121-624: The Sikorsky CH-37 Mojave (company designation S-56 ) is an American large heavy-lift military helicopter of the 1950s. It entered service as the HR2S-1 Deuce with USMC in 1956, and as the H-37A Mojave with the U.S. Army that same year. In the early 1960s, the designation was standardized to CH-37 for both services, with the HR2S-1 redesignated as CH-37C specifically. Developed in the early 1950s, with its first flight in 1953, it filled
242-616: A runway . In 1942, the Sikorsky R-4 became the first helicopter to reach full-scale production . Although most earlier designs used more than one main rotor, the configuration of a single main rotor accompanied by a vertical anti-torque tail rotor (i.e. unicopter , not to be confused with the single-blade monocopter ) has become the most common helicopter configuration. However, twin-rotor helicopters (bicopters), in either tandem or transverse rotors configurations, are sometimes in use due to their greater payload capacity than
363-479: A 1950 Navy requirement for an assault helicopter. The design includes a front-loading ramp with side opening clam shell doors on the nose. It is powered by two radial piston engines. It served in active military service well into the 1960s, including in Indochina, before being replaced, and many ex-military models went onto civilian service in the 1970s. This was the biggest helicopter in the world to enter service at
484-444: A collective input is made, all the blades change equally, and the result is the helicopter increasing or decreasing in altitude. A swashplate controls the collective and cyclic pitch of the main blades. The swashplate moves up and down, along the main shaft, to change the pitch of both blades. This causes the helicopter to push air downward or upward, depending on the angle of attack . The swashplate can also change its angle to move
605-417: A constant altitude. The pedals serve the same function in both a helicopter and a fixed-wing aircraft, to maintain balanced flight. This is done by applying a pedal input in whichever direction is necessary to center the ball in the turn and bank indicator . Due to the operating characteristics of the helicopter—its ability to take off and land vertically, and to hover for extended periods of time, as well as
726-409: A few more flights and achieved a height of nearly 2.0 metres (6.5 ft), but it proved to be unstable and was abandoned. Lift (force) When a fluid flows around an object, the fluid exerts a force on the object. Lift is the component of this force that is perpendicular to the oncoming flow direction. It contrasts with the drag force, which is the component of the force parallel to
847-463: A gift by their father, would inspire the Wright brothers to pursue the dream of flight. In 1861, the word "helicopter" was coined by Gustave de Ponton d'Amécourt , a French inventor who demonstrated a small steam-powered model. While celebrated as an innovative use of a new metal, aluminum, the model never lifted off the ground. D'Amecourt's linguistic contribution would survive to eventually describe
968-420: A given airspeed depends on the shape of the airfoil, especially the amount of camber (curvature such that the upper surface is more convex than the lower surface, as illustrated at right). Increasing the camber generally increases the maximum lift at a given airspeed. Cambered airfoils generate lift at zero angle of attack. When the chord line is horizontal, the trailing edge has a downward direction and since
1089-405: A helicopter determines the size, function and capability of that helicopter design. The earliest helicopter engines were simple mechanical devices, such as rubber bands or spindles, which relegated the size of helicopters to toys and small models. For a half century before the first airplane flight, steam engines were used to forward the development of the understanding of helicopter aerodynamics, but
1210-510: A helicopter powered by a gasoline engine with box kites attached to a mast by cables for a rotor, but it never flew. In 1906, two French brothers, Jacques and Louis Breguet , began experimenting with airfoils for helicopters. In 1907, those experiments resulted in the Gyroplane No.1 , possibly as the earliest known example of a quadcopter. Although there is some uncertainty about the date, sometime between 14 August and 29 September 1907,
1331-416: A helicopter. This is because a helicopter generates its own gusty air while in a hover, which acts against the fuselage and flight control surfaces. The result is constant control inputs and corrections by the pilot to keep the helicopter where it is required to be. Despite the complexity of the task, the control inputs in a hover are simple. The cyclic is used to eliminate drift in the horizontal plane, that
SECTION 10
#17327902867101452-436: A lift force roughly proportional to the angle of attack. As the angle of attack increases, the lift reaches a maximum at some angle; increasing the angle of attack beyond this critical angle of attack causes the upper-surface flow to separate from the wing; there is less deflection downward so the airfoil generates less lift. The airfoil is said to be stalled . The maximum lift force that can be generated by an airfoil at
1573-463: A point is reached where the boundary layer can no longer remain attached to the upper surface. When the boundary layer separates, it leaves a region of recirculating flow above the upper surface, as illustrated in the flow-visualization photo at right. This is known as the stall , or stalling . At angles of attack above the stall, lift is significantly reduced, though it does not drop to zero. The maximum lift that can be achieved before stall, in terms of
1694-485: A pressure difference, and that the speed difference then leads to a pressure difference, by Bernoulli's principle. This implied one-way causation is a misconception. The real relationship between pressure and flow speed is a mutual interaction . As explained below under a more comprehensive physical explanation , producing a lift force requires maintaining pressure differences in both the vertical and horizontal directions. The Bernoulli-only explanations do not explain how
1815-477: A process of rebracketing , the word is often (erroneously, from an etymological point of view) perceived by English speakers as consisting of heli- and -copter , leading to words like helipad and quadcopter . English language nicknames for "helicopter" include "chopper", "copter", "heli", and "whirlybird". In the United States military, the common slang is "helo" pronounced /ˈhiː.loʊ/. A helicopter
1936-494: A rotor. The spinning creates lift, and the toy flies when released. The 4th-century AD Daoist book Baopuzi by Ge Hong ( 抱朴子 "Master who Embraces Simplicity") reportedly describes some of the ideas inherent to rotary wing aircraft. Designs similar to the Chinese helicopter toy appeared in some Renaissance paintings and other works. In the 18th and early 19th centuries Western scientists developed flying machines based on
2057-441: A single main rotor, but torque created by its aerodynamic drag must be countered by an opposed torque. The design that Igor Sikorsky settled on for his VS-300 was a smaller tail rotor. The tail rotor pushes or pulls against the tail to counter the torque effect, and this has become the most common configuration for helicopter design, usually at the end of a tail boom . Some helicopters use other anti-torque controls instead of
2178-417: A state called translational lift which provides extra lift without increasing power. This state, most typically, occurs when the airspeed reaches approximately 16–24 knots (30–44 km/h; 18–28 mph), and may be necessary for a helicopter to obtain flight. In forward flight a helicopter's flight controls behave more like those of a fixed-wing aircraft. Applying forward pressure on the cyclic will cause
2299-417: A steady flow without viscosity, lower pressure means higher speed, and higher pressure means lower speed. Thus changes in flow direction and speed are directly caused by the non-uniform pressure. But this cause-and-effect relationship is not just one-way; it works in both directions simultaneously. The air's motion is affected by the pressure differences, but the existence of the pressure differences depends on
2420-412: A streamlined airfoil, and with somewhat higher drag. Most simplified explanations follow one of two basic approaches, based either on Newton's laws of motion or on Bernoulli's principle . An airfoil generates lift by exerting a downward force on the air as it flows past. According to Newton's third law , the air must exert an equal and opposite (upward) force on the airfoil, which is lift. As
2541-469: A total of sixty aircraft being produced. The United States Army evaluated the prototype in 1954 and ordered 94 examples as the CH-37A , the first being delivered in summer 1956. All Marine Corps and Army examples were delivered by mid-1960. Army examples were all upgraded to CH-37B status in the early 1960s, being given Lear auto-stabilization equipment and the ability to load and unload while hovering. In
SECTION 20
#17327902867102662-403: A turn the lift is tilted with respect to the vertical. Lift may also act as downforce on the wing of a fixed-wing aircraft at the top of an aerobatic loop , and on the horizontal stabiliser of an aircraft. Lift may also be largely horizontal, for instance on a sailing ship. The lift discussed in this article is mainly in relation to airfoils, although marine hydrofoils and propellers share
2783-439: A wide area, producing a pattern called a velocity field . When an airfoil produces lift, the flow ahead of the airfoil is deflected upward, the flow above and below the airfoil is deflected downward leaving the air far behind the airfoil in the same state as the oncoming flow far ahead. The flow above the upper surface is sped up, while the flow below the airfoil is slowed down. Together with the upward deflection of air in front and
2904-429: Is a cylindrical metal shaft that extends upwards from the transmission. At the top of the mast is the attachment point for the rotor blades called the hub. Main rotor systems are classified according to how the rotor blades are attached and move relative to the hub. There are three basic types: hingeless, fully articulated, and teetering; although some modern rotor systems use a combination of these. Most helicopters have
3025-407: Is a result of pressure differences and depends on angle of attack, airfoil shape, air density, and airspeed. Pressure is the normal force per unit area exerted by the air on itself and on surfaces that it touches. The lift force is transmitted through the pressure, which acts perpendicular to the surface of the airfoil. Thus, the net force manifests itself as pressure differences. The direction of
3146-460: Is a type of rotorcraft in which lift and thrust are supplied by horizontally spinning rotors . This allows the helicopter to take off and land vertically , to hover , and to fly forward, backward and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft and many forms of short take-off and landing ( STOL ) or short take-off and vertical landing ( STOVL ) aircraft cannot perform without
3267-452: Is a type of rotorcraft in which lift and thrust are supplied by one or more horizontally-spinning rotors. By contrast the autogyro (or gyroplane) and gyrodyne have a free-spinning rotor for all or part of the flight envelope, relying on a separate thrust system to propel the craft forwards, so that the airflow sets the rotor spinning to provide lift. The compound helicopter also has a separate thrust system, but continues to supply power to
3388-439: Is because the assumption of equal transit time is wrong when applied to a body generating lift. There is no physical principle that requires equal transit time in all situations and experimental results confirm that for a body generating lift the transit times are not equal. In fact, the air moving past the top of an airfoil generating lift moves much faster than equal transit time predicts. The much higher flow speed over
3509-452: Is called an aerial crane . Aerial cranes are used to place heavy equipment, like radio transmission towers and large air conditioning units, on the tops of tall buildings, or when an item must be raised up in a remote area, such as a radio tower raised on the top of a hill or mountain. Helicopters are used as aerial cranes in the logging industry to lift trees out of terrain where vehicles cannot travel and where environmental concerns prohibit
3630-503: Is difficult because the cause-and-effect relationships involved are subtle. A comprehensive explanation that captures all of the essential aspects is necessarily complex. There are also many simplified explanations , but all leave significant parts of the phenomenon unexplained, while some also have elements that are simply incorrect. An airfoil is a streamlined shape that is capable of generating significantly more lift than drag. A flat plate can generate lift, but not as much as
3751-547: Is equipped to stabilize and provide limited medical treatment to a patient while in flight. The use of helicopters as air ambulances is often referred to as " MEDEVAC ", and patients are referred to as being "airlifted", or "medevaced". This use was pioneered in the Korean War , when time to reach a medical facility was reduced to three hours from the eight hours needed in World War II , and further reduced to two hours by
Sikorsky CH-37 Mojave - Misplaced Pages Continue
3872-407: Is lighter than the surrounding fluid, does not require movement and is used by balloons, blimps, dirigibles, boats, and submarines. Planing lift , in which only the lower portion of the body is immersed in a liquid flow, is used by motorboats, surfboards, windsurfers, sailboats, and water-skis. A fluid flowing around the surface of a solid object applies a force on it. It does not matter whether
3993-619: Is negligible. The lift force frequency is characterised by the dimensionless Strouhal number , which depends on the Reynolds number of the flow. For a flexible structure, this oscillatory lift force may induce vortex-induced vibrations. Under certain conditions – for instance resonance or strong spanwise correlation of the lift force – the resulting motion of the structure due to the lift fluctuations may be strongly enhanced. Such vibrations may pose problems and threaten collapse in tall man-made structures like industrial chimneys . In
4114-404: Is proportional to the density of the air and approximately proportional to the square of the flow speed. Lift also depends on the size of the wing, being generally proportional to the wing's area projected in the lift direction. In calculations it is convenient to quantify lift in terms of a lift coefficient based on these factors. No matter how smooth the surface of an airfoil seems, any surface
4235-409: Is rough on the scale of air molecules. Air molecules flying into the surface bounce off the rough surface in random directions relative to their original velocities. The result is that when the air is viewed as a continuous material, it is seen to be unable to slide along the surface, and the air's velocity relative to the airfoil decreases to nearly zero at the surface (i.e., the air molecules "stick" to
4356-678: Is the Sud-Ouest Djinn , and an example of the hot tip jet helicopter is the YH-32 Hornet . Some radio-controlled helicopters and smaller, helicopter-type unmanned aerial vehicles , use electric motors or motorcycle engines. Radio-controlled helicopters may also have piston engines that use fuels other than gasoline, such as nitromethane . Some turbine engines commonly used in helicopters can also use biodiesel instead of jet fuel. There are also human-powered helicopters . A helicopter has four flight control inputs. These are
4477-500: Is the component of the surface force parallel to the flow direction. Lift is mostly associated with the wings of fixed-wing aircraft , although it is more widely generated by many other streamlined bodies such as propellers , kites , helicopter rotors , racing car wings , maritime sails , wind turbines , and by sailboat keels , ship's rudders , and hydrofoils in water. Lift is also used by flying and gliding animals , especially by birds , bats , and insects , and even in
4598-411: Is to control forward and back, right and left. The collective is used to maintain altitude. The pedals are used to control nose direction or heading . It is the interaction of these controls that makes hovering so difficult, since an adjustment in any one control requires an adjustment of the other two, creating a cycle of constant correction. As a helicopter moves from hover to forward flight it enters
4719-572: The Bell 205 and the Erickson S-64 Aircrane helitanker. Helicopters are used as air ambulances for emergency medical assistance in situations when an ambulance cannot easily or quickly reach the scene, or cannot transport the patient to a medical facility in time. Helicopters are also used when patients need to be transported between medical facilities and air transportation is the most practical method. An air ambulance helicopter
4840-588: The Bell 206 with 3,400. Most were in North America with 34.3% then in Europe with 28.0% followed by Asia-Pacific with 18.6%, Latin America with 11.6%, Africa with 5.3% and Middle East with 1.7%. The earliest references for vertical flight came from China. Since around 400 BC, Chinese children have played with bamboo flying toys (or Chinese top). This bamboo-copter is spun by rolling a stick attached to
4961-527: The Cornu helicopter which used two 6.1-metre (20 ft) counter-rotating rotors driven by a 24 hp (18 kW) Antoinette engine. On 13 November 1907, it lifted its inventor to 0.3 metres (1 ft) and remained aloft for 20 seconds. Even though this flight did not surpass the flight of the Gyroplane No. 1, it was reported to be the first truly free flight with a pilot. Cornu's helicopter completed
Sikorsky CH-37 Mojave - Misplaced Pages Continue
5082-629: The Magnus effect , a lift force is generated by a spinning cylinder in a freestream. Here the mechanical rotation acts on the boundary layer, causing it to separate at different locations on the two sides of the cylinder. The asymmetric separation changes the effective shape of the cylinder as far as the flow is concerned such that the cylinder acts like a lifting airfoil with circulation in the outer flow. As described above under " Simplified physical explanations of lift on an airfoil ", there are two main popular explanations: one based on downward deflection of
5203-769: The S-60 Skycrane helicopter prototype. The S-56 came into being as an assault transport for the United States Marine Corps (USMC), with a capacity of 26 fully equipped Marines. An order for the aircraft was placed in 1951 using the U.S. Navy/U.S. Marine Corps designation of the time of HR2S . The first prototype, the XHR2S-1 flew in 1953, and production deliveries of the HR2S-1 "Deuce" began in July 1956 to Marine Helicopter Squadron One ( HMX-1 ), with
5324-499: The Vietnam War . In naval service a prime function of rescue helicopters is to promptly retrieve downed aircrew involved in crashes occurring upon launch or recovery aboard aircraft carriers. In past years this function was performed by destroyers escorting the carrier, but since then helicopters have proved vastly more effective. Police departments and other law enforcement agencies use helicopters to pursue suspects and patrol
5445-446: The streamline curvature theorem , was derived from Newton's second law by Leonhard Euler in 1754: The left side of this equation represents the pressure difference perpendicular to the fluid flow. On the right side of the equation, ρ is the density, v is the velocity, and R is the radius of curvature. This formula shows that higher velocities and tighter curvatures create larger pressure differentials and that for straight flow (R → ∞),
5566-934: The turboshaft engines employed in later military helicopters. This accounted for the CH-37's fairly short service life, all being withdrawn from service by the late 1960s, replaced in Army service by the distantly related CH-54 Tarhe and in the Marine Corps by the CH-53 Sea Stallion . Six CH-37C's were deployed to Vietnam in September 1965 to assist in the recovery of downed U.S. aircraft, serving in this role from Marble Mountain Air Facility until May 14, 1967. They were very successful at this role, recovering over US$ 7.5 million worth of equipment, some of which
5687-549: The "Coandă effect" is applicable, calling it the "Coandă effect" does not provide an explanation, it just gives the phenomenon a name. The ability of a fluid flow to follow a curved path is not dependent on shear forces, viscosity of the fluid, or the presence of a boundary layer. Air flowing around an airfoil, adhering to both upper and lower surfaces, and generating lift, is accepted as a phenomenon in inviscid flow. There are two common versions of this explanation, one based on "equal transit time", and one based on "obstruction" of
5808-527: The 1962 unification of United States military aircraft designations, the USMC examples were redesignated from HR2S-1 to CH-37C . At the time of delivery, the CH-37 was the largest helicopter in the Western world and it was Sikorsky's first twin-engine helicopter. Two Pratt & Whitney R-2800 Double Wasp radial engines were mounted in outboard pods that also contained the retractable landing gear . This left
5929-558: The Bambi bucket, are usually filled by submerging the bucket into lakes, rivers, reservoirs, or portable tanks. Tanks fitted onto helicopters are filled from a hose while the helicopter is on the ground or water is siphoned from lakes or reservoirs through a hanging snorkel as the helicopter hovers over the water source. Helitack helicopters are also used to deliver firefighters, who rappel down to inaccessible areas, and to resupply firefighters. Common firefighting helicopters include variants of
6050-762: The Chinese top in a model consisting of contrarotating turkey flight feathers as rotor blades, and in 1784, demonstrated it to the French Academy of Sciences . Sir George Cayley , influenced by a childhood fascination with the Chinese flying top, developed a model of feathers, similar to that of Launoy and Bienvenu, but powered by rubber bands. By the end of the century, he had progressed to using sheets of tin for rotor blades and springs for power. His writings on his experiments and models would become influential on future aviation pioneers. Alphonse Pénaud would later develop coaxial rotor model helicopter toys in 1870, also powered by rubber bands. One of these toys, given as
6171-478: The Chinese toy. It was not until the early 1480s, when Italian polymath Leonardo da Vinci created a design for a machine that could be described as an " aerial screw ", that any recorded advancement was made towards vertical flight. His notes suggested that he built small flying models, but there were no indications for any provision to stop the rotor from making the craft rotate. As scientific knowledge increased and became more accepted, people continued to pursue
SECTION 50
#17327902867106292-453: The Gyroplane No. 1 lifted its pilot into the air about 0.6 metres (2 ft) for a minute. The Gyroplane No. 1 proved to be extremely unsteady and required a man at each corner of the airframe to hold it steady. For this reason, the flights of the Gyroplane No. 1 are considered to be the first manned flight of a helicopter, but not a free or untethered flight. That same year, fellow French inventor Paul Cornu designed and built
6413-571: The Martian atmosphere is 100 times thinner than Earth's, its two blades spin at close to 3,000 revolutions a minute, approximately 10 times faster than that of a terrestrial helicopter. In 2017, 926 civil helicopters were shipped for $ 3.68 billion, led by Airbus Helicopters with $ 1.87 billion for 369 rotorcraft, Leonardo Helicopters with $ 806 million for 102 (first three-quarters only), Bell Helicopter with $ 696 million for 132, then Robinson Helicopter with $ 161 million for 305. By October 2018,
6534-439: The air follows the trailing edge it is deflected downward. When a cambered airfoil is upside down, the angle of attack can be adjusted so that the lift force is upward. This explains how a plane can fly upside down. The ambient flow conditions which affect lift include the fluid density, viscosity and speed of flow. Density is affected by temperature, and by the medium's acoustic velocity – i.e. by compressibility effects. Lift
6655-418: The air's motion. The relationship is thus a mutual, or reciprocal, interaction: Air flow changes speed or direction in response to pressure differences, and the pressure differences are sustained by the air's resistance to changing speed or direction. A pressure difference can exist only if something is there for it to push against. In aerodynamic flow, the pressure difference pushes against the air's inertia, as
6776-550: The aircraft's handling properties under low airspeed conditions—it has proved advantageous to conduct tasks that were previously not possible with other aircraft, or were time- or work-intensive to accomplish on the ground. Today, helicopter uses include transportation of people and cargo, military uses, construction, firefighting, search and rescue , tourism , medical transport, law enforcement, agriculture, news and media , and aerial observation , among others. A helicopter used to carry loads connected to long cables or slings
6897-411: The airflow approaches the airfoil it is curving upward, but as it passes the airfoil it changes direction and follows a path that is curved downward. According to Newton's second law, this change in flow direction requires a downward force applied to the air by the airfoil. Then Newton's third law requires the air to exert an upward force on the airfoil; thus a reaction force, lift, is generated opposite to
7018-400: The airflow. The "equal transit time" explanation starts by arguing that the flow over the upper surface is faster than the flow over the lower surface because the path length over the upper surface is longer and must be traversed in equal transit time. Bernoulli's principle states that under certain conditions increased flow speed is associated with reduced pressure. It is concluded that
7139-490: The airfoil and behind also indicate that air passing through the low-pressure region above the airfoil is sped up as it enters, and slowed back down as it leaves. Air passing through the high-pressure region below the airfoil is slowed down as it enters and then sped back up as it leaves. Thus the non-uniform pressure is also the cause of the changes in flow speed visible in the flow animation. The changes in flow speed are consistent with Bernoulli's principle , which states that in
7260-462: The airfoil can impart downward turning to a much deeper swath of the flow than it actually touches. Furthermore, it does not mention that the lift force is exerted by pressure differences , and does not explain how those pressure differences are sustained. Some versions of the flow-deflection explanation of lift cite the Coandă effect as the reason the flow is able to follow the convex upper surface of
7381-408: The airfoil is pushed outward from the center of the high-pressure region. According to Newton's second law , a force causes air to accelerate in the direction of the force. Thus the vertical arrows in the accompanying pressure field diagram indicate that air above and below the airfoil is accelerated, or turned downward, and that the non-uniform pressure is thus the cause of the downward deflection of
SECTION 60
#17327902867107502-429: The airfoil's surfaces. Pressure in a fluid is always positive in an absolute sense, so that pressure must always be thought of as pushing, and never as pulling. The pressure thus pushes inward on the airfoil everywhere on both the upper and lower surfaces. The flowing air reacts to the presence of the wing by reducing the pressure on the wing's upper surface and increasing the pressure on the lower surface. The pressure on
7623-458: The airfoil. The conventional definition in the aerodynamics field is that the Coandă effect refers to the tendency of a fluid jet to stay attached to an adjacent surface that curves away from the flow, and the resultant entrainment of ambient air into the flow. More broadly, some consider the effect to include the tendency of any fluid boundary layer to adhere to a curved surface, not just
7744-501: The amount of constriction or obstruction do not predict experimental results. Another flaw is that conservation of mass is not a satisfying physical reason why the flow would speed up. Effectively explaining the acceleration of an object requires identifying the force that accelerates it. A serious flaw common to all the Bernoulli-based explanations is that they imply that a speed difference can arise from causes other than
7865-466: The aviation industry; and the turboshaft engine for helicopter use, pioneered in December 1951 by the aforementioned Kaman K-225, finally gave helicopters an engine with a large amount of power and a low weight penalty. Turboshafts are also more reliable than piston engines, especially when producing the sustained high levels of power required by a helicopter. The turboshaft engine was able to be scaled to
7986-435: The blades angle forwards or backwards, or left and right, to make the helicopter move in those directions. The anti-torque pedals are located in the same position as the rudder pedals in a fixed-wing aircraft, and serve a similar purpose, namely to control the direction in which the nose of the aircraft is pointed. Application of the pedal in a given direction changes the pitch of the tail rotor blades, increasing or reducing
8107-455: The boundary layer accompanying a fluid jet. It is in this broader sense that the Coandă effect is used by some popular references to explain why airflow remains attached to the top side of an airfoil. This is a controversial use of the term "Coandă effect"; the flow following the upper surface simply reflects an absence of boundary-layer separation, thus it is not an example of the Coandă effect. Regardless of whether this broader definition of
8228-677: The building of roads. These operations are referred to as longline because of the long, single sling line used to carry the load. In military service helicopters are often useful for delivery of outsized slung loads that would not fit inside ordinary cargo aircraft: artillery pieces, large machinery (field radars, communications gear, electrical generators), or pallets of bulk cargo. In military operations these payloads are often delivered to remote locations made inaccessible by mountainous or riverine terrain, or naval vessels at sea. In electronic news gathering , helicopters have provided aerial views of some major news stories, and have been doing so, from
8349-406: The cockpit from overhead. The control is called the cyclic because it changes cyclic pitch of the main blades. The result is to tilt the rotor disk in a particular direction, resulting in the helicopter moving in that direction. If the pilot pushes the cyclic forward, the rotor disk tilts forward, and the rotor produces a thrust in the forward direction. If the pilot pushes the cyclic to the side,
8470-470: The cyclic, the collective, the anti-torque pedals, and the throttle. The cyclic control is usually located between the pilot's legs and is commonly called the cyclic stick or just cyclic . On most helicopters, the cyclic is similar to a joystick. However, the Robinson R22 and Robinson R44 have a unique teetering bar cyclic control system and a few helicopters have a cyclic control that descends into
8591-415: The directional change. In the case of an airplane wing, the wing exerts a downward force on the air and the air exerts an upward force on the wing. The downward turning of the flow is not produced solely by the lower surface of the airfoil, and the air flow above the airfoil accounts for much of the downward-turning action. This explanation is correct but it is incomplete. It does not explain how
8712-421: The downward deflection of the air immediately behind, this establishes a net circulatory component of the flow. The downward deflection and the changes in flow speed are pronounced and extend over a wide area, as can be seen in the flow animation on the right. These differences in the direction and speed of the flow are greatest close to the airfoil and decrease gradually far above and below. All of these features of
8833-422: The downward turning, but this is false. (see above under " Controversy regarding the Coandă effect "). The arrows ahead of the airfoil indicate that the flow ahead of the airfoil is deflected upward, and the arrows behind the airfoil indicate that the flow behind is deflected upward again, after being deflected downward over the airfoil. These deflections are also visible in the flow animation. The arrows ahead of
8954-536: The early 21st century, as well as recently weaponized utilities such as artillery spotting , aerial bombing and suicide attacks . The English word helicopter is adapted from the French word hélicoptère , coined by Gustave Ponton d'Amécourt in 1861, which originates from the Greek helix ( ἕλιξ ), genitive helikos (ἕλῐκος), "helix, spiral, whirl, convolution" and pteron ( πτερόν ) "wing". In
9075-439: The event was taken by Max Skladanowsky , but it remains lost . In 1885, Thomas Edison was given US$ 1,000 (equivalent to $ 34,000 today) by James Gordon Bennett, Jr. , to conduct experiments towards developing flight. Edison built a helicopter and used the paper for a stock ticker to create guncotton , with which he attempted to power an internal combustion engine. The helicopter was damaged by explosions and one of his workers
9196-486: The first half of the 20th century was that the amount of power produced by an engine was not able to overcome the engine's weight in vertical flight. This was overcome in early successful helicopters by using the smallest engines available. When the compact, flat engine was developed, the helicopter industry found a lighter-weight powerplant easily adapted to small helicopters, although radial engines continued to be used for larger helicopters. Turbine engines revolutionized
9317-414: The flow (Newton's laws), and one based on pressure differences accompanied by changes in flow speed (Bernoulli's principle). Either of these, by itself, correctly identifies some aspects of the lifting flow but leaves other important aspects of the phenomenon unexplained. A more comprehensive explanation involves both downward deflection and pressure differences (including changes in flow speed associated with
9438-476: The flow direction. Lift conventionally acts in an upward direction in order to counter the force of gravity , but it is defined to act perpendicular to the flow and therefore can act in any direction. If the surrounding fluid is air, the force is called an aerodynamic force . In water or any other liquid, it is called a hydrodynamic force . Dynamic lift is distinguished from other kinds of lift in fluids. Aerostatic lift or buoyancy , in which an internal fluid
9559-409: The flow visible in the flow animation. To produce this downward turning, the airfoil must have a positive angle of attack or have sufficient positive camber. Note that the downward turning of the flow over the upper surface is the result of the air being pushed downward by higher pressure above it than below it. Some explanations that refer to the "Coandă effect" suggest that viscosity plays a key role in
9680-473: The fuselage free for cargo, which could be loaded and unloaded through large clamshell doors in the nose. The early models could carry a payload of either three M422 Mighty Mites (a lightweight jeep-like vehicle) or 26 troops. For storage, the main rotor blades folded back on the fuselage and the tail rotor mast folded forward on the fuselage. The CH-37 was one of the last heavy helicopters to use piston engines , which were larger, heavier and less powerful than
9801-515: The high operating cost of helicopters cost-effective in ensuring that oil platforms continue to operate. Various companies specialize in this type of operation. NASA developed Ingenuity , a 1.8 kg (4.0 lb) helicopter used to survey Mars (along with a rover). It began service in February 2021 and was retired due to sustained rotor blade damage in January 2024 after 73 sorties. As
9922-480: The idea of vertical flight. In July 1754, Russian Mikhail Lomonosov had developed a small coaxial modeled after the Chinese top but powered by a wound-up spring device and demonstrated it to the Russian Academy of Sciences . It was powered by a spring, and was suggested as a method to lift meteorological instruments. In 1783, Christian de Launoy , and his mechanic , Bienvenu, used a coaxial version of
10043-504: The in-service and stored helicopter fleet of 38,570 with civil or government operators was led Robinson Helicopter with 24.7% followed by Airbus Helicopters with 24.4%, then Bell with 20.5 and Leonardo with 8.4%, Russian Helicopters with 7.7%, Sikorsky Aircraft with 7.2%, MD Helicopters with 3.4% and other with 2.2%. The most widespread model is the piston Robinson R44 with 5,600, then the H125/ AS350 with 3,600 units, followed by
10164-662: The lack of an airstrip would make transport via fixed-wing aircraft impossible. The use of transport helicopters to deliver troops as an attack force on an objective is referred to as " air assault ". Unmanned aerial systems (UAS) helicopter systems of varying sizes are developed by companies for military reconnaissance and surveillance duties. Naval forces also use helicopters equipped with dipping sonar for anti-submarine warfare , since they can operate from small ships. Oil companies charter helicopters to move workers and parts quickly to remote drilling sites located at sea or in remote locations. The speed advantage over boats makes
10285-581: The late 1960s. Helicopters have also been used in films, both in front and behind the camera. The largest single non-combat helicopter operation in history was the disaster management operation following the 1986 Chernobyl nuclear disaster . Hundreds of pilots were involved in airdrop and observation missions, making dozens of sorties a day for several months. " Helitack " is the use of helicopters to combat wildland fires . The helicopters are used for aerial firefighting (water bombing) and may be fitted with tanks or carry helibuckets . Helibuckets, such as
10406-410: The lift by a modest amount and modifies the pressure distribution somewhat, which results in a viscosity-related pressure drag over and above the skin friction drag. The total of the skin friction drag and the viscosity-related pressure drag is usually called the profile drag . An airfoil's maximum lift at a given airspeed is limited by boundary-layer separation . As the angle of attack is increased,
10527-421: The lift coefficient, is generally less than 1.5 for single-element airfoils and can be more than 3.0 for airfoils with high-lift slotted flaps and leading-edge devices deployed. The flow around bluff bodies – i.e. without a streamlined shape, or stalling airfoils – may also generate lift, in addition to a strong drag force. This lift may be steady, or it may oscillate due to vortex shedding . Interaction of
10648-555: The limited power did not allow for manned flight. The introduction of the internal combustion engine at the end of the 19th century became the watershed for helicopter development as engines began to be developed and produced that were powerful enough to allow for helicopters able to lift humans. Early helicopter designs utilized custom-built engines or rotary engines designed for airplanes, but these were soon replaced by more powerful automobile engines and radial engines . The single, most-limiting factor of helicopter development during
10769-403: The lower surface pushes up harder than the reduced pressure on the upper surface pushes down, and the net result is upward lift. The pressure difference which results in lift acts directly on the airfoil surfaces; however, understanding how the pressure difference is produced requires understanding what the flow does over a wider area. An airfoil affects the speed and direction of the flow over
10890-485: The monorotor design, and coaxial-rotor , tiltrotor and compound helicopters are also all flying today. Four-rotor helicopters ( quadcopters ) were pioneered as early as 1907 in France, and along with other types of multicopters , have been developed mainly for specialized applications such as commercial unmanned aerial vehicles (drones) due to the rapid expansion of drone racing and aerial photography markets in
11011-601: The nearby park, the Parco Forlanini. Emmanuel Dieuaide's steam-powered design featured counter-rotating rotors powered through a hose from a boiler on the ground. In 1887 Parisian inventor, Gustave Trouvé , built and flew a tethered electric model helicopter. In July 1901, the maiden flight of Hermann Ganswindt 's helicopter took place in Berlin-Schöneberg; this was probably the first heavier-than-air motor-driven flight carrying humans. A movie covering
11132-494: The net force implies that the average pressure on the upper surface of the airfoil is lower than the average pressure on the underside. These pressure differences arise in conjunction with the curved airflow. When a fluid follows a curved path, there is a pressure gradient perpendicular to the flow direction with higher pressure on the outside of the curve and lower pressure on the inside. This direct relationship between curved streamlines and pressure differences, sometimes called
11253-464: The nose to pitch down, with a resultant increase in airspeed and loss of altitude. Aft cyclic will cause the nose to pitch up, slowing the helicopter and causing it to climb. Increasing collective (power) while maintaining a constant airspeed will induce a climb while decreasing collective will cause a descent. Coordinating these two inputs, down collective plus aft cyclic or up collective plus forward cyclic, will result in airspeed changes while maintaining
11374-404: The object is moving through a stationary fluid (e.g. an aircraft flying through the air) or whether the object is stationary and the fluid is moving (e.g. a wing in a wind tunnel) or whether both are moving (e.g. a sailboat using the wind to move forward). Lift is the component of this force that is perpendicular to the oncoming flow direction. Lift is always accompanied by a drag force, which
11495-413: The object's flexibility with the vortex shedding may enhance the effects of fluctuating lift and cause vortex-induced vibrations . For instance, the flow around a circular cylinder generates a Kármán vortex street : vortices being shed in an alternating fashion from the cylinder's sides. The oscillatory nature of the flow produces a fluctuating lift force on the cylinder, even though the net (mean) force
11616-438: The plant world by the seeds of certain trees. While the common meaning of the word " lift " assumes that lift opposes weight, lift can be in any direction with respect to gravity, since it is defined with respect to the direction of flow rather than to the direction of gravity. When an aircraft is cruising in straight and level flight, the lift opposes gravity. However, when an aircraft is climbing , descending , or banking in
11737-411: The power normally required to be diverted for the tail rotor to be applied fully to the main rotors, increasing the aircraft's power efficiency and lifting capacity. There are several common configurations that use the counter-rotating effect to benefit the rotorcraft: Tip jet designs let the rotor push itself through the air and avoid generating torque. The number, size and type of engine(s) used on
11858-422: The pressure difference is zero. The angle of attack is the angle between the chord line of an airfoil and the oncoming airflow. A symmetrical airfoil generates zero lift at zero angle of attack. But as the angle of attack increases, the air is deflected through a larger angle and the vertical component of the airstream velocity increases, resulting in more lift. For small angles, a symmetrical airfoil generates
11979-435: The pressure differences in the vertical direction are sustained. That is, they leave out the flow-deflection part of the interaction. Although the two simple Bernoulli-based explanations above are incorrect, there is nothing incorrect about Bernoulli's principle or the fact that the air goes faster on the top of the wing, and Bernoulli's principle can be used correctly as part of a more complicated explanation of lift. Lift
12100-405: The pressure differences), and requires looking at the flow in more detail. The airfoil shape and angle of attack work together so that the airfoil exerts a downward force on the air as it flows past. According to Newton's third law, the air must then exert an equal and opposite (upward) force on the airfoil, which is the lift. The net force exerted by the air occurs as a pressure difference over
12221-428: The reduced pressure over the upper surface results in upward lift. While it is true that the flow speeds up, a serious flaw in this explanation is that it does not correctly explain what causes the flow to speed up. The longer-path-length explanation is incorrect. No difference in path length is needed, and even when there is a difference, it is typically much too small to explain the observed speed difference. This
12342-436: The rotor disk tilts to that side and produces thrust in that direction, causing the helicopter to hover sideways. The collective pitch control or collective is located on the left side of the pilot's seat with a settable friction control to prevent inadvertent movement. The collective changes the pitch angle of all the main rotor blades collectively (i.e. all at the same time) and independently of their position. Therefore, if
12463-406: The rotor in cruise, which allows its rotation to be slowed down , thus increasing the maximum speed of the aircraft. The Lockheed AH-56A Cheyenne diverted up to 90% of its engine power to a pusher propeller during forward flight. There are three basic flight conditions for a helicopter: hover, forward flight and the transition between the two. Hovering is the most challenging part of flying
12584-422: The rotor throughout normal flight. The rotor system, or more simply rotor , is the rotating part of a helicopter that generates lift . A rotor system may be mounted horizontally, as main rotors are, providing lift vertically, or it may be mounted vertically, such as a tail rotor, to provide horizontal thrust to counteract torque from the main rotors. The rotor consists of a mast, hub and rotor blades. The mast
12705-548: The same physical principles and work in the same way, despite differences between air and water such as density, compressibility, and viscosity. The flow around a lifting airfoil is a fluid mechanics phenomenon that can be understood on essentially two levels: There are mathematical theories , which are based on established laws of physics and represent the flow accurately, but which require solving equations. And there are physical explanations without math, which are less rigorous. Correctly explaining lift in these qualitative terms
12826-418: The size of the helicopter being designed, so that all but the lightest of helicopter models are powered by turbine engines today. Special jet engines developed to drive the rotor from the rotor tips are referred to as tip jets . Tip jets powered by a remote compressor are referred to as cold tip jets, while those powered by combustion exhaust are referred to as hot tip jets. An example of a cold jet helicopter
12947-483: The skies. Since helicopters can achieve a unique aerial view, they are often used in conjunction with police on the ground to report on suspects' locations and movements. They are often mounted with lighting and heat-sensing equipment for night pursuits. Military forces use attack helicopters to conduct aerial attacks on ground targets. Such helicopters are mounted with missile launchers and miniguns . Transport helicopters are used to ferry troops and supplies where
13068-406: The streamlines to pinch closer together, making the streamtubes narrower. When streamtubes become narrower, conservation of mass requires that flow speed must increase. Reduced upper-surface pressure and upward lift follow from the higher speed by Bernoulli's principle , just as in the equal transit time explanation. Sometimes an analogy is made to a venturi nozzle , claiming the upper surface of
13189-432: The surface instead of sliding along it), something known as the no-slip condition . Because the air at the surface has near-zero velocity but the air away from the surface is moving, there is a thin boundary layer in which air close to the surface is subjected to a shearing motion. The air's viscosity resists the shearing, giving rise to a shear stress at the airfoil's surface called skin friction drag . Over most of
13310-416: The surface is just part of this pressure field. The non-uniform pressure exerts forces on the air in the direction from higher pressure to lower pressure. The direction of the force is different at different locations around the airfoil, as indicated by the block arrows in the pressure field around an airfoil figure. Air above the airfoil is pushed toward the center of the low-pressure region, and air below
13431-428: The surface of most airfoils, the boundary layer is naturally turbulent, which increases skin friction drag. Under usual flight conditions, the boundary layer remains attached to both the upper and lower surfaces all the way to the trailing edge, and its effect on the rest of the flow is modest. Compared to the predictions of inviscid flow theory, in which there is no boundary layer, the attached boundary layer reduces
13552-428: The tail rotor, such as the ducted fan (called Fenestron or FANTAIL ) and NOTAR . NOTAR provides anti-torque similar to the way a wing develops lift through the use of the Coandă effect on the tail boom. The use of two or more horizontal rotors turning in opposite directions is another configuration used to counteract the effects of torque on the aircraft without relying on an anti-torque tail rotor. This allows
13673-448: The throttle is to maintain enough engine power to keep the rotor RPM within allowable limits so that the rotor produces enough lift for flight. In single-engine helicopters, the throttle control is a motorcycle-style twist grip mounted on the collective control, while dual-engine helicopters have a power lever for each engine. A compound helicopter has an additional system for thrust and, typically, small stub fixed wings . This offloads
13794-417: The thrust produced by the tail rotor and causing the nose to yaw in the direction of the applied pedal. The pedals mechanically change the pitch of the tail rotor altering the amount of thrust produced. Helicopter rotors are designed to operate in a narrow range of RPM . The throttle controls the power produced by the engine, which is connected to the rotor by a fixed ratio transmission. The purpose of
13915-544: The time, and one of the earliest twin engine models. It was known for being noisy but earned a good reputation for reliability. The Navy also adapted it to carry a naval radar, with two entering service as HR2S-1W . The design led to a production attempt as the Westland Westminster in the United Kingdom; prototypes were produced, but it did not go into full production. The S-56 was also the basis for
14036-414: The upper surface can be clearly seen in this animated flow visualization . Like the equal transit time explanation, the "obstruction" or "streamtube pinching" explanation argues that the flow over the upper surface is faster than the flow over the lower surface, but gives a different reason for the difference in speed. It argues that the curved upper surface acts as more of an obstacle to the flow, forcing
14157-445: The velocity field also appear in theoretical models for lifting flows. The pressure is also affected over a wide area, in a pattern of non-uniform pressure called a pressure field . When an airfoil produces lift, there is a diffuse region of low pressure above the airfoil, and usually a diffuse region of high pressure below, as illustrated by the isobars (curves of constant pressure) in the drawing. The pressure difference that acts on
14278-572: The vertical flight he had envisioned. Steam power was popular with other inventors as well. In 1877, the Italian engineer, inventor and aeronautical pioneer Enrico Forlanini developed an unmanned helicopter powered by a steam engine . It rose to a height of 13 meters (43 feet), where it remained for 20 seconds, after a vertical take-off from a park in Milan . Milan has dedicated its city airport to Enrico Forlanini, also named Linate Airport , as well as
14399-525: The wing acts like a venturi nozzle to constrict the flow. One serious flaw in the obstruction explanation is that it does not explain how streamtube pinching comes about, or why it is greater over the upper surface than the lower surface. For conventional wings that are flat on the bottom and curved on top this makes some intuitive sense, but it does not explain how flat plates, symmetric airfoils, sailboat sails, or conventional airfoils flying upside down can generate lift, and attempts to calculate lift based on
14520-486: Was badly burned. Edison reported that it would take a motor with a ratio of three to four pounds per horsepower produced to be successful, based on his experiments. Ján Bahýľ , a Slovak inventor, adapted the internal combustion engine to power his helicopter model that reached a height of 0.5 meters (1.6 feet) in 1901. On 5 May 1905, his helicopter reached 4 meters (13 feet) in altitude and flew for over 1,500 meters (4,900 feet). In 1908, Edison patented his own design for
14641-460: Was retrieved from behind enemy lines. The CH-37 was also used to recover film capsules descending from space by parachute. A total of 154 were produced by the time production ended. Of those, 94 were H-37A, and 90 that were converted to H-37B (later CH-37A and B respectively). It remains the largest piston powered helicopter. Data from U.S. Army Aircraft Since 1947 General characteristics Performance Helicopter A helicopter
#709290