Misplaced Pages

Surface science

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Surface science is the study of physical and chemical phenomena that occur at the interface of two phases , including solid – liquid interfaces, solid– gas interfaces, solid– vacuum interfaces, and liquid – gas interfaces. It includes the fields of surface chemistry and surface physics . Some related practical applications are classed as surface engineering . The science encompasses concepts such as heterogeneous catalysis , semiconductor device fabrication , fuel cells , self-assembled monolayers , and adhesives . Surface science is closely related to interface and colloid science . Interfacial chemistry and physics are common subjects for both. The methods are different. In addition, interface and colloid science studies macroscopic phenomena that occur in heterogeneous systems due to peculiarities of interfaces.

#262737

95-462: The field of surface chemistry started with heterogeneous catalysis pioneered by Paul Sabatier on hydrogenation and Fritz Haber on the Haber process . Irving Langmuir was also one of the founders of this field, and the scientific journal on surface science, Langmuir , bears his name. The Langmuir adsorption equation is used to model monolayer adsorption where all surface adsorption sites have

190-579: A mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form. The geological definition of mineral normally excludes compounds that occur only in living organisms. However, some minerals are often biogenic (such as calcite ) or organic compounds in the sense of chemistry (such as mellite ). Moreover, living organisms often synthesize inorganic minerals (such as hydroxylapatite ) that also occur in rocks. The concept of mineral

285-518: A basic framework for predicting molecular interactions as a function of atomic separation. In physisorption, a molecule becomes attracted to the surface atoms via van der Waals forces . These include dipole-dipole interactions, induced dipole interactions, and London dispersion forces. Note that no chemical bonds are formed between adsorbate and adsorbent, and their electronic states remain relatively unperturbed. Typical energies for physisorption are from 3 to 10 kcal/mol. In heterogeneous catalysis, when

380-585: A bend in the middle that is caused by start of the twin. Penetration twins consist of two single crystals that have grown into each other; examples of this twinning include cross-shaped staurolite twins and Carlsbad twinning in orthoclase. Cyclic twins are caused by repeated twinning around a rotation axis. This type of twinning occurs around three, four, five, six, or eight-fold axes, and the corresponding patterns are called threelings, fourlings, fivelings , sixlings, and eightlings. Sixlings are common in aragonite. Polysynthetic twins are similar to cyclic twins through

475-417: A bigger coordination numbers because of the increase in relative size as compared to oxygen (the last orbital subshell of heavier atoms is different too). Changes in coordination numbers leads to physical and mineralogical differences; for example, at high pressure, such as in the mantle , many minerals, especially silicates such as olivine and garnet , will change to a perovskite structure , where silicon

570-432: A chemical compound occurs naturally with different crystal structures, each structure is considered a different mineral species. Thus, for example, quartz and stishovite are two different minerals consisting of the same compound, silicon dioxide . The International Mineralogical Association (IMA) is the generally recognized standard body for the definition and nomenclature of mineral species. As of November 2024 ,

665-450: A contaminant and standard temperature , it only takes on the order of 1 second to cover a surface with a one-to-one monolayer of contaminant to surface atoms, so much lower pressures are needed for measurements. This is found by an order of magnitude estimate for the (number) specific surface area of materials and the impingement rate formula from the kinetic theory of gases . Purely optical techniques can be used to study interfaces under

760-473: A distinct mineral: The details of these rules are somewhat controversial. For instance, there have been several recent proposals to classify amorphous substances as minerals, but they have not been accepted by the IMA. The IMA is also reluctant to accept minerals that occur naturally only in the form of nanoparticles a few hundred atoms across, but has not defined a minimum crystal size. Some authors require

855-436: A family of methods descended from it, including atomic force microscopy (AFM). These microscopies have considerably increased the ability of surface scientists to measure the physical structure of many surfaces. For example, they make it possible to follow reactions at the solid–gas interface in real space, if those proceed on a time scale accessible by the instrument. Heterogeneous catalysis Heterogeneous catalysis

950-499: A few nanometers. This technique has been extended to operate at near-ambient pressures (ambient pressure XPS, AP-XPS) to probe more realistic gas–solid and liquid–solid interfaces. Performing XPS with hard X-rays at synchrotron light sources yields photoelectrons with kinetic energies of several keV (hard X-ray photoelectron spectroscopy, HAXPES), enabling access to chemical information from buried interfaces. Modern physical analysis methods include scanning-tunneling microscopy (STM) and

1045-438: A given reaction, porous supports must be selected such that reactants and products can enter and exit the material. Often, substances are intentionally added to the reaction feed or on the catalyst to influence catalytic activity, selectivity, and/or stability. These compounds are called promoters. For example, alumina (Al 2 O 3 ) is added during ammonia synthesis to providing greater stability by slowing sintering processes on

SECTION 10

#1732798294263

1140-463: A key to defining a substance as a mineral. A 2011 article defined icosahedrite , an aluminium-iron-copper alloy, as a mineral; named for its unique natural icosahedral symmetry , it is a quasicrystal . Unlike a true crystal, quasicrystals are ordered but not periodic. A rock is an aggregate of one or more minerals or mineraloids. Some rocks, such as limestone or quartzite , are composed primarily of one mineral – calcite or aragonite in

1235-409: A mineral defines how much it can resist scratching or indentation. This physical property is controlled by the chemical composition and crystalline structure of a mineral. The most commonly used scale of measurement is the ordinal Mohs hardness scale, which measures resistance to scratching. Defined by ten indicators, a mineral with a higher index scratches those below it. The scale ranges from talc,

1330-513: A reactant molecule physisorbs to a catalyst, it is commonly said to be in a precursor state, an intermediate energy state before chemisorption, a more strongly bound adsorption. From the precursor state, a molecule can either undergo chemisorption, desorption, or migration across the surface. The nature of the precursor state can influence the reaction kinetics. When a molecule approaches close enough to surface atoms such that their electron clouds overlap, chemisorption can occur. In chemisorption,

1425-447: A scaling relation, or ones that follow a different scaling relation (than the usual relation for the associated adsorbates) in the right direction: one that can get us closer to the top of the reactivity volcano. In addition to studying catalytic reactivity, scaling relations can be used to study and screen materials for selectivity toward a special product. There are special combination of binding energies that favor specific products over

1520-432: A sedimentary mineral, and silicic acid ): Under low-grade metamorphic conditions, kaolinite reacts with quartz to form pyrophyllite (Al 2 Si 4 O 10 (OH) 2 ): As metamorphic grade increases, the pyrophyllite reacts to form kyanite and quartz: Alternatively, a mineral may change its crystal structure as a consequence of changes in temperature and pressure without reacting. For example, quartz will change into

1615-400: A single crystal surface. Relationships between the composition, structure, and chemical behavior of these surfaces are studied using ultra-high vacuum techniques, including adsorption and temperature-programmed desorption of molecules, scanning tunneling microscopy , low energy electron diffraction , and Auger electron spectroscopy . Results can be fed into chemical models or used toward

1710-473: A solid catalyst has a strong influence on the number of available active sites. In industrial practice, solid catalysts are often porous to maximize surface area, commonly achieving 50–400 m /g. Some mesoporous silicates , such as the MCM-41, have surface areas greater than 1000 m /g. Porous materials are cost effective due to their high surface area-to-mass ratio and enhanced catalytic activity. In many cases,

1805-401: A solid catalyst is dispersed on a supporting material to increase surface area (spread the number of active sites) and provide stability. Usually catalyst supports are inert, high melting point materials, but they can also be catalytic themselves. Most catalyst supports are porous (frequently carbon, silica, zeolite, or alumina-based) and chosen for their high surface area-to-mass ratio. For

1900-406: A tetrahedral fashion; on the other hand, graphite is composed of sheets of carbons in sp hybrid orbitals, where each carbon is bonded covalently to only three others. These sheets are held together by much weaker van der Waals forces , and this discrepancy translates to large macroscopic differences. Twinning is the intergrowth of two or more crystals of a single mineral species. The geometry of

1995-935: A variety of its SiO 2 polymorphs , such as tridymite and cristobalite at high temperatures, and coesite at high pressures. Classifying minerals ranges from simple to difficult. A mineral can be identified by several physical properties, some of them being sufficient for full identification without equivocation. In other cases, minerals can only be classified by more complex optical , chemical or X-ray diffraction analysis; these methods, however, can be costly and time-consuming. Physical properties applied for classification include crystal structure and habit, hardness, lustre, diaphaneity, colour, streak, cleavage and fracture, and specific gravity. Other less general tests include fluorescence , phosphorescence , magnetism , radioactivity , tenacity (response to mechanical induced changes of shape or form), piezoelectricity and reactivity to dilute acids . Crystal structure results from

SECTION 20

#1732798294263

2090-502: A variety of minerals because of the need to balance charges. Because the eight most common elements make up over 98% of the Earth's crust, the small quantities of the other elements that are typically present are substituted into the common rock-forming minerals. The distinctive minerals of most elements are quite rare, being found only where these elements have been concentrated by geological processes, such as hydrothermal circulation , to

2185-595: A white mica, can be used for windows (sometimes referred to as isinglass), as a filler, or as an insulator. Ores are minerals that have a high concentration of a certain element, typically a metal. Examples are cinnabar (HgS), an ore of mercury; sphalerite (ZnS), an ore of zinc; cassiterite (SnO 2 ), an ore of tin; and colemanite , an ore of boron . Gems are minerals with an ornamental value, and are distinguished from non-gems by their beauty, durability, and usually, rarity. There are about 20 mineral species that qualify as gem minerals, which constitute about 35 of

2280-424: A wide variety of conditions. Reflection-absorption infrared, dual polarisation interferometry, surface-enhanced Raman spectroscopy and sum frequency generation spectroscopy can be used to probe solid–vacuum as well as solid–gas, solid–liquid, and liquid–gas surfaces. Multi-parametric surface plasmon resonance works in solid–gas, solid–liquid, liquid–gas surfaces and can detect even sub-nanometer layers. It probes

2375-501: Is catalysis where the phase of catalysts differs from that of the reagents or products . The process contrasts with homogeneous catalysis where the reagents, products and catalyst exist in the same phase. Phase distinguishes between not only solid , liquid , and gas components, but also immiscible mixtures (e.g., oil and water ), or anywhere an interface is present. Heterogeneous catalysis typically involves solid phase catalysts and gas phase reactants. In this case, there

2470-416: Is desorption , the adsorbate splitting from adsorbent. In a reaction facilitated by heterogeneous catalysis, the catalyst is the adsorbent and the reactants are the adsorbate. Two types of adsorption are recognized: physisorption , weakly bound adsorption, and chemisorption , strongly bound adsorption. Many processes in heterogeneous catalysis lie between the two extremes. The Lennard-Jones model provides

2565-434: Is a cycle of molecular adsorption, reaction, and desorption occurring at the catalyst surface. Thermodynamics, mass transfer, and heat transfer influence the rate (kinetics) of reaction . Heterogeneous catalysis is very important because it enables faster, large-scale production and the selective product formation. Approximately 35% of the world's GDP is influenced by catalysis. The production of 90% of chemicals (by volume)

2660-414: Is a qualitative one. Usually the number of adsorbates and transition states associated with a chemical reaction is a large number, thus the optimum has to be found in a many-dimensional space. Catalyst design in such a many-dimensional space is not a computationally viable task. Additionally, such optimization process would be far from intuitive. Scaling relations are used to decrease the dimensionality of

2755-707: Is a sedimentary rock composed primarily of organically derived carbon. In rocks, some mineral species and groups are much more abundant than others; these are termed the rock-forming minerals. The major examples of these are quartz, the feldspars , the micas , the amphiboles , the pyroxenes , the olivines , and calcite; except for the last one, all of these minerals are silicates. Overall, around 150 minerals are considered particularly important, whether in terms of their abundance or aesthetic value in terms of collecting. Commercially valuable minerals and rocks, other than gemstones, metal ores, or mineral fuels, are referred to as industrial minerals . For example, muscovite ,

2850-582: Is assisted by solid catalysts. The chemical and energy industries rely heavily on heterogeneous catalysis. For example, the Haber–Bosch process uses metal-based catalysts in the synthesis of ammonia , an important component in fertilizer; 144 million tons of ammonia were produced in 2016. Adsorption is an essential step in heterogeneous catalysis. Adsorption is the process by which a gas (or solution) phase molecule (the adsorbate) binds to solid (or liquid) surface atoms (the adsorbent). The reverse of adsorption

2945-473: Is defined as a loss in catalytic activity and/or selectivity over time. Substances that decrease reaction rate are called poisons . Poisons chemisorb to catalyst surface and reduce the number of available active sites for reactant molecules to bind to. Common poisons include Group V, VI, and VII elements (e.g. S, O, P, Cl), some toxic metals (e.g. As, Pb), and adsorbing species with multiple bonds (e.g. CO, unsaturated hydrocarbons). For example, sulfur disrupts

Surface science - Misplaced Pages Continue

3040-428: Is difficult to study these phenomena in real catalyst particles, which have complex structures. Instead, well-defined single crystal surfaces of catalytically active materials such as platinum are often used as model catalysts. Multi-component materials systems are used to study interactions between catalytically active metal particles and supporting oxides; these are produced by growing ultra-thin films or particles on

3135-428: Is distinct from rock , which is any bulk solid geologic material that is relatively homogeneous at a large enough scale. A rock may consist of one type of mineral or may be an aggregate of two or more different types of minerals, spacially segregated into distinct phases . Some natural solid substances without a definite crystalline structure, such as opal or obsidian , are more properly called mineraloids . If

3230-448: Is in octahedral coordination. Other examples are the aluminosilicates kyanite , andalusite , and sillimanite (polymorphs, since they share the formula Al 2 SiO 5 ), which differ by the coordination number of the Al ; these minerals transition from one another as a response to changes in pressure and temperature. In the case of silicate materials, the substitution of Si by Al allows for

3325-408: Is possible for one element to be substituted for another. Chemical substitution will occur between ions of a similar size and charge; for example, K will not substitute for Si because of chemical and structural incompatibilities caused by a big difference in size and charge. A common example of chemical substitution is that of Si by Al , which are close in charge, size, and abundance in the crust. In

3420-470: Is possible for two rocks to have an identical or a very similar bulk rock chemistry without having a similar mineralogy. This process of mineralogical alteration is related to the rock cycle . An example of a series of mineral reactions is illustrated as follows. Orthoclase feldspar (KAlSi 3 O 8 ) is a mineral commonly found in granite , a plutonic igneous rock . When exposed to weathering, it reacts to form kaolinite (Al 2 Si 2 O 5 (OH) 4 ,

3515-524: Is the angle opposite the a-axis, viz. the angle between the b and c axes): The hexagonal crystal family is also split into two crystal systems  – the trigonal , which has a three-fold axis of symmetry, and the hexagonal, which has a six-fold axis of symmetry. Chemistry and crystal structure together define a mineral. With a restriction to 32 point groups, minerals of different chemistry may have identical crystal structure. For example, halite (NaCl), galena (PbS), and periclase (MgO) all belong to

3610-405: Is the hardest natural substance, has an adamantine lustre, and belongs to the isometric crystal family, whereas graphite is very soft, has a greasy lustre, and crystallises in the hexagonal family. This difference is accounted for by differences in bonding. In diamond, the carbons are in sp hybrid orbitals, which means they form a framework where each carbon is covalently bonded to four neighbours in

3705-456: Is typical of garnet, prismatic (elongated in one direction), and tabular, which differs from bladed habit in that the former is platy whereas the latter has a defined elongation. Related to crystal form, the quality of crystal faces is diagnostic of some minerals, especially with a petrographic microscope. Euhedral crystals have a defined external shape, while anhedral crystals do not; those intermediate forms are termed subhedral. The hardness of

3800-438: Is used for time-resolved measurements of solid–vacuum, solid–gas and solid–liquid interfaces. The method allows for analysis of molecule–surface interactions as well as structural changes and viscoelastic properties of the adlayer.   X-ray scattering and spectroscopy techniques are also used to characterize surfaces and interfaces. While some of these measurements can be performed using laboratory X-ray sources , many require

3895-618: The CIPW norm , which gives reasonable estimates for volcanic rock formed from dry magma. The chemical composition may vary between end member species of a solid solution series. For example, the plagioclase feldspars comprise a continuous series from sodium -rich end member albite (NaAlSi 3 O 8 ) to calcium -rich anorthite (CaAl 2 Si 2 O 8 ) with four recognized intermediate varieties between them (given in order from sodium- to calcium-rich): oligoclase , andesine , labradorite , and bytownite . Other examples of series include

Surface science - Misplaced Pages Continue

3990-491: The electrical double layer . Adsorption and desorption events can be studied at atomically flat single-crystal surfaces as a function of applied potential, time and solution conditions using spectroscopy, scanning probe microscopy and surface X-ray scattering . These studies link traditional electrochemical techniques such as cyclic voltammetry to direct observations of interfacial processes. Geological phenomena such as iron cycling and soil contamination are controlled by

4085-496: The hydrosphere , atmosphere , and biosphere . The group's scope includes mineral-forming microorganisms, which exist on nearly every rock, soil, and particle surface spanning the globe to depths of at least 1600 metres below the sea floor and 70 kilometres into the stratosphere (possibly entering the mesosphere ). Biogeochemical cycles have contributed to the formation of minerals for billions of years. Microorganisms can precipitate metals from solution , contributing to

4180-448: The list of materials analysis methods . Many of these techniques require vacuum as they rely on the detection of electrons or ions emitted from the surface under study. Moreover, in general ultra-high vacuum , in the range of 10 pascal pressure or better, it is necessary to reduce surface contamination by residual gas, by reducing the number of molecules reaching the sample over a given time period. At 0.1 mPa (10 torr) partial pressure of

4275-473: The olivine group . Besides the essential chemical composition and crystal structure, the description of a mineral species usually includes its common physical properties such as habit , hardness , lustre , diaphaneity , colour, streak , tenacity , cleavage , fracture , parting, specific gravity , magnetism , fluorescence , radioactivity , as well as its taste or smell and its reaction to acid . Minerals are classified by key chemical constituents;

4370-416: The rational design of new catalysts. Reaction mechanisms can also be clarified due to the atomic-scale precision of surface science measurements. Electrochemistry is the study of processes driven through an applied potential at a solid–liquid or liquid–liquid interface. The behavior of an electrode–electrolyte interface is affected by the distribution of ions in the liquid phase next to the interface forming

4465-455: The 78 mineral classes listed in the Dana classification scheme. Skinner's (2005) definition of a mineral takes this matter into account by stating that a mineral can be crystalline or amorphous. Although biominerals are not the most common form of minerals, they help to define the limits of what constitutes a mineral proper. Nickel's (1995) formal definition explicitly mentioned crystallinity as

4560-470: The Fe-catalyst. Sabatier principle can be considered one of the cornerstones of modern theory of catalysis. Sabatier principle states that the surface-adsorbates interaction has to be an optimal amount: not too weak to be inert toward the reactants and not too strong to poison the surface and avoid desorption of the products. The statement that the surface-adsorbate interaction has to be an optimum,

4655-474: The IMA recognizes 6,100 official mineral species. The chemical composition of a named mineral species may vary somewhat due to the inclusion of small amounts of impurities. Specific varieties of a species sometimes have conventional or official names of their own. For example, amethyst is a purple variety of the mineral species quartz . Some mineral species can have variable proportions of two or more chemical elements that occupy equivalent positions in

4750-431: The IMA's decision to exclude biogenic crystalline substances. For example, Lowenstam (1981) stated that "organisms are capable of forming a diverse array of minerals, some of which cannot be formed inorganically in the biosphere." Skinner (2005) views all solids as potential minerals and includes biominerals in the mineral kingdom, which are those that are created by the metabolic activities of organisms. Skinner expanded

4845-455: The IMA. They are most commonly named after a person , followed by discovery location; names based on chemical composition or physical properties are the two other major groups of mineral name etymologies. Most names end in "-ite"; the exceptions are usually names that were well-established before the organization of mineralogy as a discipline, for example galena and diamond . A topic of contention among geologists and mineralogists has been

SECTION 50

#1732798294263

4940-511: The Langmuir–Hinshelwood model. In heterogeneous catalysis, reactants diffuse from the bulk fluid phase to adsorb to the catalyst surface. The adsorption site is not always an active catalyst site, so reactant molecules must migrate across the surface to an active site. At the active site, reactant molecules will react to form product molecule(s) by following a more energetically facile path through catalytic intermediates (see figure to

5035-556: The Latin species , "a particular sort, kind, or type with distinct look, or appearance". The abundance and diversity of minerals is controlled directly by their chemistry, in turn dependent on elemental abundances in the Earth. The majority of minerals observed are derived from the Earth's crust . Eight elements account for most of the key components of minerals, due to their abundance in the crust. These eight elements, summing to over 98% of

5130-455: The adsorbate and adsorbent share electrons signifying the formation of chemical bonds . Typical energies for chemisorption range from 20 to 100 kcal/mol. Two cases of chemisorption are: Most metal surface reactions occur by chain propagation in which catalytic intermediates are cyclically produced and consumed. Two main mechanisms for surface reactions can be described for A + B → C. Most heterogeneously catalyzed reactions are described by

5225-488: The aluminium abundance is unusually high, the excess aluminium will form muscovite or other aluminium-rich minerals. If silicon is deficient, part of the feldspar will be replaced by feldspathoid minerals. Precise predictions of which minerals will be present in a rock of a particular composition formed at a particular temperature and pressure requires complex thermodynamic calculations. However, approximate estimates may be made using relatively simple rules of thumb , such as

5320-598: The amount, a substance can be favorable or unfavorable for a chemical process. For example, in the production of ethylene, a small amount of chemisorbed chlorine will act as a promoter by improving Ag-catalyst selectivity towards ethylene over CO 2 , while too much chlorine will act as a poison. Other mechanisms for catalyst deactivation include: In industry, catalyst deactivation costs billions every year due to process shutdown and catalyst replacement. In industry, many design variables must be considered including reactor and catalyst design across multiple scales ranging from

5415-449: The bulk chemistry of the parent body. For example, in most igneous rocks, the aluminium and alkali metals (sodium and potassium) that are present are primarily found in combination with oxygen, silicon, and calcium as feldspar minerals. However, if the rock is unusually rich in alkali metals, there will not be enough aluminium to combine with all the sodium as feldspar, and the excess sodium will form sodic amphiboles such as riebeckite . If

5510-424: The case of limestone, and quartz in the latter case. Other rocks can be defined by relative abundances of key (essential) minerals; a granite is defined by proportions of quartz, alkali feldspar , and plagioclase feldspar . The other minerals in the rock are termed accessory minerals , and do not greatly affect the bulk composition of the rock. Rocks can also be composed entirely of non-mineral material; coal

5605-415: The coordination of the silicate is by a number: in the case of the silica tetrahedron, the silicon is said to have a coordination number of 4. Various cations have a specific range of possible coordination numbers; for silicon, it is almost always 4, except for very high-pressure minerals where the compound is compressed such that silicon is in six-fold (octahedral) coordination with oxygen. Bigger cations have

5700-417: The crust by weight, are, in order of decreasing abundance: oxygen , silicon , aluminium , iron , magnesium , calcium , sodium and potassium . Oxygen and silicon are by far the two most important – oxygen composes 47% of the crust by weight, and silicon accounts for 28%. The minerals that form are those that are most stable at the temperature and pressure of formation, within the limits imposed by

5795-434: The difference in charge has to accounted for by making a second substitution of Si by Al . Coordination polyhedra are geometric representations of how a cation is surrounded by an anion. In mineralogy, coordination polyhedra are usually considered in terms of oxygen, due its abundance in the crust. The base unit of silicate minerals is the silica tetrahedron – one Si surrounded by four O . An alternate way of describing

SECTION 60

#1732798294263

5890-414: The dipyramidal point group. These differences arise corresponding to how aluminium is coordinated within the crystal structure. In all minerals, one aluminium ion is always in six-fold coordination with oxygen. Silicon, as a general rule, is in four-fold coordination in all minerals; an exception is a case like stishovite (SiO 2 , an ultra-high pressure quartz polymorph with rutile structure). In kyanite,

5985-445: The energetics of closed-shell molecules among each other or to the counterpart radical adsorbates. A recent challenge for researchers in catalytic sciences is to "break" the scaling relations. The correlations which are manifested in the scaling relations confine the catalyst design space, preventing one from reaching the "top of the volcano". Breaking scaling relations can refer to either designing surfaces or motifs that do not follow

6080-517: The example of plagioclase, there are three cases of substitution. Feldspars are all framework silicates, which have a silicon-oxygen ratio of 2:1, and the space for other elements is given by the substitution of Si by Al to give a base unit of [AlSi 3 O 8 ] ; without the substitution, the formula would be charge-balanced as SiO 2 , giving quartz. The significance of this structural property will be explained further by coordination polyhedra. The second substitution occurs between Na and Ca ; however,

6175-778: The formation of ore deposits. They can also catalyze the dissolution of minerals. Prior to the International Mineralogical Association's listing, over 60 biominerals had been discovered, named, and published. These minerals (a sub-set tabulated in Lowenstam (1981) ) are considered minerals proper according to Skinner's (2005) definition. These biominerals are not listed in the International Mineral Association official list of mineral names; however, many of these biomineral representatives are distributed amongst

6270-410: The generic AX 2 formula; these two groups are collectively known as the pyrite and marcasite groups. Polymorphism can extend beyond pure symmetry content. The aluminosilicates are a group of three minerals – kyanite , andalusite , and sillimanite  – which share the chemical formula Al 2 SiO 5 . Kyanite is triclinic, while andalusite and sillimanite are both orthorhombic and belong to

6365-451: The hexaoctahedral point group (isometric family), as they have a similar stoichiometry between their different constituent elements. In contrast, polymorphs are groupings of minerals that share a chemical formula but have a different structure. For example, pyrite and marcasite , both iron sulfides, have the formula FeS 2 ; however, the former is isometric while the latter is orthorhombic. This polymorphism extends to other sulfides with

6460-439: The high intensity and energy tunability of synchrotron radiation . X-ray crystal truncation rods (CTR) and X-ray standing wave (XSW) measurements probe changes in surface and adsorbate structures with sub-Ångström resolution. Surface-extended X-ray absorption fine structure (SEXAFS) measurements reveal the coordination structure and chemical state of adsorbates. Grazing-incidence small angle X-ray scattering (GISAXS) yields

6555-412: The interaction between carbon monoxide molecules and platinum surfaces. Surface chemistry can be roughly defined as the study of chemical reactions at interfaces. It is closely related to surface engineering , which aims at modifying the chemical composition of a surface by incorporation of selected elements or functional groups that produce various desired effects or improvements in the properties of

6650-443: The interaction kinetics as well as dynamic structural changes such as liposome collapse or swelling of layers in different pH. Dual-polarization interferometry is used to quantify the order and disruption in birefringent thin films. This has been used, for example, to study the formation of lipid bilayers and their interaction with membrane proteins. Acoustic techniques, such as quartz crystal microbalance with dissipation monitoring ,

6745-635: The interfaces between minerals and their environment. The atomic-scale structure and chemical properties of mineral–solution interfaces are studied using in situ synchrotron X-ray techniques such as X-ray reflectivity , X-ray standing waves , and X-ray absorption spectroscopy as well as scanning probe microscopy. For example, studies of heavy metal or actinide adsorption onto mineral surfaces reveal molecular-scale details of adsorption, enabling more accurate predictions of how these contaminants travel through soils or disrupt natural dissolution–precipitation cycles. Surface physics can be roughly defined as

6840-492: The kinetics associated with adsorption, reaction and desorption of molecules under specific pressure or temperature conditions. Such modeling then leads to well-known volcano-plots at which the optimum qualitatively described by the Sabatier principle is referred to as the "top of the volcano". Scaling relations can be used not only to connect the energetics of radical surface-adsorbed groups (e.g., O*,OH*), but also to connect

6935-413: The majority of heterogeneous catalysts are solids, there are a few variations which are of practical value. For two immiscible solutions (liquids), one carries the catalyst while the other carries the reactant. This set up is the basis of biphasic catalysis as implemented in the industrial production of butyraldehyde by the hydroformylation of propylene. Minerals In geology and mineralogy ,

7030-461: The material to be a stable or metastable solid at room temperature (25 °C). However, the IMA only requires that the substance be stable enough for its structure and composition to be well-determined. For example, it has recently recognized meridianiite (a naturally occurring hydrate of magnesium sulfate ) as a mineral, even though it is formed and stable only below 2 °C. As of November 2024 , 6,100 mineral species are approved by

7125-433: The mineral's structure; for example, the formula of mackinawite is given as (Fe,Ni) 9 S 8 , meaning Fe x Ni 9- x S 8 , where x is a variable number between 0 and 9. Sometimes a mineral with variable composition is split into separate species, more or less arbitrarily, forming a mineral group ; that is the case of the silicates Ca x Mg y Fe 2- x - y SiO 4 ,

7220-494: The most common gemstones. Gem minerals are often present in several varieties, and so one mineral can account for several different gemstones; for example, ruby and sapphire are both corundum , Al 2 O 3 . The first known use of the word "mineral" in the English language ( Middle English ) was the 15th century. The word came from Medieval Latin : minerale , from minera , mine, ore. The word "species" comes from

7315-428: The most encompassing of these being the six crystal families. These families can be described by the relative lengths of the three crystallographic axes, and the angles between them; these relationships correspond to the symmetry operations that define the narrower point groups. They are summarized below; a, b, and c represent the axes, and α, β, γ represent the angle opposite the respective crystallographic axis (e.g. α

7410-402: The olivine series of magnesium-rich forsterite and iron-rich fayalite, and the wolframite series of manganese -rich hübnerite and iron-rich ferberite . Chemical substitution and coordination polyhedra explain this common feature of minerals. In nature, minerals are not pure substances, and are contaminated by whatever other elements are present in the given chemical system. As a result, it

7505-622: The orderly geometric spatial arrangement of atoms in the internal structure of a mineral. This crystal structure is based on regular internal atomic or ionic arrangement that is often expressed in the geometric form that the crystal takes. Even when the mineral grains are too small to see or are irregularly shaped, the underlying crystal structure is always periodic and can be determined by X-ray diffraction. Minerals are typically described by their symmetry content. Crystals are restricted to 32 point groups , which differ by their symmetry. These groups are classified in turn into more broad categories,

7600-404: The others. Sometimes a set of binding energies that can change the selectivity toward a specific product "scale" with each other, thus to improve the selectivity one has to break some scaling relations; an example of this is the scaling between methane and methanol oxidative activation energies that leads to the lack of selectivity in direct conversion of methane to methanol. Catalyst deactivation

7695-563: The point where they can no longer be accommodated in common minerals. Changes in temperature and pressure and composition alter the mineralogy of a rock sample. Changes in composition can be caused by processes such as weathering or metasomatism ( hydrothermal alteration ). Changes in temperature and pressure occur when the host rock undergoes tectonic or magmatic movement into differing physical regimes. Changes in thermodynamic conditions make it favourable for mineral assemblages to react with each other to produce new minerals; as such, it

7790-447: The presence of repetitive twinning; however, instead of occurring around a rotational axis, polysynthetic twinning occurs along parallel planes, usually on a microscopic scale. Crystal habit refers to the overall shape of crystal. Several terms are used to describe this property. Common habits include acicular, which describes needlelike crystals as in natrolite , bladed, dendritic (tree-pattern, common in native copper ), equant, which

7885-568: The previous definition of a mineral to classify "element or compound, amorphous or crystalline, formed through biogeochemical processes," as a mineral. Recent advances in high-resolution genetics and X-ray absorption spectroscopy are providing revelations on the biogeochemical relations between microorganisms and minerals that may shed new light on this question. For example, the IMA-commissioned "Working Group on Environmental Mineralogy and Geochemistry " deals with minerals in

7980-473: The production of methanol by poisoning the Cu/ZnO catalyst. Substances that increase reaction rate are called promoters . For example, the presence of alkali metals in ammonia synthesis increases the rate of N 2 dissociation. The presence of poisons and promoters can alter the activation energy of the rate-limiting step and affect a catalyst's selectivity for the formation of certain products. Depending on

8075-425: The right). The product molecules then desorb from the surface and diffuse away. The catalyst itself remains intact and free to mediate further reactions. Transport phenomena such as heat and mass transfer, also play a role in the observed reaction rate. Catalysts are not active towards reactants across their entire surface; only specific locations possess catalytic activity, called active sites . The surface area of

8170-471: The same affinity for the adsorbing species and do not interact with each other. Gerhard Ertl in 1974 described for the first time the adsorption of hydrogen on a palladium surface using a novel technique called LEED . Similar studies with platinum , nickel , and iron followed. Most recent developments in surface sciences include the 2007 Nobel prize of Chemistry winner Gerhard Ertl 's advancements in surface chemistry, specifically his investigation of

8265-485: The second aluminium is in six-fold coordination; its chemical formula can be expressed as Al Al SiO 5 , to reflect its crystal structure. Andalusite has the second aluminium in five-fold coordination (Al Al SiO 5 ) and sillimanite has it in four-fold coordination (Al Al SiO 5 ). Differences in crystal structure and chemistry greatly influence other physical properties of the mineral. The carbon allotropes diamond and graphite have vastly different properties; diamond

8360-535: The size, shape, and orientation of nanoparticles on surfaces. The crystal structure and texture of thin films can be investigated using grazing-incidence X-ray diffraction (GIXD, GIXRD). X-ray photoelectron spectroscopy (XPS) is a standard tool for measuring the chemical states of surface species and for detecting the presence of surface contamination. Surface sensitivity is achieved by detecting photoelectrons with kinetic energies of about 10–1000 eV , which have corresponding inelastic mean free paths of only

8455-472: The space of catalyst design. Such relations are correlations among adsorbates binding energies (or among adsorbate binding energies and transition states also known as BEP relations ) that are "similar enough" e.g., OH versus OOH scaling. Applying scaling relations to the catalyst design problems greatly reduces the space dimensionality (sometimes to as small as 1 or 2). One can also use micro-kinetic modeling based on such scaling relations to take into account

8550-707: The study of physical interactions that occur at interfaces. It overlaps with surface chemistry. Some of the topics investigated in surface physics include friction , surface states , surface diffusion , surface reconstruction , surface phonons and plasmons , epitaxy , the emission and tunneling of electrons, spintronics , and the self-assembly of nanostructures on surfaces. Techniques to investigate processes at surfaces include surface X-ray scattering , scanning probe microscopy , surface-enhanced Raman spectroscopy and X-ray photoelectron spectroscopy . The study and analysis of surfaces involves both physical and chemical analysis techniques. Several modern methods probe

8645-545: The subnanometer to tens of meters. The conventional heterogeneous catalysis reactors include batch , continuous , and fluidized-bed reactors , while more recent setups include fixed-bed, microchannel, and multi-functional reactors . Other variables to consider are reactor dimensions, surface area, catalyst type, catalyst support, as well as reactor operating conditions such as temperature, pressure, and reactant concentrations. Some large-scale industrial processes incorporating heterogeneous catalysts are listed below. Although

8740-455: The surface or interface. Surface science is of particular importance to the fields of heterogeneous catalysis , electrochemistry , and geochemistry . The adhesion of gas or liquid molecules to the surface is known as adsorption . This can be due to either chemisorption or physisorption , and the strength of molecular adsorption to a catalyst surface is critically important to the catalyst's performance (see Sabatier principle ). However, it

8835-486: The topmost 1–10 nm of surfaces exposed to vacuum. These include angle-resolved photoemission spectroscopy (ARPES), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), electron energy loss spectroscopy (EELS), thermal desorption spectroscopy (TPD), ion scattering spectroscopy (ISS), secondary ion mass spectrometry , dual-polarization interferometry , and other surface analysis methods included in

8930-439: The twinning is controlled by the mineral's symmetry. As a result, there are several types of twins, including contact twins, reticulated twins, geniculated twins, penetration twins, cyclic twins, and polysynthetic twins. Contact, or simple twins, consist of two crystals joined at a plane; this type of twinning is common in spinel. Reticulated twins, common in rutile, are interlocking crystals resembling netting. Geniculated twins have

9025-472: The two dominant systems are the Dana classification and the Strunz classification. Silicate minerals comprise approximately 90% of the Earth's crust . Other important mineral groups include the native elements , sulfides , oxides , halides , carbonates , sulfates , and phosphates . The International Mineralogical Association has established the following requirements for a substance to be considered

#262737