back to the river ecosystem. Modern river engineering involves a large-scale collection of independent river engineering structures that have the goal of flood control , improved navigation, recreation, and ecosystem management. Many of these projects have

13310-532: The sea, eventually those seas would fill while the land lowered. He claimed that this would mean that land and water would eventually swap places, whereupon the process would begin again in an endless cycle. The Encyclopedia of the Brethren of Purity published in Arabic at Basra during the 10th century also discussed the cyclical changing positions of land and sea with rocks breaking down and being washed into

13431-525: The sea, their sediment eventually rising to form new continents. The medieval Persian Muslim scholar Abū Rayhān al-Bīrūnī (973–1048), after observing rock formations at the mouths of rivers, hypothesized that the Indian Ocean once covered all of India . In his De Natura Fossilium of 1546, German metallurgist and mineralogist Georgius Agricola (1494–1555) wrote about erosion and natural weathering . Another early theory of geomorphology

13552-755: The seabed caused by marine currents, seepage of fluids through the seafloor or extraterrestrial impact. Aeolian processes pertain to the activity of the winds and more specifically, to the winds' ability to shape the surface of the Earth . Winds may erode, transport, and deposit materials, and are effective agents in regions with sparse vegetation and a large supply of fine, unconsolidated sediments . Although water and mass flow tend to mobilize more material than wind in most environments, aeolian processes are important in arid environments such as deserts . The interaction of living organisms with landforms, or biogeomorphologic processes , can be of many different forms, and

13673-459: The seafloor. Mass wasting and submarine landsliding are also important processes for some aspects of marine geomorphology. Because ocean basins are the ultimate sinks for a large fraction of terrestrial sediments, depositional processes and their related forms (e.g., sediment fans, deltas ) are particularly important as elements of marine geomorphology. There is a considerable overlap between geomorphology and other fields. Deposition of material

13794-519: The spread of waterborne diseases such as cholera . In modern times, sewage treatment and controls on pollution from factories have improved the water quality of urban rivers. Climate change can change the flooding cycles and water supply available to rivers. Floods can be larger and more destructive than expected, causing damage to the surrounding areas. Floods can also wash unhealthy chemicals and sediment into rivers. Droughts can be deeper and longer, causing rivers to run dangerously low. This

13915-407: The surface of the Earth drops and is filled with material eroded from other parts of the landscape. The Earth's surface and its topography therefore are an intersection of climatic , hydrologic , and biologic action with geologic processes, or alternatively stated, the intersection of the Earth's lithosphere with its hydrosphere , atmosphere , and biosphere . The broad-scale topographies of

14036-596: The surface, depending on whether the new material is denser or less dense than the rock it displaces. Tectonic effects on geomorphology can range from scales of millions of years to minutes or less. The effects of tectonics on landscape are heavily dependent on the nature of the underlying bedrock fabric that more or less controls what kind of local morphology tectonics can shape. Earthquakes can, in terms of minutes, submerge large areas of land forming new wetlands. Isostatic rebound can account for significant changes over hundreds to thousands of years, and allows erosion of

14157-434: Was German, and during his lifetime his ideas were at times rejected vigorously by the English-speaking geomorphology community. His early death, Davis' dislike for his work, and his at-times-confusing writing style likely all contributed to this rejection. Both Davis and Penck were trying to place the study of the evolution of the Earth's surface on a more generalized, globally relevant footing than it had been previously. In

14278-444: Was an elaboration of the uniformitarianism theory that had first been proposed by James Hutton (1726–1797). With regard to valley forms, for example, uniformitarianism posited a sequence in which a river runs through a flat terrain, gradually carving an increasingly deep valley, until the side valleys eventually erode, flattening the terrain again, though at a lower elevation. It was thought that tectonic uplift could then start

14399-416: Was better described as an alternation between ongoing processes of uplift and denudation, as opposed to Davis's model of a single uplift followed by decay. He also emphasised that in many landscapes slope evolution occurs by backwearing of rocks, not by Davisian-style surface lowering, and his science tended to emphasise surface process over understanding in detail the surface history of a given locality. Penck

14520-445: Was devised by Song dynasty Chinese scientist and statesman Shen Kuo (1031–1095). This was based on his observation of marine fossil shells in a geological stratum of a mountain hundreds of miles from the Pacific Ocean . Noticing bivalve shells running in a horizontal span along the cut section of a cliffside, he theorized that the cliff was once the pre-historic location of a seashore that had shifted hundreds of miles over

14641-402: Was foreshadowed by the work of Wladimir Köppen , Vasily Dokuchaev and Andreas Schimper . William Morris Davis , the leading geomorphologist of his time, recognized the role of climate by complementing his "normal" temperate climate cycle of erosion with arid and glacial ones. Nevertheless, interest in climatic geomorphology was also a reaction against Davisian geomorphology that was by

#163836