Misplaced Pages

Palomar Testbed Interferometer

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Infrared ( IR ; sometimes called infrared light ) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves . The infrared spectral band begins with waves that are just longer than those of red light (the longest waves in the visible spectrum ), so IR is invisible to the human eye. IR is generally understood to include wavelengths from around 750  nm (400  THz ) to 1  mm (300  GHz ). IR is commonly divided between longer-wavelength thermal IR, emitted from terrestrial sources, and shorter-wavelength IR or near-IR, part of the solar spectrum . Longer IR wavelengths (30–100 μm) are sometimes included as part of the terahertz radiation band. Almost all black-body radiation from objects near room temperature is in the IR band. As a form of electromagnetic radiation, IR carries energy and momentum , exerts radiation pressure , and has properties corresponding to both those of a wave and of a particle , the photon .

#203796

103-638: The Palomar Testbed Interferometer ( PTI ) was a near infrared , long-baseline stellar interferometer located at Palomar Observatory in north San Diego County , California, United States. It was built by Caltech and the Jet Propulsion Laboratory and was intended to serve as a testbed for developing interferometric techniques to be used at the Keck Interferometer . It began operations in 1995 and achieved routine operations in 1998, producing more than 50 refereed papers in

206-563: A medium with matter , their wavelength is decreased. Wavelengths of electromagnetic radiation, whatever medium they are traveling through, are usually quoted in terms of the vacuum wavelength , although this is not always explicitly stated. Generally, electromagnetic radiation is classified by wavelength into radio wave , microwave , infrared , visible light , ultraviolet , X-rays and gamma rays . The behavior of EM radiation depends on its wavelength. When EM radiation interacts with single atoms and molecules , its behavior also depends on

309-471: A passive missile guidance system , which uses the emission from a target of electromagnetic radiation in the infrared part of the spectrum to track it. Missiles that use infrared seeking are often referred to as "heat-seekers" since infrared (IR) is just below the visible spectrum of light in frequency and is radiated strongly by hot bodies. Many objects such as people, vehicle engines, and aircraft generate and retain heat, and as such, are especially visible in

412-425: A radio receiver . Earth's atmosphere is mainly transparent to radio waves, except for layers of charged particles in the ionosphere which can reflect certain frequencies. Radio waves are extremely widely used to transmit information across distances in radio communication systems such as radio broadcasting , television , two way radios , mobile phones , communication satellites , and wireless networking . In

515-422: A radio wave photon that has a wavelength of 21.12 cm. Also, frequencies of 30 Hz and below can be produced by and are important in the study of certain stellar nebulae and frequencies as high as 2.9 × 10  Hz have been detected from astrophysical sources. The types of electromagnetic radiation are broadly classified into the following classes (regions, bands or types): This classification goes in

618-524: A thermographic camera , with the fundamental difference that each pixel contains a full LWIR spectrum. Consequently, chemical identification of the object can be performed without a need for an external light source such as the Sun or the Moon. Such cameras are typically applied for geological measurements, outdoor surveillance and UAV applications. In infrared photography , infrared filters are used to capture

721-446: A transmitter generates an alternating electric current which is applied to an antenna. The oscillating electrons in the antenna generate oscillating electric and magnetic fields that radiate away from the antenna as radio waves. In reception of radio waves, the oscillating electric and magnetic fields of a radio wave couple to the electrons in an antenna, pushing them back and forth, creating oscillating currents which are applied to

824-600: A chemical and electrical process and then converted back into visible light. Infrared light sources can be used to augment the available ambient light for conversion by night vision devices, increasing in-the-dark visibility without actually using a visible light source. The use of infrared light and night vision devices should not be confused with thermal imaging , which creates images based on differences in surface temperature by detecting infrared radiation ( heat ) that emanates from objects and their surrounding environment. Infrared radiation can be used to remotely determine

927-482: A continuous sequence of weather to be studied. These infrared pictures can depict ocean eddies or vortices and map currents such as the Gulf Stream, which are valuable to the shipping industry. Fishermen and farmers are interested in knowing land and water temperatures to protect their crops against frost or increase their catch from the sea. Even El Niño phenomena can be spotted. Using color-digitized techniques,

1030-439: A few meters of water. One notable use is diagnostic X-ray imaging in medicine (a process known as radiography ). X-rays are useful as probes in high-energy physics. In astronomy, the accretion disks around neutron stars and black holes emit X-rays, enabling studies of these phenomena. X-rays are also emitted by stellar corona and are strongly emitted by some types of nebulae . However, X-ray telescopes must be placed outside

1133-403: A molecule vibrates at a frequency characteristic of that bond. A group of atoms in a molecule (e.g., CH 2 ) may have multiple modes of oscillation caused by the stretching and bending motions of the group as a whole. If an oscillation leads to a change in dipole in the molecule then it will absorb a photon that has the same frequency. The vibrational frequencies of most molecules correspond to

SECTION 10

#1732772044204

1236-431: A more emissive one. For that reason, incorrect selection of emissivity and not accounting for environmental temperatures will give inaccurate results when using infrared cameras and pyrometers. Infrared is used in night vision equipment when there is insufficient visible light to see. Night vision devices operate through a process involving the conversion of ambient light photons into electrons that are then amplified by

1339-463: A near-IR laser may thus appear dim red and can present a hazard since it may actually be quite bright. Even IR at wavelengths up to 1,050 nm from pulsed lasers can be seen by humans under certain conditions. A commonly used subdivision scheme is: NIR and SWIR together is sometimes called "reflected infrared", whereas MWIR and LWIR is sometimes referred to as "thermal infrared". The International Commission on Illumination (CIE) recommended

1442-636: A radio communication system, a radio frequency current is modulated with an information-bearing signal in a transmitter by varying either the amplitude, frequency or phase, and applied to an antenna. The radio waves carry the information across space to a receiver, where they are received by an antenna and the information extracted by demodulation in the receiver. Radio waves are also used for navigation in systems like Global Positioning System (GPS) and navigational beacons , and locating distant objects in radiolocation and radar . They are also used for remote control , and for industrial heating. The use of

1545-427: A spectrum of wavelengths, but sometimes only a limited region of the spectrum is of interest because sensors usually collect radiation only within a specific bandwidth. Thermal infrared radiation also has a maximum emission wavelength, which is inversely proportional to the absolute temperature of object, in accordance with Wien's displacement law . The infrared band is often subdivided into smaller sections, although how

1648-473: A variety of scientific journals covering topics from high precision astrometry to stellar masses, stellar diameters and shapes. PTI concluded operations in 2008 and has since been dismantled. PTI was notable for being equipped with a "dual-star" system, making it possible to simultaneously observe pairs of stars; this cancels some of the atmospheric effects of astronomical seeing and makes very high precision measurements possible. A groundbreaking study with

1751-437: A wave nature or a particle nature with René Descartes , Robert Hooke and Christiaan Huygens favouring a wave description and Newton favouring a particle description. Huygens in particular had a well developed theory from which he was able to derive the laws of reflection and refraction. Around 1801, Thomas Young measured the wavelength of a light beam with his two-slit experiment thus conclusively demonstrating that light

1854-405: A worldwide scale, this cooling method has been proposed as a way to slow and even reverse global warming , with some estimates proposing a global surface area coverage of 1-2% to balance global heat fluxes. IR data transmission is also employed in short-range communication among computer peripherals and personal digital assistants . These devices usually conform to standards published by IrDA ,

1957-411: Is a property of a surface that describes how its thermal emissions deviate from the ideal of a black body . To further explain, two objects at the same physical temperature may not show the same infrared image if they have differing emissivity. For example, for any pre-set emissivity value, objects with higher emissivity will appear hotter, and those with a lower emissivity will appear cooler (assuming, as

2060-448: Is a type of invisible radiation in the spectrum lower in energy than red light, by means of its effect on a thermometer . Slightly more than half of the energy from the Sun was eventually found, through Herschel's studies, to arrive on Earth in the form of infrared. The balance between absorbed and emitted infrared radiation has an important effect on Earth's climate . Infrared radiation

2163-412: Is able to ionize atoms, causing chemical reactions. Longer-wavelength radiation such as visible light is nonionizing; the photons do not have sufficient energy to ionize atoms. Throughout most of the electromagnetic spectrum, spectroscopy can be used to separate waves of different frequencies, so that the intensity of the radiation can be measured as a function of frequency or wavelength. Spectroscopy

SECTION 20

#1732772044204

2266-451: Is absorbed then re-radiated at longer wavelengths. Visible light or ultraviolet-emitting lasers can char paper and incandescently hot objects emit visible radiation. Objects at room temperature will emit radiation concentrated mostly in the 8 to 25 μm band, but this is not distinct from the emission of visible light by incandescent objects and ultraviolet by even hotter objects (see black body and Wien's displacement law ). Heat

2369-426: Is also a technique called ' T-ray ' imaging, which is imaging using far-infrared or terahertz radiation . Lack of bright sources can make terahertz photography more challenging than most other infrared imaging techniques. Recently T-ray imaging has been of considerable interest due to a number of new developments such as terahertz time-domain spectroscopy . Infrared tracking, also known as infrared homing, refers to

2472-430: Is associated with spectra far above the infrared, extending into visible, ultraviolet, and even X-ray regions (e.g. the solar corona ). Thus, the popular association of infrared radiation with thermal radiation is only a coincidence based on typical (comparatively low) temperatures often found near the surface of planet Earth. The concept of emissivity is important in understanding the infrared emissions of objects. This

2575-537: Is being researched as an aid for visually impaired people through the Remote infrared audible signage project. Transmitting IR data from one device to another is sometimes referred to as beaming . IR is sometimes used for assistive audio as an alternative to an audio induction loop . Infrared vibrational spectroscopy (see also near-infrared spectroscopy ) is a technique that can be used to identify molecules by analysis of their constituent bonds. Each chemical bond in

2678-408: Is called fluorescence . UV fluorescence is used by forensics to detect any evidence like blood and urine, that is produced by a crime scene. Also UV fluorescence is used to detect counterfeit money and IDs, as they are laced with material that can glow under UV. At the middle range of UV, UV rays cannot ionize but can break chemical bonds, making molecules unusually reactive. Sunburn , for example,

2781-722: Is caused by the disruptive effects of middle range UV radiation on skin cells , which is the main cause of skin cancer . UV rays in the middle range can irreparably damage the complex DNA molecules in the cells producing thymine dimers making it a very potent mutagen . Due to skin cancer caused by UV, the sunscreen industry was invented to combat UV damage. Mid UV wavelengths are called UVB and UVB lights such as germicidal lamps are used to kill germs and also to sterilize water. The Sun emits UV radiation (about 10% of its total power), including extremely short wavelength UV that could potentially destroy most life on land (ocean water would provide some protection for life there). However, most of

2884-485: Is classified as part of optical astronomy . To form an image, the components of an infrared telescope need to be carefully shielded from heat sources, and the detectors are chilled using liquid helium . The sensitivity of Earth-based infrared telescopes is significantly limited by water vapor in the atmosphere, which absorbs a portion of the infrared radiation arriving from space outside of selected atmospheric windows . This limitation can be partially alleviated by placing

2987-423: Is counted as part of the microwave band, not infrared, moving the band edge of infrared to 0.1 mm (3 THz). Sunlight , at an effective temperature of 5,780  K (5,510 °C, 9,940 °F), is composed of near-thermal-spectrum radiation that is slightly more than half infrared. At zenith , sunlight provides an irradiance of just over 1  kW per square meter at sea level. Of this energy, 527 W

3090-456: Is defined (according to different standards) at various values typically between 700 nm and 800 nm, but the boundary between visible and infrared light is not precisely defined. The human eye is markedly less sensitive to light above 700 nm wavelength, so longer wavelengths make insignificant contributions to scenes illuminated by common light sources. Particularly intense near-IR light (e.g., from lasers , LEDs or bright daylight with

3193-434: Is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high frequency these are: radio waves , microwaves , infrared , visible light , ultraviolet , X-rays , and gamma rays . The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. Radio waves, at

Palomar Testbed Interferometer - Misplaced Pages Continue

3296-578: Is efficiently detected by inexpensive silicon photodiodes , which the receiver uses to convert the detected radiation to an electric current . That electrical signal is passed through a high-pass filter which retains the rapid pulsations due to the IR transmitter but filters out slowly changing infrared radiation from ambient light. Infrared communications are useful for indoor use in areas of high population density. IR does not penetrate walls and so does not interfere with other devices in adjoining rooms. Infrared

3399-587: Is emitted or absorbed by molecules when changing rotational-vibrational movements. It excites vibrational modes in a molecule through a change in the dipole moment , making it a useful frequency range for study of these energy states for molecules of the proper symmetry. Infrared spectroscopy examines absorption and transmission of photons in the infrared range. Infrared radiation is used in industrial, scientific, military, commercial, and medical applications. Night-vision devices using active near-infrared illumination allow people or animals to be observed without

3502-491: Is energy in transit that flows due to a temperature difference. Unlike heat transmitted by thermal conduction or thermal convection , thermal radiation can propagate through a vacuum . Thermal radiation is characterized by a particular spectrum of many wavelengths that are associated with emission from an object, due to the vibration of its molecules at a given temperature. Thermal radiation can be emitted from objects at any wavelength, and at very high temperatures such radiation

3605-552: Is especially useful since some radiation at these wavelengths can escape into space through the atmosphere's infrared window . This is how passive daytime radiative cooling (PDRC) surfaces are able to achieve sub-ambient cooling temperatures under direct solar intensity, enhancing terrestrial heat flow to outer space with zero energy consumption or pollution . PDRC surfaces maximize shortwave solar reflectance to lessen heat gain while maintaining strong longwave infrared (LWIR) thermal radiation heat transfer . When imagined on

3708-676: Is infrared radiation, 445 W is visible light, and 32 W is ultraviolet radiation. Nearly all the infrared radiation in sunlight is near infrared, shorter than 4 μm. On the surface of Earth, at far lower temperatures than the surface of the Sun, some thermal radiation consists of infrared in the mid-infrared region, much longer than in sunlight. Black-body, or thermal, radiation is continuous: it radiates at all wavelengths. Of these natural thermal radiation processes, only lightning and natural fires are hot enough to produce much visible energy, and fires produce far more infrared than visible-light energy. In general, objects emit infrared radiation across

3811-403: Is no universally accepted definition of the range of infrared radiation. Typically, it is taken to extend from the nominal red edge of the visible spectrum at 780 nm to 1 mm. This range of wavelengths corresponds to a frequency range of approximately 430 THz down to 300 GHz. Beyond infrared is the microwave portion of the electromagnetic spectrum . Increasingly, terahertz radiation

3914-532: Is not harmless and does create oxygen radicals, mutations and skin damage. After UV come X-rays , which, like the upper ranges of UV are also ionizing. However, due to their higher energies, X-rays can also interact with matter by means of the Compton effect . Hard X-rays have shorter wavelengths than soft X-rays and as they can pass through many substances with little absorption, they can be used to 'see through' objects with 'thicknesses' less than that equivalent to

4017-457: Is often the case, that the surrounding environment is cooler than the objects being viewed). When an object has less than perfect emissivity, it obtains properties of reflectivity and/or transparency, and so the temperature of the surrounding environment is partially reflected by and/or transmitted through the object. If the object were in a hotter environment, then a lower emissivity object at the same temperature would likely appear to be hotter than

4120-530: Is one of the primary parameters studied in research into global warming , together with solar radiation . A pyrgeometer is utilized in this field of research to perform continuous outdoor measurements. This is a broadband infrared radiometer with sensitivity for infrared radiation between approximately 4.5 μm and 50 μm. Astronomers observe objects in the infrared portion of the electromagnetic spectrum using optical components, including mirrors, lenses and solid state digital detectors. For this reason it

4223-467: Is that low clouds such as stratus or fog can have a temperature similar to the surrounding land or sea surface and do not show up. However, using the difference in brightness of the IR4 channel (10.3–11.5 μm) and the near-infrared channel (1.58–1.64 μm), low clouds can be distinguished, producing a fog satellite picture. The main advantage of infrared is that images can be produced at night, allowing

Palomar Testbed Interferometer - Misplaced Pages Continue

4326-519: Is that the IR energy heats only opaque objects, such as food, rather than the air around them. Infrared heating is also becoming more popular in industrial manufacturing processes, e.g. curing of coatings, forming of plastics, annealing, plastic welding, and print drying. In these applications, infrared heaters replace convection ovens and contact heating. A variety of technologies or proposed technologies take advantage of infrared emissions to cool buildings or other systems. The LWIR (8–15 μm) region

4429-438: Is the dominant band for long-distance telecommunications networks . The S and L bands are based on less well established technology, and are not as widely deployed. Infrared radiation is popularly known as "heat radiation", but light and electromagnetic waves of any frequency will heat surfaces that absorb them. Infrared light from the Sun accounts for 49% of the heating of Earth, with the rest being caused by visible light that

4532-402: Is the most common way for remote controls to command appliances. Infrared remote control protocols like RC-5 , SIRC , are used to communicate with infrared. Free-space optical communication using infrared lasers can be a relatively inexpensive way to install a communications link in an urban area operating at up to 4 gigabit/s, compared to the cost of burying fiber optic cable, except for

4635-494: Is the part of the EM spectrum the human eye is the most sensitive to. Visible light (and near-infrared light) is typically absorbed and emitted by electrons in molecules and atoms that move from one energy level to another. This action allows the chemical mechanisms that underlie human vision and plant photosynthesis. The light that excites the human visual system is a very small portion of the electromagnetic spectrum. A rainbow shows

4738-520: Is the spectroscopic wavenumber . It is the frequency divided by the speed of light in vacuum. In the semiconductor industry, infrared light can be used to characterize materials such as thin films and periodic trench structures. By measuring the reflectance of light from the surface of a semiconductor wafer, the index of refraction (n) and the extinction Coefficient (k) can be determined via the Forouhi–Bloomer dispersion equations . The reflectance from

4841-451: Is too long for ordinary dioxygen in air to absorb. This leaves less than 3% of sunlight at sea level in UV, with all of this remainder at the lower energies. The remainder is UV-A, along with some UV-B. The very lowest energy range of UV between 315 nm and visible light (called UV-A) is not blocked well by the atmosphere, but does not cause sunburn and does less biological damage. However, it

4944-404: Is typically in the range 10.3–12.5 μm (IR4 and IR5 channels). Clouds with high and cold tops, such as cyclones or cumulonimbus clouds , are often displayed as red or black, lower warmer clouds such as stratus or stratocumulus are displayed as blue or grey, with intermediate clouds shaded accordingly. Hot land surfaces are shown as dark-grey or black. One disadvantage of infrared imagery

5047-427: Is used to study the interactions of electromagnetic waves with matter. Humans have always been aware of visible light and radiant heat but for most of history it was not known that these phenomena were connected or were representatives of a more extensive principle. The ancient Greeks recognized that light traveled in straight lines and studied some of its properties, including reflection and refraction . Light

5150-963: The radio spectrum is strictly regulated by governments, coordinated by the International Telecommunication Union (ITU) which allocates frequencies to different users for different uses. Microwaves are radio waves of short wavelength , from about 10 centimeters to one millimeter, in the SHF and EHF frequency bands. Microwave energy is produced with klystron and magnetron tubes, and with solid state devices such as Gunn and IMPATT diodes . Although they are emitted and absorbed by short antennas, they are also absorbed by polar molecules , coupling to vibrational and rotational modes, resulting in bulk heating. Unlike higher frequency waves such as infrared and visible light which are absorbed mainly at surfaces, microwaves can penetrate into materials and deposit their energy below

5253-537: The visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions . UV, X-rays, and gamma rays are thus collectively called ionizing radiation ; exposure to them can damage living tissue. UV can also cause substances to glow with visible light; this

SECTION 50

#1732772044204

5356-456: The > 10 MeV region)—which is of higher energy than any nuclear gamma ray—is not called X-ray or gamma ray, but instead by the generic term of "high-energy photons". The region of the spectrum where a particular observed electromagnetic radiation falls is reference frame -dependent (due to the Doppler shift for light), so EM radiation that one observer would say is in one region of

5459-650: The 7.6 eV (1.22 aJ) nuclear transition of thorium-229m ), and, despite being one million-fold less energetic than some muonic X-rays, the emitted photons are still called gamma rays due to their nuclear origin. The convention that EM radiation that is known to come from the nucleus is always called "gamma ray" radiation is the only convention that is universally respected, however. Many astronomical gamma ray sources (such as gamma ray bursts ) are known to be too energetic (in both intensity and wavelength) to be of nuclear origin. Quite often, in high-energy physics and in medical radiotherapy , very high energy EMR (in

5562-476: The Earth's atmosphere to see astronomical X-rays, since the great depth of the atmosphere of Earth is opaque to X-rays (with areal density of 1000 g/cm ), equivalent to 10 meters thickness of water. This is an amount sufficient to block almost all astronomical X-rays (and also astronomical gamma rays—see below). After hard X-rays come gamma rays , which were discovered by Paul Ulrich Villard in 1900. These are

5665-535: The IR spectrum is thereby divided varies between different areas in which IR is employed. Infrared radiation is generally considered to begin with wavelengths longer than visible by the human eye. There is no hard wavelength limit to what is visible, as the eye's sensitivity decreases rapidly but smoothly, for wavelengths exceeding about 700 nm. Therefore wavelengths just longer than that can be seen if they are sufficiently bright, though they may still be classified as infrared according to usual definitions. Light from

5768-488: The Infrared Data Association. Remote controls and IrDA devices use infrared light-emitting diodes (LEDs) to emit infrared radiation that may be concentrated by a lens into a beam that the user aims at the detector. The beam is modulated , i.e. switched on and off, according to a code which the receiver interprets. Usually very near-IR is used (below 800 nm) for practical reasons. This wavelength

5871-529: The Palomar Testbed Interferometer revealed that the star Altair is not spherical, but is rather flattened at the poles due to its high rate of rotation. Near infrared It was long known that fires emit invisible heat ; in 1681 the pioneering experimenter Edme Mariotte showed that glass, though transparent to sunlight, obstructed radiant heat. In 1800 the astronomer Sir William Herschel discovered that infrared radiation

5974-429: The Sun's damaging UV wavelengths are absorbed by the atmosphere before they reach the surface. The higher energy (shortest wavelength) ranges of UV (called "vacuum UV") are absorbed by nitrogen and, at longer wavelengths, by simple diatomic oxygen in the air. Most of the UV in the mid-range of energy is blocked by the ozone layer, which absorbs strongly in the important 200–315 nm range, the lower energy part of which

6077-504: The amount of energy per quantum (photon) it carries. Spectroscopy can detect a much wider region of the EM spectrum than the visible wavelength range of 400  nm to 700 nm in a vacuum. A common laboratory spectroscope can detect wavelengths from 2 nm to 2500 nm. Detailed information about the physical properties of objects, gases, or even stars can be obtained from this type of device. Spectroscopes are widely used in astrophysics . For example, many hydrogen atoms emit

6180-844: The chemical mechanisms responsible for photosynthesis and the working of the visual system . The distinction between X-rays and gamma rays is partly based on sources: the photons generated from nuclear decay or other nuclear and subnuclear/particle process are always termed gamma rays, whereas X-rays are generated by electronic transitions involving highly energetic inner atomic electrons. In general, nuclear transitions are much more energetic than electronic transitions, so gamma rays are more energetic than X-rays, but exceptions exist. By analogy to electronic transitions, muonic atom transitions are also said to produce X-rays, even though their energy may exceed 6 megaelectronvolts (0.96 pJ), whereas there are many (77 known to be less than 10 keV (1.6 fJ)) low-energy nuclear transitions ( e.g. ,

6283-539: The division of infrared radiation into the following three bands: ISO 20473 specifies the following scheme: Astronomers typically divide the infrared spectrum as follows: These divisions are not precise and can vary depending on the publication. The three regions are used for observation of different temperature ranges, and hence different environments in space. The most common photometric system used in astronomy allocates capital letters to different spectral regions according to filters used; I, J, H, and K cover

SECTION 60

#1732772044204

6386-436: The electromagnetic spectrum covers the range from roughly 300 GHz to 400 THz (1 mm – 750 nm). It can be divided into three parts: Above infrared in frequency comes visible light . The Sun emits its peak power in the visible region, although integrating the entire emission power spectrum through all wavelengths shows that the Sun emits slightly more infrared than visible light. By definition, visible light

6489-809: The electromagnetic spectrum was filled in with the discovery of gamma rays . In 1900, Paul Villard was studying the radioactive emissions of radium when he identified a new type of radiation that he at first thought consisted of particles similar to known alpha and beta particles , but with the power of being far more penetrating than either. However, in 1910, British physicist William Henry Bragg demonstrated that gamma rays are electromagnetic radiation, not particles, and in 1914, Ernest Rutherford (who had named them gamma rays in 1903 when he realized that they were fundamentally different from charged alpha and beta particles) and Edward Andrade measured their wavelengths, and found that gamma rays were similar to X-rays, but with shorter wavelengths. The wave-particle debate

6592-473: The eye is given a moment to adjust to the extremely dim image coming through a visually opaque IR-passing photographic filter, it is possible to see the Wood effect that consists of IR-glowing foliage. In optical communications , the part of the infrared spectrum that is used is divided into seven bands based on availability of light sources, transmitting/absorbing materials (fibers), and detectors: The C-band

6695-445: The eyes, this results in visual perception of the scene. The brain's visual system processes the multitude of reflected frequencies into different shades and hues, and through this insufficiently understood psychophysical phenomenon, most people perceive a bowl of fruit. At most wavelengths, however, the information carried by electromagnetic radiation is not directly detected by human senses. Natural sources produce EM radiation across

6798-407: The field. Analyzing the speed of these theoretical waves, Maxwell realized that they must travel at a speed that was about the known speed of light . This startling coincidence in value led Maxwell to make the inference that light itself is a type of electromagnetic wave. Maxwell's equations predicted an infinite range of frequencies of electromagnetic waves , all traveling at the speed of light. This

6901-403: The following three physical properties: the frequency f , wavelength λ , or photon energy E . Frequencies observed in astronomy range from 2.4 × 10  Hz (1 GeV gamma rays) down to the local plasma frequency of the ionized interstellar medium (~1 kHz). Wavelength is inversely proportional to the wave frequency, so gamma rays have very short wavelengths that are fractions of

7004-499: The frequencies of infrared light. Typically, the technique is used to study organic compounds using light radiation from the mid-infrared, 4,000–400 cm . A spectrum of all the frequencies of absorption in a sample is recorded. This can be used to gain information about the sample composition in terms of chemical groups present and also its purity (for example, a wet sample will show a broad O-H absorption around 3200 cm ). The unit for expressing radiation in this application, cm ,

7107-485: The gray-shaded thermal images can be converted to color for easier identification of desired information. The main water vapour channel at 6.40 to 7.08 μm can be imaged by some weather satellites and shows the amount of moisture in the atmosphere. In the field of climatology, atmospheric infrared radiation is monitored to detect trends in the energy exchange between the Earth and the atmosphere. These trends provide information on long-term changes in Earth's climate. It

7210-570: The increasing order of wavelength, which is characteristic of the type of radiation. There are no precisely defined boundaries between the bands of the electromagnetic spectrum; rather they fade into each other like the bands in a rainbow (which is the sub-spectrum of visible light). Radiation of each frequency and wavelength (or in each band) has a mix of properties of the two regions of the spectrum that bound it. For example, red light resembles infrared radiation in that it can excite and add energy to some chemical bonds and indeed must do so to power

7313-411: The infrared light can also be used to determine the critical dimension, depth, and sidewall angle of high aspect ratio trench structures. Weather satellites equipped with scanning radiometers produce thermal or infrared images, which can then enable a trained analyst to determine cloud heights and types, to calculate land and surface water temperatures, and to locate ocean surface features. The scanning

7416-496: The infrared range of the electromagnetic spectrum (roughly 9,000–14,000 nm or 9–14 μm) and produce images of that radiation. Since infrared radiation is emitted by all objects based on their temperatures, according to the black-body radiation law, thermography makes it possible to "see" one's environment with or without visible illumination. The amount of radiation emitted by an object increases with temperature, therefore thermography allows one to see variations in temperature (hence

7519-412: The infrared wavelengths of light compared to objects in the background. Infrared radiation can be used as a deliberate heating source. For example, it is used in infrared saunas to heat the occupants. It may also be used in other heating applications, such as to remove ice from the wings of aircraft (de-icing). Infrared radiation is used in cooking, known as broiling or grilling . One energy advantage

7622-425: The low end of the band the atmosphere is mainly transparent, at the upper end of the band absorption of microwaves by atmospheric gases limits practical propagation distances to a few kilometers. Terahertz radiation or sub-millimeter radiation is a region of the spectrum from about 100 GHz to 30 terahertz (THz) between microwaves and far infrared which can be regarded as belonging to either band. Until recently,

7725-525: The low-frequency end of the spectrum, have the lowest photon energy and the longest wavelengths—thousands of kilometers , or more. They can be emitted and received by antennas , and pass through the atmosphere, foliage, and most building materials. Gamma rays, at the high-frequency end of the spectrum, have the highest photon energies and the shortest wavelengths—much smaller than an atomic nucleus . Gamma rays, X-rays, and extreme ultraviolet rays are called ionizing radiation because their high photon energy

7828-708: The most energetic photons , having no defined lower limit to their wavelength. In astronomy they are valuable for studying high-energy objects or regions, however as with X-rays this can only be done with telescopes outside the Earth's atmosphere. Gamma rays are used experimentally by physicists for their penetrating ability and are produced by a number of radioisotopes . They are used for irradiation of foods and seeds for sterilization, and in medicine they are occasionally used in radiation cancer therapy . More commonly, gamma rays are used for diagnostic imaging in nuclear medicine , an example being PET scans . The wavelength of gamma rays can be measured with high accuracy through

7931-438: The name). A hyperspectral image is a "picture" containing continuous spectrum through a wide spectral range at each pixel. Hyperspectral imaging is gaining importance in the field of applied spectroscopy particularly with NIR, SWIR, MWIR, and LWIR spectral regions. Typical applications include biological, mineralogical, defence, and industrial measurements. Thermal infrared hyperspectral imaging can be similarly performed using

8034-405: The near-infrared spectrum. Digital cameras often use infrared blockers . Cheaper digital cameras and camera phones have less effective filters and can view intense near-infrared, appearing as a bright purple-white color. This is especially pronounced when taking pictures of subjects near IR-bright areas (such as near a lamp), where the resulting infrared interference can wash out the image. There

8137-446: The near-infrared wavelengths; L, M, N, and Q refer to the mid-infrared region. These letters are commonly understood in reference to atmospheric windows and appear, for instance, in the titles of many papers . A third scheme divides up the band based on the response of various detectors: Near-infrared is the region closest in wavelength to the radiation detectable by the human eye. mid- and far-infrared are progressively further from

8240-431: The observer being detected. Infrared astronomy uses sensor-equipped telescopes to penetrate dusty regions of space such as molecular clouds , to detect objects such as planets , and to view highly red-shifted objects from the early days of the universe . Infrared thermal-imaging cameras are used to detect heat loss in insulated systems, to observe changing blood flow in the skin, to assist firefighting, and to detect

8343-550: The optical (visible) part of the electromagnetic spectrum; infrared (if it could be seen) would be located just beyond the red side of the rainbow whilst ultraviolet would appear just beyond the opposite violet end. Electromagnetic radiation with a wavelength between 380 nm and 760 nm (400–790 terahertz) is detected by the human eye and perceived as visible light. Other wavelengths, especially near infrared (longer than 760 nm) and ultraviolet (shorter than 380 nm) are also sometimes referred to as light, especially when

8446-506: The overheating of electrical components. Military and civilian applications include target acquisition , surveillance , night vision , homing , and tracking. Humans at normal body temperature radiate chiefly at wavelengths around 10 μm. Non-military uses include thermal efficiency analysis, environmental monitoring, industrial facility inspections, detection of grow-ops , remote temperature sensing, short-range wireless communication , spectroscopy , and weather forecasting . There

8549-531: The properties of microwaves . These new types of waves paved the way for inventions such as the wireless telegraph and the radio . In 1895, Wilhelm Röntgen noticed a new type of radiation emitted during an experiment with an evacuated tube subjected to a high voltage . He called this radiation " x-rays " and found that they were able to travel through parts of the human body but were reflected or stopped by denser matter such as bones. Before long, many uses were found for this radiography . The last portion of

8652-426: The radiation damage. "Since the eye cannot detect IR, blinking or closing the eyes to help prevent or reduce damage may not happen." Infrared lasers are used to provide the light for optical fiber communications systems. Wavelengths around 1,330 nm (least dispersion ) or 1,550 nm (best transmission) are the best choices for standard silica fibers. IR data transmission of audio versions of printed signs

8755-522: The range was rarely studied and few sources existed for microwave energy in the so-called terahertz gap , but applications such as imaging and communications are now appearing. Scientists are also looking to apply terahertz technology in the armed forces, where high-frequency waves might be directed at enemy troops to incapacitate their electronic equipment. Terahertz radiation is strongly absorbed by atmospheric gases, making this frequency range useless for long-distance communication. The infrared part of

8858-436: The size of atoms , whereas wavelengths on the opposite end of the spectrum can be indefinitely long. Photon energy is directly proportional to the wave frequency, so gamma ray photons have the highest energy (around a billion electron volts ), while radio wave photons have very low energy (around a femtoelectronvolt ). These relations are illustrated by the following equations: where: Whenever electromagnetic waves travel in

8961-402: The spectrum could appear to an observer moving at a substantial fraction of the speed of light with respect to the first to be in another part of the spectrum. For example, consider the cosmic microwave background . It was produced when matter and radiation decoupled, by the de- excitation of hydrogen atoms to the ground state . These photons were from Lyman series transitions, putting them in

9064-399: The spectrum, and technology can also manipulate a broad range of wavelengths. Optical fiber transmits light that, although not necessarily in the visible part of the spectrum (it is usually infrared), can carry information. The modulation is similar to that used with radio waves. Next in frequency comes ultraviolet (UV). In frequency (and thus energy), UV rays sit between the violet end of

9167-498: The spectrum, as though these were different types of radiation. Thus, although these "different kinds" of electromagnetic radiation form a quantitatively continuous spectrum of frequencies and wavelengths, the spectrum remains divided for practical reasons arising from these qualitative interaction differences. Radio waves are emitted and received by antennas , which consist of conductors such as metal rod resonators . In artificial generation of radio waves, an electronic device called

9270-422: The spectrum, noticed what he called "chemical rays" (invisible light rays that induced certain chemical reactions). These behaved similarly to visible violet light rays, but were beyond them in the spectrum. They were later renamed ultraviolet radiation. The study of electromagnetism began in 1820 when Hans Christian Ørsted discovered that electric currents produce magnetic fields ( Oersted's law ). Light

9373-503: The surface. This effect is used to heat food in microwave ovens , and for industrial heating and medical diathermy . Microwaves are the main wavelengths used in radar , and are used for satellite communication , and wireless networking technologies such as Wi-Fi . The copper cables ( transmission lines ) which are used to carry lower-frequency radio waves to antennas have excessive power losses at microwave frequencies, and metal pipes called waveguides are used to carry them. Although at

9476-410: The telescope observatory at a high altitude, or by carrying the telescope aloft with a balloon or an aircraft. Space telescopes do not suffer from this handicap, and so outer space is considered the ideal location for infrared astronomy. Electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation , organized by frequency or wavelength . The spectrum

9579-479: The temperature of objects (if the emissivity is known). This is termed thermography, or in the case of very hot objects in the NIR or visible it is termed pyrometry . Thermography (thermal imaging) is mainly used in military and industrial applications but the technology is reaching the public market in the form of infrared cameras on cars due to greatly reduced production costs. Thermographic cameras detect radiation in

9682-471: The ultraviolet (UV) part of the electromagnetic spectrum. Now this radiation has undergone enough cosmological red shift to put it into the microwave region of the spectrum for observers moving slowly (compared to the speed of light) with respect to the cosmos. Electromagnetic radiation interacts with matter in different ways across the spectrum. These types of interaction are so different that historically different names have been applied to different parts of

9785-421: The visibility to humans is not relevant. White light is a combination of lights of different wavelengths in the visible spectrum. Passing white light through a prism splits it up into the several colours of light observed in the visible spectrum between 400 nm and 780 nm. If radiation having a frequency in the visible region of the EM spectrum reflects off an object, say, a bowl of fruit, and then strikes

9888-476: The visible light filtered out) can be detected up to approximately 780 nm, and will be perceived as red light. Intense light sources providing wavelengths as long as 1,050 nm can be seen as a dull red glow, causing some difficulty in near-IR illumination of scenes in the dark (usually this practical problem is solved by indirect illumination). Leaves are particularly bright in the near IR, and if all visible light leaks from around an IR-filter are blocked, and

9991-472: The visible spectrum. Other definitions follow different physical mechanisms (emission peaks, vs. bands, water absorption) and the newest follow technical reasons (the common silicon detectors are sensitive to about 1,050 nm, while InGaAs 's sensitivity starts around 950 nm and ends between 1,700 and 2,600 nm, depending on the specific configuration). No international standards for these specifications are currently available. The onset of infrared

10094-431: The waves and was able to infer (by measuring their wavelength and multiplying it by their frequency) that they traveled at the speed of light. Hertz also demonstrated that the new radiation could be both reflected and refracted by various dielectric media , in the same manner as light. For example, Hertz was able to focus the waves using a lens made of tree resin . In a later experiment, Hertz similarly produced and measured

10197-415: Was a wave. In 1800, William Herschel discovered infrared radiation. He was studying the temperature of different colours by moving a thermometer through light split by a prism. He noticed that the highest temperature was beyond red. He theorized that this temperature change was due to "calorific rays", a type of light ray that could not be seen. The next year, Johann Ritter , working at the other end of

10300-423: Was first linked to electromagnetism in 1845, when Michael Faraday noticed that the polarization of light traveling through a transparent material responded to a magnetic field (see Faraday effect ). During the 1860s, James Clerk Maxwell developed four partial differential equations ( Maxwell's equations ) for the electromagnetic field . Two of these equations predicted the possibility and behavior of waves in

10403-442: Was intensively studied from the beginning of the 17th century leading to the invention of important instruments like the telescope and microscope . Isaac Newton was the first to use the term spectrum for the range of colours that white light could be split into with a prism . Starting in 1666, Newton showed that these colours were intrinsic to light and could be recombined into white light. A debate arose over whether light had

10506-578: Was rekindled in 1901 when Max Planck discovered that light is absorbed only in discrete " quanta ", now called photons , implying that light has a particle nature. This idea was made explicit by Albert Einstein in 1905, but never accepted by Planck and many other contemporaries. The modern position of science is that electromagnetic radiation has both a wave and a particle nature, the wave-particle duality . The contradictions arising from this position are still being debated by scientists and philosophers. Electromagnetic waves are typically described by any of

10609-507: Was the first indication of the existence of the entire electromagnetic spectrum. Maxwell's predicted waves included waves at very low frequencies compared to infrared, which in theory might be created by oscillating charges in an ordinary electrical circuit of a certain type. Attempting to prove Maxwell's equations and detect such low frequency electromagnetic radiation, in 1886, the physicist Heinrich Hertz built an apparatus to generate and detect what are now called radio waves . Hertz found

#203796