The Zenit-2 was a Ukrainian , previously Soviet , expendable carrier rocket . First flown in 1985, it has been launched 37 times, with 6 failures. It is a member of the Zenit family of rockets and was designed by the Yuzhmash .
39-453: With 13–15 ton payload in LEO , it was intended as up-middle-class launcher greater than 7-ton-payload middle Soyuz and smaller than 20-ton-payload heavy Proton . Zenit-2 would be certified for crewed launches and placed in specially built launch pad at Baykonur spaceport, carrying the new crewed partially reusable Zarya spacecraft that developed in end of the 1980s but was cancelled. Also in
78-570: A domino effect known as Kessler syndrome . NASA's Orbital Debris Program tracks over 25,000 objects larger than 10 cm diameter in LEO, while the estimated number between 1 and 10 cm is 500,000, and the number of particles bigger than 1 mm exceeds 100 million. The particles travel at speeds up to 7.8 km/s (28,000 km/h; 17,500 mph), so even a small impact can severely damage a spacecraft. [REDACTED] This article incorporates public domain material from websites or documents of
117-623: A characteristic pressure-temperature curve. As the pressure gets lower, the temperature decreases. The rate of decrease of temperature with elevation is known as the adiabatic lapse rate , which is approximately 9.8 °C per kilometer (or 5.4 °F [3.0 °C] per 1000 feet) of altitude. The presence of water in the atmosphere complicates the process of convection. Water vapor contains latent heat of vaporization . As air rises and cools, it eventually becomes saturated and cannot hold its quantity of water vapor. The water vapor condenses (forming clouds ), and releases heat, which changes
156-447: A higher heart rate, and adjusting its blood chemistry. It can take days or weeks to adapt to high altitude. However, above 8,000 metres (26,000 ft), (in the " death zone "), altitude acclimatization becomes impossible. There is a significantly lower overall mortality rate for permanent residents at higher altitudes. Additionally, there is a dose response relationship between increasing elevation and decreasing obesity prevalence in
195-543: A satellite into a LEO, and a satellite there needs less powerful amplifiers for successful transmission, LEO is used for many communication applications, such as the Iridium phone system . Some communication satellites use much higher geostationary orbits and move at the same angular velocity as the Earth as to appear stationary above one location on the planet. Unlike geosynchronous satellites , satellites in low orbit have
234-441: A small field of view and can only observe and communicate with a fraction of the Earth at a given time. This means that a large network (or constellation ) of satellites is required to provide continuous coverage. Satellites at lower altitudes of orbit are in the atmosphere and suffer from rapid orbital decay , requiring either periodic re-boosting to maintain stable orbits, or the launching of replacements for those that re-enter
273-433: A subset of LEO. These orbits, with low orbital inclination , allow rapid revisit times over low-latitude locations on Earth. Prograde equatorial LEOs also have lower delta-v launch requirements because they take advantage of the Earth's rotation. Other useful LEO orbits including polar orbits and Sun-synchronous orbits have a higher inclinations to the equator and provide coverage for higher latitudes on Earth. Some of
312-421: Is an orbit around Earth with a period of 128 minutes or less (making at least 11.25 orbits per day) and an eccentricity less than 0.25. Most of the artificial objects in outer space are in LEO, peaking in number at an altitude around 800 km (500 mi), while the farthest in LEO, before medium Earth orbit (MEO), have an altitude of 2,000 kilometers, about one-third of the radius of Earth and near
351-406: Is hot, it tends to expand, which lowers its density. Thus, hot air tends to rise and transfer heat upward. This is the process of convection . Convection comes to equilibrium when a parcel of air at a given altitude has the same density as its surroundings. Air is a poor conductor of heat, so a parcel of air will rise and fall without exchanging heat. This is known as an adiabatic process , which has
390-496: Is only slightly less than on the Earth's surface. This is because the distance to LEO from the Earth's surface is much less than the Earth's radius. However, an object in orbit is in a permanent free fall around Earth, because in orbit the gravitational force and the centrifugal force balance each other out. As a result, spacecraft in orbit continue to stay in orbit, and people inside or outside such craft continuously experience weightlessness . Objects in LEO orbit Earth between
429-403: Is sometimes defined to begin at 2,400 meters (8,000 ft) above sea level. At high altitude, atmospheric pressure is lower than that at sea level. This is due to two competing physical effects: gravity, which causes the air to be as close as possible to the ground; and the heat content of the air, which causes the molecules to bounce off each other and expand. The temperature profile of
SECTION 10
#1732786955287468-417: Is vital for performance and safety. Higher altitudes mean reduced oxygen levels, which can lead to altitude sickness if proper acclimatization measures are not taken. Vertical distance measurements in the "down" direction are commonly referred to as depth . The term altitude can have several meanings, and is always qualified by explicitly adding a modifier (e.g. "true altitude"), or implicitly through
507-486: The National Aeronautics and Space Administration . Altitude Altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context (e.g., aviation, geometry, geographical survey, sport, or atmospheric pressure). Although the term altitude is commonly used to mean
546-774: The Plesetsk Cosmodrome was never completed, and work was abandoned after the dissolution of the Soviet Union . The Zenit-2 had its last flight in 2004; it has been superseded by the Zenit-2M , which incorporates enhancements made during the development of the Zenit-3SL. The Zenit-2 has a fairly low flight rate, as the Russian government usually avoids flying national-security payloads on Ukrainian rockets. Zenit-2M itself flew only twice: in 2007 and 2011. During
585-456: The height above sea level of a location, in geography the term elevation is often preferred for this usage. In aviation, altitude is typically measured relative to mean sea level or above ground level to ensure safe navigation and flight operations. In geometry and geographical surveys, altitude helps create accurate topographic maps and understand the terrain's elevation. For high-altitude trekking and sports, knowing and adapting to altitude
624-429: The oblateness of Earth's spheroid figure and local topography . While definitions based on altitude are inherently ambiguous, most of them fall within the range specified by an orbit period of 128 minutes because, according to Kepler's third law , this corresponds to a semi-major axis of 8,413 km (5,228 mi). For circular orbits, this in turn corresponds to an altitude of 2,042 km (1,269 mi) above
663-435: The troposphere (up to approximately 11 kilometres (36,000 ft) of altitude) in the Earth's atmosphere undergoes notable convection; in the stratosphere , there is little vertical convection. Medicine recognizes that altitudes above 1,500 metres (4,900 ft) start to affect humans, and there is no record of humans living at extreme altitudes above 5,500–6,000 metres (18,000–19,700 ft) for more than two years. As
702-595: The 1980s Vladimir Chelomey 's firm proposed the never realised 15-ton Uragan spaceplane , which would have been launched by Zenit-2. A modified version, the Zenit-2S, is used as the first two stages of the Sea Launch Zenit-3SL rocket. Launches of Zenit-2 rockets are conducted from Baikonur Cosmodrome Site 45/1 . A second pad, 45/2, was also constructed, but was only used for two launches before being destroyed in an explosion. A third pad, Site 35 at
741-498: The LEO region but are not in a LEO orbit because they re-enter the atmosphere . The distinction between LEO orbits and the LEO region is especially important for analysis of possible collisions between objects which may not themselves be in LEO but could collide with satellites or debris in LEO orbits. The mean orbital velocity needed to maintain a stable low Earth orbit is about 7.8 km/s (4.8 mi/s), which translates to 28,000 km/h (17,000 mph). However, this depends on
780-458: The US, but may be as low as 3,000 feet (910 m) in other jurisdictions). So when the altimeter reads the country-specific flight level on the standard pressure setting the aircraft is said to be at "Flight level XXX/100" (where XXX is the transition altitude). When flying at a flight level, the altimeter is always set to standard pressure (29.92 inHg or 1013.25 hPa ). On the flight deck,
819-597: The United States. In addition, the recent hypothesis suggests that high altitude could be protective against Alzheimer's disease via action of erythropoietin, a hormone released by kidney in response to hypoxia. However, people living at higher elevations have a statistically significant higher rate of suicide. The cause for the increased suicide risk is unknown so far. For athletes, high altitude produces two contradictory effects on performance. For explosive events (sprints up to 400 metres, long jump , triple jump )
SECTION 20
#1732786955287858-441: The altitude increases, atmospheric pressure decreases, which affects humans by reducing the partial pressure of oxygen . The lack of oxygen above 2,400 metres (8,000 ft) can cause serious illnesses such as altitude sickness , high altitude pulmonary edema , and high altitude cerebral edema . The higher the altitude, the more likely are serious effects. The human body can adapt to high altitude by breathing faster, having
897-471: The atmosphere is a result of an interaction between radiation and convection . Sunlight in the visible spectrum hits the ground and heats it. The ground then heats the air at the surface. If radiation were the only way to transfer heat from the ground to space, the greenhouse effect of gases in the atmosphere would keep the ground at roughly 333 K (60 °C; 140 °F), and the temperature would decay exponentially with height. However, when air
936-433: The atmosphere. The effects of adding such quantities of vaporized metals to Earth's stratosphere are potentially of concern but currently unknown. The LEO environment is becoming congested with space debris because of the frequency of object launches. This has caused growing concern in recent years, since collisions at orbital velocities can be dangerous or deadly. Collisions can produce additional space debris, creating
975-433: The beginning of the inner Van Allen radiation belt . The term LEO region is used for the area of space below an altitude of 2,000 km (1,200 mi) (about one-third of Earth's radius). Objects in orbits that pass through this zone, even if they have an apogee further out or are sub-orbital , are carefully tracked since they present a collision risk to the many LEO satellites. No human spaceflights other than
1014-414: The context of the communication. Parties exchanging altitude information must be clear which definition is being used. Aviation altitude is measured using either mean sea level (MSL) or local ground level (above ground level, or AGL) as the reference datum. Pressure altitude divided by 100 feet (30 m) is the flight level , and is used above the transition altitude (18,000 feet (5,500 m) in
1053-505: The definitive instrument for measuring altitude is the pressure altimeter , which is an aneroid barometer with a front face indicating distance (feet or metres) instead of atmospheric pressure . There are several types of altitude in aviation: These types of altitude can be explained more simply as various ways of measuring the altitude: The Earth's atmosphere is divided into several altitude regions. These regions start and finish at varying heights depending on season and distance from
1092-455: The denser part of the atmosphere and below the inner Van Allen radiation belt . They encounter atmospheric drag from gases in the thermosphere (approximately 80–600 km above the surface) or exosphere (approximately 600 km or 400 mi and higher), depending on orbit height. Satellites in orbits that reach altitudes below 300 km (190 mi) decay quickly due to atmospheric drag. Equatorial low Earth orbits ( ELEO ) are
1131-403: The exact altitude of the orbit. Calculated for a circular orbit of 200 km (120 mi) the orbital velocity is 7.79 km/s (4.84 mi/s), but for a higher 1,500 km (930 mi) orbit the velocity is reduced to 7.12 km/s (4.42 mi/s). The launch vehicle's delta-v needed to achieve low Earth orbit starts around 9.4 km/s (5.8 mi/s). The pull of gravity in LEO
1170-647: The first generation of Starlink satellites used polar orbits which provide coverage everywhere on Earth. Later Starlink constellations orbit at a lower inclination and provide more coverage for populated areas. Higher orbits include medium Earth orbit (MEO), sometimes called intermediate circular orbit (ICO), and further above, geostationary orbit (GEO). Orbits higher than low orbit can lead to early failure of electronic components due to intense radiation and charge accumulation. In 2017, " very low Earth orbits " ( VLEO ) began to be seen in regulatory filings. These orbits, below about 450 km (280 mi), require
1209-563: The lapse rate from the dry adiabatic lapse rate to the moist adiabatic lapse rate (5.5 °C per kilometer or 3 °F [1.7 °C] per 1000 feet). As an average, the International Civil Aviation Organization (ICAO) defines an international standard atmosphere (ISA) with a temperature lapse rate of 6.49 °C per kilometer (3.56 °F per 1,000 feet). The actual lapse rate can vary by altitude and by location. Finally, only
Zenit-2 - Misplaced Pages Continue
1248-559: The late 1990s, the Zenit-2 was marketed for commercial launches. Only one such launch was conducted, with a group of Globalstar satellites, which ended in failure after a computer error resulted in the premature cutoff of the second stage. The second stage, called the SL-16 by western governments, along with the second stages of the Vostok and Kosmos launch vehicles, makes up about 20% of
1287-907: The letter "A". Athletes also can take advantage of altitude acclimatization to increase their performance. The same changes that help the body cope with high altitude increase performance back at sea level. These changes are the basis of altitude training which forms an integral part of the training of athletes in a number of endurance sports including track and field, distance running, triathlon, cycling and swimming. Decreased oxygen availability and decreased temperature make life at high altitude challenging. Despite these environmental conditions, many species have been successfully adapted at high altitudes . Animals have developed physiological adaptations to enhance oxygen uptake and delivery to tissues which can be used to sustain metabolism. The strategies used by animals to adapt to high altitude depend on their morphology and phylogeny . For example, small mammals face
1326-526: The lunar missions of the Apollo program (1968-1972) and the 2024 Polaris Dawn have taken place beyond LEO. All space stations to date have operated geocentric within LEO. A wide variety of sources define LEO in terms of altitude . The altitude of an object in an elliptic orbit can vary significantly along the orbit. Even for circular orbits , the altitude above ground can vary by as much as 30 km (19 mi) (especially for polar orbits ) due to
1365-455: The mean radius of Earth, which is consistent with some of the upper altitude limits in some LEO definitions. The LEO region is defined by some sources as a region in space that LEO orbits occupy. Some highly elliptical orbits may pass through the LEO region near their lowest altitude (or perigee ) but are not in a LEO orbit because their highest altitude (or apogee ) exceeds 2,000 km (1,243 mi). Sub-orbital objects can also reach
1404-571: The poles. The altitudes stated below are averages: The Kármán line , at an altitude of 100 kilometres (62 mi) above sea level , by convention defines represents the demarcation between the atmosphere and space . The thermosphere and exosphere (along with the higher parts of the mesosphere) are regions of the atmosphere that are conventionally defined as space. Regions on the Earth 's surface (or in its atmosphere) that are high above mean sea level are referred to as high altitude . High altitude
1443-630: The reduction in atmospheric pressure signifies less atmospheric resistance, which generally results in improved athletic performance. For endurance events (races of 5,000 metres or more) the predominant effect is the reduction in oxygen which generally reduces the athlete's performance at high altitude. Sports organizations acknowledge the effects of altitude on performance: the International Association of Athletic Federations (IAAF), for example, marks record performances achieved at an altitude greater than 1,000 metres (3,300 ft) with
1482-525: The total mass of launch debris in Low Earth Orbit (LEO). An analysis that determined the 50 “statistically most concerning” debris objects in low Earth orbit determined that the top 20 were all SL-16 upper stages. This space - or spaceflight -related article is a stub . You can help Misplaced Pages by expanding it . This rocketry article is a stub . You can help Misplaced Pages by expanding it . Low Earth orbit A low Earth orbit ( LEO )
1521-412: The use of novel technologies for orbit raising because they operate in orbits that would ordinarily decay too soon to be economically useful. A low Earth orbit requires the lowest amount of energy for satellite placement. It provides high bandwidth and low communication latency . Satellites and space stations in LEO are more accessible for crew and servicing. Since it requires less energy to place
#286713