122-629: Neisseria is a large genus of bacteria that colonize the mucosal surfaces of many animals. Of the 11 species that colonize humans, only two are pathogens , N. meningitidis and N. gonorrhoeae . Neisseria species are Gram-negative bacteria included among the Pseudomonadota , a large group of Gram-negative forms. Neisseria diplococci resemble coffee beans when viewed microscopically. Species of this genus (family Neisseriaceae) of parasitic bacteria grow in pairs and occasionally fours, and thrive best at 98.6 °F (37 °C) in
244-486: A core polysaccharide and lipid A . It functions as an endotoxin , protects against antimicrobial peptides , and adheres to the asialoglycoprotein receptor on urethral epithelium . LOS is highly stimulatory to the human immune system. LOS sialylation (by the enzyme Lst) prevents phagocytosis by neutrophils and complement deposition. LOS modification by phosphoethanolamine (by the enzyme LptA) provides resistance to antimicrobial peptides and complement. Strains of
366-406: A nucleus and rarely harbour membrane -bound organelles . Although the term bacteria traditionally included all prokaryotes, the scientific classification changed after the discovery in the 1990s that prokaryotes consist of two very different groups of organisms that evolved from an ancient common ancestor . These evolutionary domains are called Bacteria and Archaea . The word bacteria
488-543: A potential difference analogous to a battery. The general lack of internal membranes in bacteria means these reactions, such as electron transport , occur across the cell membrane between the cytoplasm and the outside of the cell or periplasm . However, in many photosynthetic bacteria, the plasma membrane is highly folded and fills most of the cell with layers of light-gathering membrane. These light-gathering complexes may even form lipid-enclosed structures called chlorosomes in green sulfur bacteria . Bacteria do not have
610-404: A terminal electron acceptor in a redox reaction . Chemotrophs are further divided by the types of compounds they use to transfer electrons. Bacteria that derive electrons from inorganic compounds such as hydrogen, carbon monoxide , or ammonia are called lithotrophs , while those that use organic compounds are called organotrophs . Still, more specifically, aerobic organisms use oxygen as
732-744: A bacterial strain. However, liquid growth media are used when the measurement of growth or large volumes of cells are required. Growth in stirred liquid media occurs as an even cell suspension, making the cultures easy to divide and transfer, although isolating single bacteria from liquid media is difficult. The use of selective media (media with specific nutrients added or deficient, or with antibiotics added) can help identify specific organisms. Most laboratory techniques for growing bacteria use high levels of nutrients to produce large amounts of cells cheaply and quickly. However, in natural environments, nutrients are limited, meaning that bacteria cannot continue to reproduce indefinitely. This nutrient limitation has led
854-424: A disorganised slime layer of extracellular polymeric substances to a highly structured capsule . These structures can protect cells from engulfment by eukaryotic cells such as macrophages (part of the human immune system ). They can also act as antigens and be involved in cell recognition, as well as aiding attachment to surfaces and the formation of biofilms. The assembly of these extracellular structures
976-413: A few micrometres in thickness to up to half a metre in depth, and may contain multiple species of bacteria, protists and archaea. Bacteria living in biofilms display a complex arrangement of cells and extracellular components, forming secondary structures, such as microcolonies , through which there are networks of channels to enable better diffusion of nutrients. In natural environments, such as soil or
1098-415: A few species are visible to the unaided eye—for example, Thiomargarita namibiensis is up to half a millimetre long, Epulopiscium fishelsoni reaches 0.7 mm, and Thiomargarita magnifica can reach even 2 cm in length, which is 50 times larger than other known bacteria. Among the smallest bacteria are members of the genus Mycoplasma , which measure only 0.3 micrometres, as small as
1220-426: A fixed size and then reproduce through binary fission , a form of asexual reproduction . Under optimal conditions, bacteria can grow and divide extremely rapidly, and some bacterial populations can double as quickly as every 17 minutes. In cell division, two identical clone daughter cells are produced. Some bacteria, while still reproducing asexually, form more complex reproductive structures that help disperse
1342-546: A glass slide (" non-blanching ") and does not cause the classical symptoms of meningitis. This means the condition may be ignored by those not aware of the significance of the rash. Septicaemia carries an approximate 50% mortality rate over a few hours from initial onset. Other severe complications include Waterhouse–Friderichsen syndrome , a massive, usually bilateral, hemorrhage into the adrenal glands caused by fulminant meningococcemia, adrenal insufficiency , and disseminated intravascular coagulation . Not all instances of
SECTION 10
#17327763663251464-546: A hypervirulent strain. This illustrates how hypervirulent strains can arise from non-pathgenic strains due to the high propensity of gene transfers and DNA uptake by N. meningitidis . A small amount of cerebrospinal fluid (CSF) is sent to the laboratory as soon as possible for analysis. The diagnosis is suspected, when Gram-negative diplococci are seen on Gram stain of a centrifuged sample of CSF; sometimes they are located inside white blood cells . The microscopic identification takes around 1–2 hours after specimen arrival in
1586-418: A large domain of prokaryotic microorganisms . Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth , and are present in most of its habitats . Bacteria inhabit the air, soil, water, acidic hot springs , radioactive waste , and the deep biosphere of Earth's crust . Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and
1708-408: A membrane-bound nucleus, and their genetic material is typically a single circular bacterial chromosome of DNA located in the cytoplasm in an irregularly shaped body called the nucleoid . The nucleoid contains the chromosome with its associated proteins and RNA . Like all other organisms , bacteria contain ribosomes for the production of proteins, but the structure of the bacterial ribosome
1830-403: A neighboring cell and integrates this DNA into the recipient's genome by recombination . In N. meningitidis , DNA transformation requires the presence of short DNA sequences (9–10 mers residing in coding regions ) of the donor DNA. These sequences are called DNA uptake sequences (DUSs) . Specific recognition of these sequences is mediated by a type IV pilin . In N. meningitidis DUSs occur at
1952-528: A particular organism or group of organisms ( syntrophy ). Bacterial growth follows four phases. When a population of bacteria first enter a high-nutrient environment that allows growth, the cells need to adapt to their new environment. The first phase of growth is the lag phase , a period of slow growth when the cells are adapting to the high-nutrient environment and preparing for fast growth. The lag phase has high biosynthesis rates, as proteins necessary for rapid growth are produced. The second phase of growth
2074-415: A process called transformation . Many bacteria can naturally take up DNA from the environment, while others must be chemically altered in order to induce them to take up DNA. The development of competence in nature is usually associated with stressful environmental conditions and seems to be an adaptation for facilitating repair of DNA damage in recipient cells. Second, bacteriophages can integrate into
2196-421: A purpura-like rash are due to meningococcal septicaemia; other possible causes, such as idiopathic thrombocytopenic purpura (ITP; a platelet disorder) and Henoch–Schönlein purpura , also need prompt investigation. N. meningitidis is a Gram-negative diplococcus since it has an outer and inner membranes with a thin layer of peptidoglycan in between. It is 0.6–1.0 micrometers in size. It tests positive for
2318-427: A recent upper respiratory infection, smoking, and complement deficiency . The incubation period is short, from 2 to 10 days. In susceptible individuals, N. meningitidis may invade the bloodstream and cause a systemic infection , sepsis, disseminated intravascular coagulation , breakdown of circulation, and septic shock . In 1884 Ettore Marchiafava and Angelo Celli first observed the bacterium inside cells in
2440-550: A significantly higher density in genes involved in DNA repair and recombination (as well as in restriction-modification and replication ) than in other annotated gene groups. The over-representation of DUS in DNA repair and recombination genes may reflect the benefit of maintaining the integrity of the DNA repair and recombination machinery by preferentially taking up genome maintenance genes, that could replace their damaged counterparts in
2562-425: A single continuous stretch of DNA. Although several different types of introns do exist in bacteria, these are much rarer than in eukaryotes. Bacteria, as asexual organisms, inherit an identical copy of the parent's genome and are clonal . However, all bacteria can evolve by selection on changes to their genetic material DNA caused by genetic recombination or mutations . Mutations arise from errors made during
SECTION 20
#17327763663252684-427: A single linear chromosome, while some Vibrio species contain more than one chromosome. Some bacteria contain plasmids , small extra-chromosomal molecules of DNA that may contain genes for various useful functions such as antibiotic resistance , metabolic capabilities, or various virulence factors . Bacteria genomes usually encode a few hundred to a few thousand genes. The genes in bacterial genomes are usually
2806-418: A size of 2,188,020 bp, and the average GC content is 51.5%. The chromosome is predicted to possess 4 rRNA operons, 163 insertion elements (IS), 59 tRNAs, and 2,462 ORFs. There is a public database available for N. meningitidis core genome Multilocus sequence typing (cgMLST). Available at: Neisseria typing Genetic transformation is the process by which a recipient bacterial cell takes up DNA from
2928-649: A source of electrons and a substrate for carbon anabolism . In many ways, bacterial metabolism provides traits that are useful for ecological stability and for human society. For example, diazotrophs have the ability to fix nitrogen gas using the enzyme nitrogenase . This trait, which can be found in bacteria of most metabolic types listed above, leads to the ecologically important processes of denitrification , sulfate reduction , and acetogenesis , respectively. Bacterial metabolic processes are important drivers in biological responses to pollution ; for example, sulfate-reducing bacteria are largely responsible for
3050-582: A source of fresh water. It has also been reported to be transmitted through oral sex and cause urethritis in men. It infects its host cells by sticking to them with long thin extensions called pili and the surface-exposed proteins Opa and Opc and has several virulence factors . Meningococcus can cause meningitis and other forms of meningococcal disease. It initially produces general symptoms like fatigue , fever, and headache and can rapidly progress to neck stiffness , coma and death in 10% of cases. Petechiae occur in about 50% of cases. Chance of survival
3172-467: A suspected or culture-proven meningococcal infection before antibiotic susceptibility results are available. Clinical practice guidelines endorse empirical treatment in the event a lumbar puncture to collect cerebrospinal fluid (CSF) for laboratory testing cannot first be performed. Antibiotic treatment may affect the results of microbiology tests, but a diagnosis may be made on the basis of blood-cultures and clinical examination. N. meningitidis
3294-797: A thick peptidoglycan cell wall like a Gram-positive bacterium, but also a second outer layer of lipids. In many bacteria, an S-layer of rigidly arrayed protein molecules covers the outside of the cell. This layer provides chemical and physical protection for the cell surface and can act as a macromolecular diffusion barrier . S-layers have diverse functions and are known to act as virulence factors in Campylobacter species and contain surface enzymes in Bacillus stearothermophilus . Flagella are rigid protein structures, about 20 nanometres in diameter and up to 20 micrometres in length, that are used for motility . Flagella are driven by
3416-417: A three- dimensional random walk . Bacterial species differ in the number and arrangement of flagella on their surface; some have a single flagellum ( monotrichous ), a flagellum at each end ( amphitrichous ), clusters of flagella at the poles of the cell ( lophotrichous ), while others have flagella distributed over the entire surface of the cell ( peritrichous ). The flagella of a group of bacteria,
3538-415: A universal vaccine for meningococcal disease. Lipooligosaccharide (LOS) is a component of the outer membrane of N. meningitidis . This acts as an endotoxin and is responsible for septic shock and hemorrhage due to the destruction of red blood cells. Other virulence factors include a polysaccharide capsule which prevents host phagocytosis and aids in evasion of the host immune response. Adhesion
3660-459: A week more for serotyping. Growth can and often does fail, either because antibiotics have been given preemptively, or because specimens have been inappropriately transported, as the organism is extremely susceptible to antibiotics and fastidious in its temperature, CO 2 and growth medium requirements. Polymerase chain reaction (PCR) tests where available, mostly in industrialized countries, have been increasingly used; PCR can rapidly identify
3782-558: Is a major cause of illness, developmental impairment and death during childhood in industrialized countries and has been responsible for epidemics in Africa and in Asia. Every year, about 2,500 to 3,500 people become infected with N. meningitidis in the US, with a frequency of about 1 in 100,000. Children younger than five years are at greatest risk, followed by teenagers of high school age. Rates in
Neisseria - Misplaced Pages Continue
3904-529: Is adaptive. It was also suggested by Michod et al. that an important benefit of transformation in N. gonorrhoeae is recombinational repair of oxidative DNA damages caused by oxidative attack by the host’s phagocytic cells. The International Pathogenic Neisseria Conference (IPNC), occurring every two years, is a forum for the presentation of cutting-edge research on all aspects of the genus Neisseria . This includes immunology, vaccinology, and physiology and metabolism of N. meningitidis , N. gonorrhoeae and
4026-509: Is another function of porins. Ability to translocate into host cells and modulate reactive oxygen species production and apoptosis is made possible by porins, as well. Strains of the same species can express different porins. At least 8 complete genomes of Neisseria meningitidis strains have been determined which encode about 2,100 to 2,500 proteins. The genome of strain MC58 (serogroup B) has 2,272,351 base pairs. When sequenced in 2000, it
4148-506: Is another key virulence strategy to successfully invade host cell. There are several known proteins that are involved in adhesion and invasion, or mediate interactions with specific host cell receptors. These include the Type IV pilin adhesin which mediates attachment of the bacterium to the epithelial cells of the nasopharynx , surface-exposed Opa and Opc proteins which mediate interactions with specific host cell receptors, and NadA which
4270-402: Is based on the idea that the reduced ability to identify the bacteria is outweighed by reduced chance of death . Septicaemia caused by Neisseria meningitidis has received much less public attention than meningococcal meningitis even though septicaemia has been linked to infant deaths. Meningococcal septicaemia typically causes a purpuric rash, that does not lose its color when pressed with
4392-480: Is caused by a toxin released by the bacteria that grow from the spores. Clostridioides difficile infection , a common problem in healthcare settings, is caused by spore-forming bacteria. Bacteria exhibit an extremely wide variety of metabolic types. The distribution of metabolic traits within a group of bacteria has traditionally been used to define their taxonomy , but these traits often do not correspond with modern genetic classifications. Bacterial metabolism
4514-412: Is classified into nutritional groups on the basis of three major criteria: the source of energy , the electron donors used, and the source of carbon used for growth. Phototrophic bacteria derive energy from light using photosynthesis , while chemotrophic bacteria breaking down chemical compounds through oxidation , driving metabolism by transferring electrons from a given electron donor to
4636-536: Is dependent on bacterial secretion systems . These transfer proteins from the cytoplasm into the periplasm or into the environment around the cell. Many types of secretion systems are known and these structures are often essential for the virulence of pathogens, so are intensively studied. Some genera of Gram-positive bacteria, such as Bacillus , Clostridium , Sporohalobacter , Anaerobacter , and Heliobacterium , can form highly resistant, dormant structures called endospores . Endospores develop within
4758-534: Is determined by the bacterial cell wall and cytoskeleton and is important because it can influence the ability of bacteria to acquire nutrients, attach to surfaces, swim through liquids and escape predators . Multicellularity . Most bacterial species exist as single cells; others associate in characteristic patterns: Neisseria forms diploids (pairs), streptococci form chains, and staphylococci group together in "bunch of grapes" clusters. Bacteria can also group to form larger multicellular structures, such as
4880-441: Is different from that of eukaryotes and archaea. Some bacteria produce intracellular nutrient storage granules, such as glycogen , polyphosphate , sulfur or polyhydroxyalkanoates . Bacteria such as the photosynthetic cyanobacteria , produce internal gas vacuoles , which they use to regulate their buoyancy, allowing them to move up or down into water layers with different light intensities and nutrient levels. Around
5002-414: Is essential to the survival of many bacteria, and the antibiotic penicillin (produced by a fungus called Penicillium ) is able to kill bacteria by inhibiting a step in the synthesis of peptidoglycan. There are broadly speaking two different types of cell wall in bacteria, that classify bacteria into Gram-positive bacteria and Gram-negative bacteria . The names originate from the reaction of cells to
Neisseria - Misplaced Pages Continue
5124-430: Is highly correlated with blood cortisol levels, with lower levels prior to steroid administration corresponding with increased patient mortality. Symptoms of meningococcal meningitis are easily confused with those caused by other bacteria, such as Haemophilus influenzae and Streptococcus pneumoniae . Suspicion of meningitis is a medical emergency and immediate medical assessment is recommended. Current guidance in
5246-458: Is indicated in those with impaired immunity, such as nephrotic syndrome or splenectomy . In June 2012, the U.S. Food and Drug Administration (FDA) approved a combination vaccine against two types of meningococcal diseases and Hib disease for infants and children 6 weeks to 18 months old. The vaccine, Menhibrix , was designed to prevent disease caused by Neisseria meningitidis serogroups C and Y, and Haemophilus influenzae type b (Hib). It
5368-459: Is involved in adhesion. Pathogenic meningococci that have invaded into the bloodstream must be able to survive in the new niche, this is facilitated by acquisition and utilisation of iron (FetA and Hmbr), resisting intracellular oxidative killing by producing catalase and superoxide dismutase and ability to avoid complement mediated killing (fHbp). Meningococci produce an IgA protease, an enzyme that cleaves IgA class antibodies and thus allows
5490-465: Is key to the pathogenesis of N. meningitidis , and is, therefore, important as a potential vaccine candidate. Porins are also an important factor for complement inhibition for both pathogenic and commensal species. Porins are important for nutrient acquisition. Porins are also recognized by TLR2 , they bind complement factors ( C3b , C4b , factor H , and C4bp (complement factor 4b-binding protein)). Cooperation with pili for CR3-mediated internalization
5612-529: Is made of about 20 proteins, with approximately another 30 proteins required for its regulation and assembly. The flagellum is a rotating structure driven by a reversible motor at the base that uses the electrochemical gradient across the membrane for power. Bacteria can use flagella in different ways to generate different kinds of movement. Many bacteria (such as E. coli ) have two distinct modes of movement: forward movement (swimming) and tumbling. The tumbling allows them to reorient and makes their movement
5734-468: Is made primarily of phospholipids . This membrane encloses the contents of the cell and acts as a barrier to hold nutrients, proteins and other essential components of the cytoplasm within the cell. Unlike eukaryotic cells , bacteria usually lack large membrane-bound structures in their cytoplasm such as a nucleus , mitochondria , chloroplasts and the other organelles present in eukaryotic cells. However, some bacteria have protein-bound organelles in
5856-412: Is mediated by a type IV pilin. Davidsen et al. reported that in N. meningitidis and N. gonorrhoeae , DUSs occur at a significantly higher density in genes involved in DNA repair and recombination (as well as in restriction-modification and replication ) than in other annotated gene groups. These authors proposed that the over-representation of DUS in DNA repair and recombination genes may reflect
5978-496: Is motile in liquid or solid media. Several Listeria and Shigella species move inside host cells by usurping the cytoskeleton , which is normally used to move organelles inside the cell. By promoting actin polymerisation at one pole of their cells, they can form a kind of tail that pushes them through the host cell's cytoplasm. A few bacteria have chemical systems that generate light. This bioluminescence often occurs in bacteria that live in association with fish, and
6100-426: Is ongoing. It is spread through saliva and other respiratory secretions during coughing, sneezing, kissing, and chewing on toys. Inhalation of respiratory droplets from a carrier which may be someone who is themselves in the early stages of disease can transmit the bacteria. Close contact with a carrier is the predominant risk factor . Other risk factors include a weakened general or local immune response, such as
6222-399: Is the stationary phase and is caused by depleted nutrients. The cells reduce their metabolic activity and consume non-essential cellular proteins. The stationary phase is a transition from rapid growth to a stress response state and there is increased expression of genes involved in DNA repair , antioxidant metabolism and nutrient transport . The final phase is the death phase where
SECTION 50
#17327763663256344-440: Is the logarithmic phase , also known as the exponential phase. The log phase is marked by rapid exponential growth . The rate at which cells grow during this phase is known as the growth rate ( k ), and the time it takes the cells to double is known as the generation time ( g ). During log phase, nutrients are metabolised at maximum speed until one of the nutrients is depleted and starts limiting growth. The third phase of growth
6466-694: Is the plural of the Neo-Latin bacterium , which is the Latinisation of the Ancient Greek βακτήριον ( baktḗrion ), the diminutive of βακτηρία ( baktēría ), meaning "staff, cane", because the first ones to be discovered were rod-shaped . The ancestors of bacteria were unicellular microorganisms that were the first forms of life to appear on Earth, about 4 billion years ago. For about 3 billion years, most organisms were microscopic, and bacteria and archaea were
6588-419: Is the process by which a recipient bacterial cell takes up DNA from a neighboring cell and integrates this DNA into the recipient’s genome by recombination . In N. meningitidis and N. gonorrhoeae , DNA transformation requires the presence of short DNA sequences (9-10 monomers residing in coding regions) of the donor DNA. These sequences are called DNA uptake sequences (DUSs). Specific recognition of DUSs
6710-478: The African meningitis belt were as high as 1 in 1,000 to 1 in 100 before introduction of a vaccine in 2010. The incidence of meningococcal disease is highest among infants (children younger than one year old) whose immune system is relatively immature. In industrialized countries there is a second peak of incidence in young adults, who are congregating closely, living in dormitories or smoking. Vaccine development
6832-472: The Gram stain , a long-standing test for the classification of bacterial species. Gram-positive bacteria possess a thick cell wall containing many layers of peptidoglycan and teichoic acids . In contrast, Gram-negative bacteria have a relatively thin cell wall consisting of a few layers of peptidoglycan surrounded by a second lipid membrane containing lipopolysaccharides and lipoproteins . Most bacteria have
6954-643: The antigenic structure of their polysaccharide capsule. Serotype distribution varies markedly around the world. Among the 13 identified capsular types of N. meningitidis , six (A, B, C, W135, X, and Y) account for most disease cases worldwide. Type A has been the most prevalent in Africa and Asia, but is rare/practically absent in North America. In the United States, serogroup B is the predominant cause of disease and mortality, followed by serogroup C. The multiple subtypes have hindered development of
7076-515: The cerebral spinal fluid (CSF). In 1887 Anton Weichselbaum isolated the bacterium from the CSF of patients with bacterial meningitis. He named the bacterium Diplococcus intracellularis meningitidis . Components from Neisseria meningitidis are being harnessed in biotechnology. Its Cas9 enzyme is a useful tool in CRISPR gene editing because the enzyme is small and has distinct targeting features to
7198-624: The fixation of nitrogen from the atmosphere . The nutrient cycle includes the decomposition of dead bodies ; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps , extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane , to energy. Bacteria also live in mutualistic , commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in
7320-444: The spirochaetes , are found between two membranes in the periplasmic space. They have a distinctive helical body that twists about as it moves. Two other types of bacterial motion are called twitching motility that relies on a structure called the type IV pilus , and gliding motility , that uses other mechanisms. In twitching motility, the rod-like pilus extends out from the cell, binds some substrate, and then retracts, pulling
7442-551: The vacuum and radiation of outer space , leading to the possibility that bacteria could be distributed throughout the Universe by space dust , meteoroids , asteroids , comets , planetoids , or directed panspermia . Endospore-forming bacteria can cause disease; for example, anthrax can be contracted by the inhalation of Bacillus anthracis endospores, and contamination of deep puncture wounds with Clostridium tetani endospores causes tetanus , which, like botulism ,
SECTION 60
#17327763663257564-470: The 1970s and is the only meningococcal vaccine licensed for people older than 55. MPSV4 may be used in people 2–55 years old if the MCV4 vaccines are not available or contraindicated. Two meningococcal conjugate vaccines (MCV4) are licensed for use in the U.S. The first conjugate vaccine was licensed in 2005, the second in 2010. Conjugate vaccines are the preferred vaccine for people 2 through 55 years of age. It
7686-793: The Gram-negative cell wall, and only members of the Bacillota group and actinomycetota (previously known as the low G+C and high G+C Gram-positive bacteria, respectively) have the alternative Gram-positive arrangement. These differences in structure can produce differences in antibiotic susceptibility; for instance, vancomycin can kill only Gram-positive bacteria and is ineffective against Gram-negative pathogens , such as Haemophilus influenzae or Pseudomonas aeruginosa . Some bacteria have cell wall structures that are neither classically Gram-positive or Gram-negative. This includes clinically important bacteria such as mycobacteria which have
7808-469: The United Kingdom is that if a case of meningococcal meningitis or septicaemia (infection of the blood) is suspected, intravenous antibiotics should be given and the ill person admitted to the hospital. This means that laboratory tests may be less likely to confirm the presence of Neisseria meningitidis as the antibiotics will dramatically lower the number of bacteria in the body. The UK guidance
7930-585: The animal body or serum media. The genus includes: The immune system's neutrophils are restricted in function due to the ability of Neisseria to evade opsonization by antibodies, and to replicate within neutrophils despite phagocytosis . Neisseria species are also able to alter their antigens to avoid being engulfed by a process called antigenic variation , which is observed primarily in surface-located molecules. The pathogenic species along with some commensal species, have type IV pili which serve multiple functions for this organism. Some functions of
8052-425: The archaeal/eukaryotic lineage. The most recent common ancestor (MRCA) of bacteria and archaea was probably a hyperthermophile that lived about 2.5 billion–3.2 billion years ago. The earliest life on land may have been bacteria some 3.22 billion years ago. Bacteria were also involved in the second great evolutionary divergence, that of the archaea and eukaryotes. Here, eukaryotes resulted from
8174-455: The atmosphere and one cubic metre of air holds around one hundred million bacterial cells. The oceans and seas harbour around 3 x 10 bacteria which provide up to 50% of the oxygen humans breathe. Only around 2% of bacterial species have been fully studied. Size . Bacteria display a wide diversity of shapes and sizes. Bacterial cells are about one-tenth the size of eukaryotic cells and are typically 0.5–5.0 micrometres in length. However,
8296-520: The bacteria have come into contact with in the past, which allows them to block virus replication through a form of RNA interference . Third, bacteria can transfer genetic material through direct cell contact via conjugation . In ordinary circumstances, transduction, conjugation, and transformation involve transfer of DNA between individual bacteria of the same species, but occasionally transfer may occur between individuals of different bacterial species, and this may have significant consequences, such as
8418-445: The bacteria in their nasopharynx . As an exclusively human pathogen, it causes developmental impairment and death in about 10% of cases. It causes the only form of bacterial meningitis known to occur epidemically , mainly in Africa and Asia. It occurs worldwide in both epidemic and endemic form. N. meningitidis is spread through saliva and respiratory secretions during coughing, sneezing, kissing, chewing on toys and through sharing
8540-444: The bacteria perform separate tasks; for example, about one in ten cells migrate to the top of a fruiting body and differentiate into a specialised dormant state called a myxospore, which is more resistant to drying and other adverse environmental conditions. Biofilms . Bacteria often attach to surfaces and form dense aggregations called biofilms and larger formations known as microbial mats . These biofilms and mats can range from
8662-401: The bacteria run out of nutrients and die. Most bacteria have a single circular chromosome that can range in size from only 160,000 base pairs in the endosymbiotic bacteria Carsonella ruddii , to 12,200,000 base pairs (12.2 Mbp) in the soil-dwelling bacteria Sorangium cellulosum . There are many exceptions to this; for example, some Streptomyces and Borrelia species contain
8784-564: The bacteria to evade a subclass of the humoral immune system. A hypervirulent strain was discovered in China. Its impact is yet to be determined. Factor H binding protein (fHbp) that is exhibited in N. meningitidis and some commensal species is the main inhibitor of the alternative complement pathway . fHbp protects meningococci from complement-mediated death in human serum experiments, but has also been shown to protect meningococci from antimicrobial peptides in vitro . Factor H binding protein
8906-412: The bacterial chromosome, introducing foreign DNA in a process known as transduction . Many types of bacteriophage exist; some infect and lyse their host bacteria, while others insert into the bacterial chromosome. Bacteria resist phage infection through restriction modification systems that degrade foreign DNA and a system that uses CRISPR sequences to retain fragments of the genomes of phage that
9028-429: The benefit of maintaining the integrity of the DNA repair and recombination machinery by preferentially taking up genome maintenance genes that could replace their damaged counterparts in the recipient cell. Caugant and Maiden noted that the distribution of DUS is consistent with recombination being primarily a mechanism for genome repair that can occasionally result in generation of diversity, which even more occasionally,
9150-502: The breakdown of oil spills , the production of cheese and yogurt through fermentation , the recovery of gold, palladium , copper and other metals in the mining sector ( biomining , bioleaching ), as well as in biotechnology , and the manufacture of antibiotics and other chemicals. Once regarded as plants constituting the class Schizomycetes ("fission fungi"), bacteria are now classified as prokaryotes . Unlike cells of animals and other eukaryotes , bacterial cells do not contain
9272-437: The cell forward. Motile bacteria are attracted or repelled by certain stimuli in behaviours called taxes : these include chemotaxis , phototaxis , energy taxis , and magnetotaxis . In one peculiar group, the myxobacteria, individual bacteria move together to form waves of cells that then differentiate to form fruiting bodies containing spores. The myxobacteria move only when on solid surfaces, unlike E. coli , which
9394-681: The commensal species. The first IPNC took place in 1978, and the most recent one was in September 2016. Normally, the location of the conference switches between North America and Europe, but it took place in Australia for the first time in 2006, where the venue was located in Cairns . Bacteria See § Phyla Bacteria ( / b æ k ˈ t ɪər i ə / ; sg. : bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell . They constitute
9516-515: The control of which is largely dependent on the availability and widespread use of comprehensive meningococcal vaccines. Development of neisserial vaccines has been challenging due to the nature of these organisms, in particular the heterogeneity , variability and/or poor immunogenicity of their outer surface components. As strictly human pathogens, they are highly adapted to the host environment, but have evolved several mechanisms to remain adaptable to changing microenvironments and avoid elimination by
9638-629: The cytoplasm of the cell; generally, a single endospore develops in each cell. Each endospore contains a core of DNA and ribosomes surrounded by a cortex layer and protected by a multilayer rigid coat composed of peptidoglycan and a variety of proteins. Endospores show no detectable metabolism and can survive extreme physical and chemical stresses, such as high levels of UV light , gamma radiation , detergents , disinfectants , heat, freezing, pressure, and desiccation . In this dormant state, these organisms may remain viable for millions of years. Endospores even allow bacteria to survive exposure to
9760-419: The cytoplasm which compartmentalise aspects of bacterial metabolism, such as the carboxysome . Additionally, bacteria have a multi-component cytoskeleton to control the localisation of proteins and nucleic acids within the cell, and to manage the process of cell division . Many important biochemical reactions, such as energy generation, occur due to concentration gradients across membranes, creating
9882-687: The development of new staining techniques which he helped to develop. The genomes of at least 10 Neisseria species have been completely sequenced. The best-studied species are N. meningitidis with more than 70 strains and N. gonorrhoeae with at least 10 strains completely sequenced. Other complete genomes are available for N. elongata , N. lactamica , and N. weaveri . Whole genome shotgun sequences are available for hundreds of other species and strains. N. meningitidis encodes 2,440 to 2,854 proteins while N. gonorrhoeae encodes from 2,603 to 2,871 proteins. N. weaveri (strain NCTC 13585) has
10004-411: The dominant forms of life. Although bacterial fossils exist, such as stromatolites , their lack of distinctive morphology prevents them from being used to examine the history of bacterial evolution, or to date the time of origin of a particular bacterial species. However, gene sequences can be used to reconstruct the bacterial phylogeny , and these studies indicate that bacteria diverged first from
10126-526: The elongated filaments of Actinomycetota species, the aggregates of Myxobacteria species, and the complex hyphae of Streptomyces species. These multicellular structures are often only seen in certain conditions. For example, when starved of amino acids, myxobacteria detect surrounding cells in a process known as quorum sensing , migrate towards each other, and aggregate to form fruiting bodies up to 500 micrometres long and containing approximately 100,000 bacterial cells. In these fruiting bodies,
10248-501: The energy released by the transfer of ions down an electrochemical gradient across the cell membrane. Fimbriae (sometimes called " attachment pili ") are fine filaments of protein, usually 2–10 nanometres in diameter and up to several micrometres in length. They are distributed over the surface of the cell, and resemble fine hairs when seen under the electron microscope . Fimbriae are believed to be involved in attachment to solid surfaces or to other cells, and are essential for
10370-602: The entering of ancient bacteria into endosymbiotic associations with the ancestors of eukaryotic cells, which were themselves possibly related to the Archaea. This involved the engulfment by proto-eukaryotic cells of alphaproteobacterial symbionts to form either mitochondria or hydrogenosomes , which are still found in all known Eukarya (sometimes in highly reduced form , e.g. in ancient "amitochondrial" protozoa). Later, some eukaryotes that already contained mitochondria also engulfed cyanobacteria -like organisms, leading to
10492-422: The enzyme cytochrome c oxidase . N. meningitidis is a part of the normal nonpathogenic flora in the nasopharynx of up to 8–25% of adults. It colonizes and infects only humans, and has never been isolated from other animals. This is thought to result from the bacterium's inability to get iron from sources other than human transferrin and lactoferrin . Disease-causing strains are classified according to
10614-641: The evolution of different growth strategies (see r/K selection theory ). Some organisms can grow extremely rapidly when nutrients become available, such as the formation of algal and cyanobacterial blooms that often occur in lakes during the summer. Other organisms have adaptations to harsh environments, such as the production of multiple antibiotics by Streptomyces that inhibit the growth of competing microorganisms. In nature, many organisms live in communities (e.g., biofilms ) that may allow for increased supply of nutrients and protection from environmental stresses. These relationships can be essential for growth of
10736-415: The following carbohydrates : maltose , sucrose , and glucose . N. meningitidis will ferment glucose and maltose. Finally, serology determines the subgroup of the N. meningitidis , which is important for epidemiological surveillance purposes; this may often only be done in specialized laboratories. The above tests take a minimum of 48–72 hours turnaround time for growing the organism, and up to
10858-570: The formation of chloroplasts in algae and plants. This is known as primary endosymbiosis . Bacteria are ubiquitous, living in every possible habitat on the planet including soil, underwater, deep in Earth's crust and even such extreme environments as acidic hot springs and radioactive waste. There are thought to be approximately 2×10 bacteria on Earth, forming a biomass that is only exceeded by plants. They are abundant in lakes and oceans, in arctic ice, and geothermal springs where they provide
10980-472: The growth in cell population. Neisseria meningitidis Neisseria meningitidis , often referred to as the meningococcus , is a Gram-negative bacterium that can cause meningitis and other forms of meningococcal disease such as meningococcemia , a life-threatening sepsis . The bacterium is referred to as a coccus because it is round, and more specifically a diplococcus because of its tendency to form pairs. About 10% of adults are carriers of
11102-453: The gut. However, several species of bacteria are pathogenic and cause infectious diseases , including cholera , syphilis , anthrax , leprosy , tuberculosis , tetanus and bubonic plague . The most common fatal bacterial diseases are respiratory infections . Antibiotics are used to treat bacterial infections and are also used in farming, making antibiotic resistance a growing problem. Bacteria are important in sewage treatment and
11224-435: The host immune system . Currently, serogroup A, B, C, Y, and W-135 meningococcal infections can be prevented by vaccines. However, the prospect of developing a gonococcal vaccine is remote. The acquisition of cephalosporin resistance in N. gonorrhoeae , particularly ceftriaxone resistance, has greatly complicated the treatment of gonorrhea, with the gonococcus now being classified as a " superbug ". Genetic transformation
11346-492: The immune system. An invasive N. meningitidis strain of serogroup C broke out in Nigeria in 2013 – the strain was a new sequence type, ST-10217 determined by multilocus sequence typing . It was determined that a commensal strain of N. meningitidis acquired an 8-kb prophage, the meningococcal disease-associated island (MDAΦ), previously associated with hyper-invasiveness; and the full serogroup C capsule operon, thus becoming
11468-547: The laboratory. The gold standard of diagnosis is microbiological isolation of N. meningitidis by growth from a sterile body fluid, which could be CSF or blood. Diagnosis is confirmed when the organism has grown, most often on a chocolate agar plate, but also on Thayer–Martin agar . To differentiate any bacterial growth from other species a small amount of a bacterial colony is Gram stained and tested for oxidase and catalase . Gram negative diplococci that are oxidase and catalase positive are then tested for fermentation of
11590-409: The laboratory. The study of bacteria is known as bacteriology , a branch of microbiology . Like all animals, humans carry vast numbers (approximately 10 to 10 ) of bacteria. Most are in the gut , though there are many on the skin. Most of the bacteria in and on the body are harmless or rendered so by the protective effects of the immune system , and many are beneficial , particularly the ones in
11712-627: The largest viruses . Some bacteria may be even smaller, but these ultramicrobacteria are not well-studied. Shape . Most bacterial species are either spherical, called cocci ( singular coccus , from Greek kókkos , grain, seed), or rod-shaped, called bacilli ( sing . bacillus, from Latin baculus , stick). Some bacteria, called vibrio , are shaped like slightly curved rods or comma-shaped; others can be spiral-shaped, called spirilla , or tightly coiled, called spirochaetes . A small number of other unusual shapes have been described, such as star-shaped bacteria. This wide variety of shapes
11834-716: The light probably serves to attract fish or other large animals. Bacteria often function as multicellular aggregates known as biofilms , exchanging a variety of molecular signals for intercell communication and engaging in coordinated multicellular behaviour. The communal benefits of multicellular cooperation include a cellular division of labour , accessing resources that cannot effectively be used by single cells, collectively defending against antagonists, and optimising population survival by differentiating into distinct cell types. For example, bacteria in biofilms can have more than five hundred times increased resistance to antibacterial agents than individual "planktonic" bacteria of
11956-424: The medically significant species of Neisseria are positive for both catalase and oxidase . Different Neisseria species can be identified by the sets of sugars from which they will produce acid. For example, N. gonorrhoeae makes acid from only glucose , but N. meningitidis produces acid from both glucose and maltose . Polysaccharide capsule. N. meningitidis has a polysaccharide capsule that surrounds
12078-410: The nasophanrynx. Gene transfer can occur within and between genomes of Neisseria species, and it is the main mechanism of acquiring new traits. This is facilitated by the natural competence of the meningococci to take up foreign DNA. The commensal species of Neisseria can act as a reservoir of genes that can be acquired; for example, this is how capsule switching can occur as a means of hiding from
12200-417: The newly formed daughter cells. Examples include fruiting body formation by myxobacteria and aerial hyphae formation by Streptomyces species, or budding. Budding involves a cell forming a protrusion that breaks away and produces a daughter cell. In the laboratory, bacteria are usually grown using solid or liquid media. Solid growth media , such as agar plates , are used to isolate pure cultures of
12322-473: The nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane , to energy. They live on and in plants and animals. Most do not cause diseases, are beneficial to their environments, and are essential for life. The soil is a rich source of bacteria and a few grams contain around a thousand million of them. They are all essential to soil ecology, breaking down toxic waste and recycling nutrients. They are even found in
12444-515: The organism, and works even after antibiotics have been given. All recent contacts of the infected patient over the seven days before onset should receive medication to prevent them from contracting the infection. This especially includes young children and their child caregivers or nursery-school contacts, as well as anyone who had direct exposure to the patient through kissing, sharing utensils, or medical interventions such as mouth-to-mouth resuscitation . Anyone who frequently ate, slept or stayed at
12566-422: The outer membrane of the bacterium and protects against soluble immune effector mechanisms within the serum . It is considered to be an essential virulence factor for the bacteria. N. gonorrhoeae possesses no such capsule. Unlike most other Gram-negative bacteria, which possess lipopolysaccharide (LPS), both pathogenic and commensal species of Neisseria have a lipooligosaccharide (LOS) which consists of
12688-475: The outside of the cell membrane is the cell wall . Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by peptides containing D- amino acids . Bacterial cell walls are different from the cell walls of plants and fungi , which are made of cellulose and chitin , respectively. The cell wall of bacteria is also distinct from that of achaea, which do not contain peptidoglycan. The cell wall
12810-482: The participating countries. Persons with confirmed N. meningitidis infection should be hospitalized immediately for treatment with antibiotics. Because meningococcal disease can disseminate very rapidly, a single dose of intramuscular antibiotic is often given at the earliest possible opportunity, even before hospitalization, if disease symptoms look suspicious enough. Third-generation cephalosporin antibiotics (i.e. cefotaxime , ceftriaxone ) should be used to treat
12932-648: The pathogen to evade the immune system of the host. The genome size of strain H44/76 is 2.18 Mb, and encodes 2,480 open reading frames (ORFs), compared to 2.27 Mb and 2,465 ORFs for MC58. Both strains have a GC content of 51.5%. A comparison with MC58 showed that four genes are uniquely present in H44/76 and nine genes are only present in MC58. Of all ORFs in H44/76, 2,317 (93%) show more than 99% sequence identity. The complete genome sequence of strain NMA510612 (serogroup A) consists of one circular chromosome with
13054-505: The pathogen. A number of vaccines are available in the U.S. to prevent meningococcal disease. Some of the vaccines cover serogroup B, while others cover A, C, W, and Y. The Centers for Disease Control and Prevention (CDC) recommends all teenagers receive MenACWY vaccine and booster, with optional MenB. MenACWY and MenB are also recommended for people of other ages with various medical conditions and social risk factors. A meningococcal polysaccharide vaccine (MPSV4) has been available since
13176-497: The patient's home during the seven days before the onset of symptom, or those who sat beside the patient on an airplane flight or classroom for eight hours or longer, should also receive chemoprophylaxis . The agent of choice is usually oral rifampicin for a few days. Receiving a dose of the meningococcal vaccine before traveling to a country in the "meningitis belt" or having a booster meningitis vaccine, normally five years apart could prevent someone from getting an infection from
13298-612: The production of the highly toxic forms of mercury ( methyl- and dimethylmercury ) in the environment. Nonrespiratory anaerobes use fermentation to generate energy and reducing power, secreting metabolic by-products (such as ethanol in brewing) as waste. Facultative anaerobes can switch between fermentation and different terminal electron acceptors depending on the environmental conditions in which they find themselves. Unlike in multicellular organisms, increases in cell size ( cell growth ) and reproduction by cell division are tightly linked in unicellular organisms. Bacteria grow to
13420-416: The recipient cell. N. meningititis colonizes the nasopharyngeal mucosa , which is rich in macrophages . Upon their activation, macrophages produce superoxide (O 2 ) and hydrogen peroxide (H 2 O 2 ). Thus N. meningitidis is likely to encounter oxidative stress during its life cycle. Consequently, an important benefit of genetic transformation to N. meningitidis may be the maintenance of
13542-443: The recombination and repair machinery of the cell that removes oxidative DNA damages such as those caused by reactive oxygen . This is consistent with the more general idea that transformation benefits bacterial pathogens by facilitating repair of DNA damages produced by the oxidative defenses of the host during infection. Meningococci population is extensively diverse genetically, this is due to horizontal gene transfers while in
13664-560: The replication of DNA or from exposure to mutagens . Mutation rates vary widely among different species of bacteria and even among different clones of a single species of bacteria. Genetic changes in bacterial genomes emerge from either random mutation during replication or "stress-directed mutation", where genes involved in a particular growth-limiting process have an increased mutation rate. Some bacteria transfer genetic material between cells. This can occur in three main ways. First, bacteria can take up exogenous DNA from their environment in
13786-461: The same species have the ability to produce different LOS glycoforms . The genus Neisseria is named after the German bacteriologist Albert Neisser , who in 1879 discovered its first example, Neisseria gonorrhoeae , the pathogen which causes the human disease gonorrhea. Neisser also co-discovered the pathogen that causes leprosy , Mycobacterium leprae . These discoveries were made possible by
13908-530: The same species. One type of intercellular communication by a molecular signal is called quorum sensing , which serves the purpose of determining whether the local population density is sufficient to support investment in processes that are only successful if large numbers of similar organisms behave similarly, such as excreting digestive enzymes or emitting light. Quorum sensing enables bacteria to coordinate gene expression and to produce, release, and detect autoinducers or pheromones that accumulate with
14030-542: The smallest known genome with only 2,060 encoded proteins although N. meningitidis MC58 has been reported to have only 2049 genes. The genomes are generally quite similar. For example, when the genome of N. gonorrhoeae (strain FA1090) is compared to that of N. meningitidis (strain H44/76) 68% of their genes are shared. Diseases caused by N. meningitidis and N. gonorrhoeae are significant health problems worldwide,
14152-412: The surfaces of plants, the majority of bacteria are bound to surfaces in biofilms. Biofilms are also important in medicine, as these structures are often present during chronic bacterial infections or in infections of implanted medical devices , and bacteria protected within biofilms are much harder to kill than individual isolated bacteria. The bacterial cell is surrounded by a cell membrane , which
14274-457: The terminal electron acceptor, while anaerobic organisms use other compounds such as nitrate , sulfate , or carbon dioxide. Many bacteria, called heterotrophs , derive their carbon from other organic carbon . Others, such as cyanobacteria and some purple bacteria , are autotrophic , meaning they obtain cellular carbon by fixing carbon dioxide . In unusual circumstances, the gas methane can be used by methanotrophic bacteria as both
14396-447: The transfer of antibiotic resistance. In such cases, gene acquisition from other bacteria or the environment is called horizontal gene transfer and may be common under natural conditions. Many bacteria are motile (able to move themselves) and do so using a variety of mechanisms. The best studied of these are flagella , long filaments that are turned by a motor at the base to generate propeller-like movement. The bacterial flagellum
14518-469: The type IV pili include: mediating attachment to various cells and tissues, twitching motility, natural competence, microcolony formation, extensive intrastrain phase, and antigenic variation. Neisseria bacteria have also been shown to be an important factor in the early stages of canine plaque development. This genus also contains several, believed to be commensal, or nonpathogenic, species: However, some of these can be associated with disease. All
14640-495: The virulence of some bacterial pathogens. Pili ( sing . pilus) are cellular appendages, slightly larger than fimbriae, that can transfer genetic material between bacterial cells in a process called conjugation where they are called conjugation pili or sex pili (see bacterial genetics, below). They can also generate movement where they are called type IV pili . Glycocalyx is produced by many bacteria to surround their cells, and varies in structural complexity: ranging from
14762-418: Was found to contain 2158 open reading frames (ORFs). Of these, a biological function was predicted for 1158 (53.7%). There were three major islands of horizontal DNA transfer found. Two encode proteins involved in pathogenicity. The third island only codes for hypothetical proteins. They also found more genes that undergo phase variation than any pathogen then known. Phase variation is a mechanism that helps
14884-968: Was the first meningococcal vaccine that could be given to infants as young as six weeks old. In October 2014 the FDA approved the first vaccine effective against serogroup B, named Trumenba , for use in 10- to 25-year-old individuals. In 2010, the Meningitis Vaccine Project introduced a vaccine called MenAfriVac in the African meningitis belt . It was made by generic drug maker Serum Institute of India and cost 50 U.S. cents per injection. Beginning in Burkina Faso in 2010, it has been given to 215 million people across Benin , Cameroon , Chad , Ivory Coast , Ethiopia , Ghana , Mali , Niger , Mauritania , Nigeria , Senegal , Sudan , Togo and Gambia . The vaccination campaign has resulted in near-elimination of serogroup A meningitis from
#324675