The ProPhoto RGB color space , also known as ROMM RGB (Reference Output Medium Metric), is an output referred RGB color space developed by Kodak . It offers an especially large gamut designed for use with photographic output in mind. The ProPhoto RGB color space encompasses over 90% of possible surface colors in the CIE L*a*b* color space , and 100% of likely occurring real-world surface colors documented by Michael Pointer in 1980, making ProPhoto even larger than the Wide-gamut RGB color space . The ProPhoto RGB primaries were also chosen in order to minimize hue rotations associated with non-linear tone scale operations. One of the downsides to this color space is that approximately 13% of the representable colors are imaginary colors that do not exist and are not visible colors.
79-499: When working in color spaces with such a large gamut, it is recommended to work in 16-bit color depth to avoid posterization effects. This will occur more frequently in 8-bit modes as the gradient steps are much larger. There are two corresponding scene space color encodings known as RIMM RGB (Reference Input Medium Metric) intended to encode standard dynamic range scene space images, and ERIMM RGB intended to encode extended dynamic-range scene space images. The development of
158-553: A digital representation. A color space may be arbitrary, i.e. with physically realized colors assigned to a set of physical color swatches with corresponding assigned color names (including discrete numbers in – for example – the Pantone collection), or structured with mathematical rigor (as with the NCS System , Adobe RGB and sRGB ). A "color space" is a useful conceptual tool for understanding
237-461: A linear space (vector space)... became widely known around 1920, when Hermann Weyl and others published formal definitions. In fact, such a definition had been given thirty years previously by Peano , who was thoroughly acquainted with Grassmann's mathematical work. Grassmann did not put down a formal definition—the language was not available—but there is no doubt that he had the concept. With this conceptual background, in 1853, Grassmann published
316-465: A central band known as the visual streak. Around the fovea extends the central retina for about 6 mm and then the peripheral retina. The farthest edge of the retina is defined by the ora serrata . The distance from one ora to the other (or macula), the most sensitive area along the horizontal meridian , is about 32 mm. In section, the retina is no more than 0.5 mm thick. It has three layers of nerve cells and two of synapses , including
395-417: A color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with no connection to any globally understood system of color interpretation. Adding a specific mapping function between a color model and a reference color space establishes within the reference color space a definite "footprint", known as a gamut , and for a given color model, this defines
474-511: A color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB color model. When defining a color space, the usual reference standard is the CIELAB or CIEXYZ color spaces, which were specifically designed to encompass all colors the average human can see. Since "color space" identifies a particular combination of the color model and the mapping function,
553-579: A considered view that the bird retina depends for nutrition and oxygen supply on a specialized organ, called the "pecten" or pecten oculi , located on the blind spot or optic disk. This organ is extremely rich in blood vessels and is thought to supply nutrition and oxygen to the bird retina by diffusion through the vitreous body. The pecten is highly rich in alkaline phosphatase activity and polarized cells in its bridge portion – both befitting its secretory role. Pecten cells are packed with dark melanin granules, which have been theorized to keep this organ warm with
632-471: A graphic or document is sometimes called tagging or embedding ; tagging, therefore, marks the absolute meaning of colors in that graphic or document. A color in one absolute color space can be converted into another absolute color space, and back again, in general; however, some color spaces may have gamut limitations, and converting colors that lie outside that gamut will not produce correct results. There are also likely to be rounding errors, especially if
711-509: A linear model, this response profile is well described by a difference of Gaussians and is the basis for edge detection algorithms. Beyond this simple difference, ganglion cells are also differentiated by chromatic sensitivity and the type of spatial summation. Cells showing linear spatial summation are termed X cells (also called parvocellular, P, or midget ganglion cells), and those showing non-linear summation are Y cells (also called magnocellular, M, or parasol retinal ganglion cells), although
790-473: A protein, retinochrome, that recycles retinal and replicates one of the functions of the vertebrate RPE, cephalopod photoreceptors are likely not maintained as well as in vertebrates, and that as a result, the useful lifetime of photoreceptors in invertebrates is much shorter than in vertebrates. Having easily replaced stalk eyes (some lobsters) or retinae (some spiders, such as Deinopis ) rarely occurs. The cephalopod retina does not originate as an outgrowth of
869-409: A theory of how colors mix; it and its three color laws are still taught, as Grassmann's law . As noted first by Grassmann... the light set has the structure of a cone in the infinite-dimensional linear space. As a result, a quotient set (with respect to metamerism) of the light cone inherits the conical structure, which allows color to be represented as a convex cone in the 3- D linear space, which
SECTION 10
#1732765400712948-528: Is a lack of one or more of the cone subtypes that causes individuals to have deficiencies in colour vision or various kinds of colour blindness . These individuals are not blind to objects of a particular colour, but are unable to distinguish between colours that can be distinguished by people with normal vision. Humans have this trichromatic vision , while most other mammals lack cones with red sensitive pigment and therefore have poorer dichromatic colour vision. However, some animals have four spectral subtypes, e.g.
1027-650: Is a new international digital video color space standard published by the IEC (IEC 61966-2-4). It is based on the ITU BT.601 and BT.709 standards but extends the gamut beyond the R/G/B primaries specified in those standards. HSV ( h ue, s aturation, v alue), also known as HSB (hue, saturation, b rightness) is often used by artists because it is often more natural to think about a color in terms of hue and saturation than in terms of additive or subtractive color components. HSV
1106-419: Is a transformation of an RGB color space, and its components and colorimetry are relative to the RGB color space from which it was derived. HSL ( h ue, s aturation, l ightness/ l uminance), also known as HLS or HSI (hue, saturation, i ntensity) is quite similar to HSV , with "lightness" replacing "brightness". The difference is that the brightness of a pure color is equal to the brightness of white, while
1185-417: Is also available. Changes in retinal blood circulation are seen with aging and exposure to air pollution, and may indicate cardiovascular diseases such as hypertension and atherosclerosis. Determining the equivalent width of arterioles and venules near the optic disc is also a widely used technique to identify cardiovascular risks. The retina translates an optical image into neural impulses starting with
1264-537: Is called mesopic vision . At mesopic light levels, both the rods and cones are actively contributing pattern information. What contribution the rod information makes to pattern vision under these circumstances is unclear. The response of cones to various wavelengths of light is called their spectral sensitivity. In normal human vision, the spectral sensitivity of a cone falls into one of three subtypes, often called blue, green, and red, but more accurately known as short, medium, and long wavelength-sensitive cone subtypes. It
1343-464: Is hyperpolarised. The amount of neurotransmitter released is reduced in bright light and increases as light levels fall. The actual photopigment is bleached away in bright light and only replaced as a chemical process, so in a transition from bright light to darkness the eye can take up to thirty minutes to reach full sensitivity. When thus excited by light, the photoceptor sends a proportional response synaptically to bipolar cells which in turn signal
1422-403: Is most enhanced. The choroid supplies about 75% of these nutrients to the retina and the retinal vasculature only 25%. When light strikes 11-cis-retinal (in the disks in the rods and cones), 11-cis-retinal changes to all-trans-retinal which then triggers changes in the opsins. Now, the outer segments do not regenerate the retinal back into the cis- form once it has been changed by light. Instead
1501-438: Is not direct. Since about 150 million receptors and only 1 million optic nerve fibres exist, convergence and thus mixing of signals must occur. Moreover, the horizontal action of the horizontal and amacrine cells can allow one area of the retina to control another (e.g. one stimulus inhibiting another). This inhibition is key to lessening the sum of messages sent to the higher regions of the brain. In some lower vertebrates (e.g.
1580-461: Is referred to as the color cone. Colors can be created in printing with color spaces based on the CMYK color model , using the subtractive primary colors of pigment ( c yan , m agenta , y ellow , and blac k ). To create a three-dimensional representation of a given color space, we can assign the amount of magenta color to the representation's X axis , the amount of cyan to its Y axis, and
1659-464: Is sometimes referred to as absolute, though it also needs a white point specification to make it so. A popular way to make a color space like RGB into an absolute color is to define an ICC profile, which contains the attributes of the RGB. This is not the only way to express an absolute color, but it is the standard in many industries. RGB colors defined by widely accepted profiles include sRGB and Adobe RGB . The process of adding an ICC profile to
SECTION 20
#17327654007121738-429: Is the 24- bit implementation, with 8 bits, or 256 discrete levels of color per channel . Any color space based on such a 24-bit RGB model is thus limited to a range of 256×256×256 ≈ 16.7 million colors. Some implementations use 16 bits per component for 48 bits total, resulting in the same gamut with a larger number of distinct colors. This is especially important when working with wide-gamut color spaces (where most of
1817-534: Is the basis for almost all other color spaces. The CIERGB color space is a linearly-related companion of CIE XYZ. Additional derivatives of CIE XYZ include the CIELUV , CIEUVW , and CIELAB . RGB uses additive color mixing, because it describes what kind of light needs to be emitted to produce a given color. RGB stores individual values for red, green and blue. RGBA is RGB with an additional channel, alpha, to indicate transparency. Common color spaces based on
1896-432: Is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs . The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then processes that image within the retina and sends nerve impulses along the optic nerve to the visual cortex to create visual perception . The retina serves a function which is in many ways analogous to that of
1975-450: Is the translation of the representation of a color from one basis to another. This typically occurs in the context of converting an image that is represented in one color space to another color space, the goal being to make the translated image look as similar as possible to the original. The RGB color model is implemented in different ways, depending on the capabilities of the system used. The most common incarnation in general use as of 2021
2054-485: The blind spot . In contrast, in the cephalopod retina, the photoreceptors are in front, with processing neurons and capillaries behind them. Because of this, cephalopods do not have a blind spot. Although the overlying neural tissue is partly transparent, and the accompanying glial cells have been shown to act as fibre-optic channels to transport photons directly to the photoreceptors, light scattering does occur. Some vertebrates, including humans, have an area of
2133-414: The brain through the fibres of the optic nerve . Neural signals from the rods and cones undergo processing by other neurons, whose output takes the form of action potentials in retinal ganglion cells whose axons form the optic nerve. In vertebrate embryonic development , the retina and the optic nerve originate as outgrowths of the developing brain, specifically the embryonic diencephalon ; thus,
2212-449: The film or image sensor in a camera . The neural retina consists of several layers of neurons interconnected by synapses and is supported by an outer layer of pigmented epithelial cells. The primary light-sensing cells in the retina are the photoreceptor cells , which are of two types: rods and cones . Rods function mainly in dim light and provide monochromatic vision. Cones function in well-lit conditions and are responsible for
2291-430: The lightness of a pure color is equal to the lightness of a medium gray. Early color spaces had two components. They largely ignored blue light because the added complexity of a 3-component process provided only a marginal increase in fidelity when compared to the jump from monochrome to 2-component color. In color science , there are two meanings of the term absolute color space : In this article, we concentrate on
2370-408: The ophthalmic artery bifurcates and supplies the retina via two distinct vascular networks: the choroidal network, which supplies the choroid and the outer retina, and the retinal network, which supplies the retina's inner layer. Although the inverted retina of vertebrates appears counter-intuitive, it is necessary for the proper functioning of the retina. The photoreceptor layer must be embedded in
2449-425: The outer plexiform layer and the inner plexiform layer . In the outer neuropil layer, the rods and cones connect to the vertically running bipolar cells , and the horizontally oriented horizontal cells connect to ganglion cells. The central retina predominantly contains cones, while the peripheral retina predominantly contains rods. In total, the retina has about seven million cones and a hundred million rods. At
ProPhoto RGB color space - Misplaced Pages Continue
2528-412: The photosensitive ganglion cells ; and transmission along the optic nerve. At each synaptic stage, horizontal and amacrine cells also are laterally connected. The optic nerve is a central tract of many axons of ganglion cells connecting primarily to the lateral geniculate body , a visual relay station in the diencephalon (the rear of the forebrain). It also projects to the superior colliculus ,
2607-787: The pigeon ), control of messages is "centrifugal" – that is, one layer can control another, or higher regions of the brain can drive the retinal nerve cells, but in primates, this does not occur. Using optical coherence tomography (OCT), 18 layers can be identified in the retina. The layers and anatomical correlation are: From innermost to outermost, the layers identifiable by OCT are as follows: on OCT anatomical boundaries? references (unclear if it can be observed on OCT) b) Müller cell nuclei (obliquely orientated fibres; not present in mid-peripheral or peripheral retina) Poorly distinguishable from RPE. Previously: "cone outer segment tips line" (COST) homogenous region of variable reflectivity Retinal development begins with
2686-403: The receptive field of the cell. The receptive fields of retinal ganglion cells comprise a central, approximately circular area, where light has one effect on the firing of the cell, and an annular surround, where light has the opposite effect. In ON cells, an increment in light intensity in the centre of the receptive field causes the firing rate to increase. In OFF cells, it makes it decrease. In
2765-425: The retinal ganglion cells . The photoreceptors are also cross-linked by horizontal cells and amacrine cells , which modify the synaptic signal before it reaches the ganglion cells, the neural signals being intermixed and combined. Of the retina's nerve cells, only the retinal ganglion cells and few amacrine cells create action potentials . In the retinal ganglion cells there are two types of response, depending on
2844-431: The suprachiasmatic nucleus , and the nucleus of the optic tract . It passes through the other layers, creating the optic disc in primates. Additional structures, not directly associated with vision, are found as outgrowths of the retina in some vertebrate groups. In birds , the pecten is a vascular structure of complex shape that projects from the retina into the vitreous humour ; it supplies oxygen and nutrients to
2923-523: The N-T axis is coordinated by expression of the forkhead transcription factors FOXD1 and FOXG1 . Additional gradients are formed within the retina. This spatial distribution may aid in proper targeting of RGC axons that function to establish the retinotopic map. The retina is stratified into distinct layers, each containing specific cell types or cellular compartments that have metabolisms with different nutritional requirements. To satisfy these requirements,
3002-690: The ProPhoto RGB and other color spaces is documented in an article summarizing a presentation by one of its developers Geoff Wolfe at Kodak , currently senior research manager at Canon Information Systems Research Australia, at the IS&T/SPIE Color Imaging Conference in 2011. where and and Color space A color space is a specific organization of colors . In combination with color profiling supported by various physical devices, it supports reproducible representations of color – whether such representation entails an analog or
3081-595: The RGB model include sRGB , Adobe RGB , ProPhoto RGB , scRGB , and CIE RGB . CMYK uses subtractive color mixing used in the printing process, because it describes what kind of inks need to be applied so the light reflected from the substrate and through the inks produces a given color. One starts with a white substrate (canvas, page, etc.), and uses ink to subtract color from white to create an image. CMYK stores ink values for cyan, magenta, yellow and black. There are many CMYK color spaces for different sets of inks, substrates, and press characteristics (which change
3160-626: The X, Y, and Z axes. Colors generated on a given monitor will be limited by the reproduction medium, such as the phosphor (in a CRT monitor ) or filters and backlight ( LCD monitor). Another way of creating colors on a monitor is with an HSL or HSV color model, based on hue , saturation , brightness (value/lightness). With such a model, the variables are assigned to cylindrical coordinates . Many color spaces can be represented as three-dimensional values in this manner, but some have more, or fewer dimensions, and some, such as Pantone , cannot be represented in this way at all. Color space conversion
3239-488: The absorption of stray light falling on the pecten. This is considered to enhance metabolic rate of the pecten, thereby exporting more nutritive molecules to meet the stringent energy requirements of the retina during long periods of exposure to light. The bifurcations and other physical characteristics of the inner retinal vascular network are known to vary among individuals, and these individual variances have been used for biometric identification and for early detection of
ProPhoto RGB color space - Misplaced Pages Continue
3318-451: The amount of yellow to its Z axis. The resulting 3-D space provides a unique position for every possible color that can be created by combining those three pigments. Colors can be created on computer monitors with color spaces based on the RGB color model , using the additive primary colors ( red , green , and blue ). A three-dimensional representation would assign each of the three colors to
3397-424: The brain, as the vertebrate one does. This difference suggests that vertebrate and cephalopod eyes are not homologous , but have evolved separately. From an evolutionary perspective, a more complex structure such as the inverted retina can generally come about as a consequence of two alternate processes - an advantageous "good" compromise between competing functional limitations, or as a historical maladaptive relic of
3476-480: The central retina adapted for high-acuity vision. This area, termed the fovea centralis , is avascular (does not have blood vessels), and has minimal neural tissue in front of the photoreceptors, thereby minimizing light scattering. The cephalopods have a non-inverted retina, which is comparable in resolving power to the eyes of many vertebrates. Squid eyes do not have an analog of the vertebrate retinal pigment epithelium (RPE). Although their photoreceptors contain
3555-411: The centre of the macula is the foveal pit where the cones are narrow and long, and arranged in a hexagonal mosaic , the most dense, in contradistinction to the much fatter cones located more peripherally in the retina. At the foveal pit, the other retinal layers are displaced, before building up along the foveal slope until the rim of the fovea, or parafovea , is reached, which is the thickest portion of
3634-428: The color capabilities of a particular device or digital file. When trying to reproduce color on another device, color spaces can show whether shadow/highlight detail and color saturation can be retained, and by how much either will be compromised. A " color model " is an abstract mathematical model describing the way colors can be represented as tuples of numbers (e.g. triples in RGB or quadruples in CMYK ); however,
3713-731: The color. It is similar to the YUV scheme used in most video capture systems and in PAL ( Australia , Europe , except France , which uses SECAM ) television, except that the YIQ color space is rotated 33° with respect to the YUV color space and the color axes are swapped. The YDbDr scheme used by SECAM television is rotated in another way. YPbPr is a scaled version of YUV. It is most commonly seen in its digital form, YCbCr , used widely in video and image compression schemes such as MPEG and JPEG . xvYCC
3792-410: The conversion between them should maintain the same color. However, in general, converting between two non-absolute color spaces (for example, RGB to CMYK ) or between absolute and non-absolute color spaces (for example, RGB to L*a*b*) is almost a meaningless concept. A different method of defining absolute color spaces is familiar to many consumers as the swatch card, used to select paint, fabrics, and
3871-485: The convoluted path of organ evolution and transformation. Vision is an important adaptation in higher vertebrates. A third view of the "inverted" vertebrate eye is that it combines two benefits - the maintenance of the photoreceptors mentioned above, and the reduction in light intensity necessary to avoid blinding the photoreceptors, which are based on the extremely sensitive eyes of the ancestors of modern hagfish (fish that live in very deep, dark water). A recent study on
3950-422: The correspondence between X and Y cells (in the cat retina) and P and M cells (in the primate retina) is not as simple as it once seemed. In the transfer of visual signals to the brain, the visual pathway , the retina is vertically divided in two, a temporal (nearer to the temple) half and a nasal (nearer to the nose) half. The axons from the nasal half cross the brain at the optic chiasma to join with axons from
4029-469: The dot gain or transfer function for each ink and thus change the appearance). YIQ was formerly used in NTSC ( North America , Japan and elsewhere) television broadcasts for historical reasons. This system stores a luma value roughly analogous to (and sometimes incorrectly identified as) luminance , along with two chroma values as approximate representations of the relative amounts of blue and red in
SECTION 50
#17327654007124108-532: The establishment of the eye fields mediated by the SHH and SIX3 proteins, with subsequent development of the optic vesicles regulated by the PAX6 and LHX2 proteins. The role of Pax6 in eye development was elegantly demonstrated by Walter Gehring and colleagues, who showed that ectopic expression of Pax6 can lead to eye formation on Drosophila antennae, wings, and legs. The optic vesicle gives rise to three structures:
4187-578: The evolutionary purpose for the inverted retina structure from the APS (American Physical Society) says that "The directional of glial cells helps increase the clarity of human vision. But we also noticed something rather curious: the colours that best passed through the glial cells were green to red, which the eye needs most for daytime vision. The eye usually receives too much blue—and thus has fewer blue-sensitive cones. Further computer simulations showed that green and red are concentrated five to ten times more by
4266-407: The eye, and may also aid in vision. Reptiles have a similar, but much simpler, structure. In adult humans, the entire retina is about 72% of a sphere about 22 mm in diameter. The entire retina contains about 7 million cones and 75 to 150 million rods. The optic disc, a part of the retina sometimes called "the blind spot" because it lacks photoreceptors, is located at the optic papilla , where
4345-473: The eye, each of which was sensitive to a particular range of visible light. Hermann von Helmholtz developed the Young–Helmholtz theory further in 1850: that the three types of cone photoreceptors could be classified as short-preferring ( blue ), middle-preferring ( green ), and long-preferring ( red ), according to their response to the wavelengths of light striking the retina . The relative strengths of
4424-530: The glial cells, and into their respective cones, than blue light. Instead, excess blue light gets scattered to the surrounding rods. This optimization is such that color vision during the day is enhanced, while night-time vision suffers very little". The vertebrate retina has 10 distinct layers. From closest to farthest from the vitreous body: These layers can be grouped into four main processing stages—photoreception; transmission to bipolar cells ; transmission to ganglion cells , which also contain photoreceptors,
4503-411: The light-sensing cells are in the back of the retina, so that light has to pass through layers of neurons and capillaries before it reaches the photosensitive sections of the rods and cones. The ganglion cells, whose axons form the optic nerve, are at the front of the retina; therefore, the optic nerve must cross through the retina en route to the brain. No photoreceptors are in this region, giving rise to
4582-485: The like. This is a way of agreeing a color between two parties. A more standardized method of defining absolute colors is the Pantone Matching System , a proprietary system that includes swatch cards and recipes that commercial printers can use to make inks that are a particular color. Retina The retina (from Latin rete 'net'; pl. retinae or retinas )
4661-506: The more common colors are located relatively close together), or when a large number of digital filtering algorithms are used consecutively. The same principle applies for any color space based on the same color model, but implemented at different bit depths . CIE 1931 XYZ color space was one of the first attempts to produce a color space based on measurements of human color perception (earlier efforts were by James Clerk Maxwell , König & Dieterici, and Abney at Imperial College ) and it
4740-511: The neural retina, the retinal pigmented epithelium, and the optic stalk. The neural retina contains the retinal progenitor cells (RPCs) that give rise to the seven cell types of the retina. Differentiation begins with the retinal ganglion cells and concludes with production of the Muller glia. Although each cell type differentiates from the RPCs in a sequential order, there is considerable overlap in
4819-521: The onset of disease. The mapping of vascular bifurcations is one of the basic steps in biometric identification. Results of such analyses of retinal blood vessel structure can be evaluated against the ground truth data of vascular bifurcations of retinal fundus images that are obtained from the DRIVE dataset. In addition, the classes of vessels of the DRIVE dataset have also been identified, and an automated method for accurate extraction of these bifurcations
SECTION 60
#17327654007124898-445: The optic nerve are devoted to the fovea. The resolution limit of the fovea has been determined to be around 10,000 points. The information capacity is estimated at 500,000 bits per second (for more information on bits, see information theory ) without colour or around 600,000 bits per second including colour. When the retina sends neural impulses representing an image to the brain, it spatially encodes (compresses) those impulses to fit
4977-478: The optic-nerve fibres leave the eye. It appears as an oval white area of 3 mm . Temporal (in the direction of the temples) to this disc is the macula , at whose centre is the fovea , a pit that is responsible for sharp central vision, but is actually less sensitive to light because of its lack of rods. Human and non-human primates possess one fovea, as opposed to certain bird species, such as hawks, that are bifoviate, and dogs and cats, that possess no fovea, but
5056-747: The patterned excitation of the colour-sensitive pigments of its rods and cones, the retina's photoreceptor cells . The excitation is processed by the neural system and various parts of the brain working in parallel to form a representation of the external environment in the brain. The cones respond to bright light and mediate high-resolution colour vision during daylight illumination (also called photopic vision ). The rod responses are saturated at daylight levels and do not contribute to pattern vision. However, rods do respond to dim light and mediate lower-resolution, monochromatic vision under very low levels of illumination (called scotopic vision ). The illumination in most office settings falls between these two levels and
5135-478: The perception of colour through the use of a range of opsins , as well as high-acuity vision used for tasks such as reading. A third type of light-sensing cell, the photosensitive ganglion cell , is important for entrainment of circadian rhythms and reflexive responses such as the pupillary light reflex . Light striking the retina initiates a cascade of chemical and electrical events that ultimately trigger nerve impulses that are sent to various visual centres of
5214-558: The popular range of only 256 distinct values per component ( 8-bit color ) is used. One part of the definition of an absolute color space is the viewing conditions. The same color, viewed under different natural or artificial lighting conditions, will look different. Those involved professionally with color matching may use viewing rooms, lit by standardized lighting. Occasionally, there are precise rules for converting between non-absolute color spaces. For example, HSL and HSV spaces are defined as mappings of RGB. Both are non-absolute, but
5293-464: The resting state the cell is depolarised. The photon causes the retinal bound to the receptor protein to isomerise to trans-retinal . This causes the receptor to activate multiple G-proteins . This in turn causes the Ga-subunit of the protein to activate a phosphodiesterase (PDE6), which degrades cGMP, resulting in the closing of Na+ cyclic nucleotide-gated ion channels (CNGs). Thus the cell
5372-457: The retina is considered part of the central nervous system (CNS) and is actually brain tissue. It is the only part of the CNS that can be visualized noninvasively . Like most of the brain, the retina is isolated from the vascular system by the blood–brain barrier . The retina is the part of the body with the greatest continuous energy demand. The vertebrate retina is inverted in the sense that
5451-450: The retina. The macula has a yellow pigmentation, from screening pigments, and is known as the macula lutea. The area directly surrounding the fovea has the highest density of rods converging on single bipolar cells. Since its cones have a much lesser convergence of signals, the fovea allows for the sharpest vision the eye can attain. Though the rod and cones are a mosaic of sorts, transmission from receptors, to bipolars, to ganglion cells
5530-514: The retinal is pumped out to the surrounding RPE where it is regenerated and transported back into the outer segments of the photoreceptors. This recycling function of the RPE protects the photoreceptors against photo-oxidative damage and allows the photoreceptor cells to have decades-long useful lives. The bird retina is devoid of blood vessels, perhaps to give unobscured passage of light for forming images, thus giving better resolution. It is, therefore,
5609-490: The retinal pigment epithelium (RPE), which performs at least seven vital functions, one of the most obvious being to supply oxygen and other necessary nutrients needed for the photoreceptors to function. The energy requirements of the retina are even greater than that of the brain. This is due to the additional energy needed to continuously renew the photoreceptor outer segments, of which 10% are shed daily. Energy demands are greatest during dark adaptation when its sensitivity
5688-500: The rods and cones. Light is absorbed by the retinal pigment epithelium or the choroid (both of which are opaque). The white blood cells in the capillaries in front of the photoreceptors can be perceived as tiny bright moving dots when looking into blue light. This is known as the blue field entoptic phenomenon (or Scheerer's phenomenon). Between the ganglion-cell layer and the rods and cones are two layers of neuropils , where synaptic contacts are made. The neuropil layers are
5767-483: The second definition. CIEXYZ , sRGB , and ICtCp are examples of absolute color spaces, as opposed to a generic RGB color space . A non-absolute color space can be made absolute by defining its relationship to absolute colorimetric quantities. For instance, if the red, green, and blue colors in a monitor are measured exactly, together with other properties of the monitor, then RGB values on that monitor can be considered as absolute. The CIE 1976 L*, a*, b* color space
5846-525: The signals detected by the three types of cones are interpreted by the brain as a visible color. But it is not clear that they thought of colors as being points in color space. The color-space concept was likely due to Hermann Grassmann , who developed it in two stages. First, he developed the idea of vector space , which allowed the algebraic representation of geometric concepts in n -dimensional space . Fearnley-Sander (1979) describes Grassmann's foundation of linear algebra as follows: The definition of
5925-450: The temporal half of the other eye before passing into the lateral geniculate body . Although there are more than 130 million retinal receptors, there are only approximately 1.2 million fibres (axons) in the optic nerve. So, a large amount of pre-processing is performed within the retina. The fovea produces the most accurate information. Despite occupying about 0.01% of the visual field (less than 2° of visual angle ), about 10% of axons in
6004-430: The timing of when individual cell types differentiate. The cues that determine a RPC daughter cell fate are coded by multiple transcription factor families including the bHLH and homeodomain factors. In addition to guiding cell fate determination, cues exist in the retina to determine the dorsal-ventral (D-V) and nasal-temporal (N-T) axes. The D-V axis is established by a ventral to dorsal gradient of VAX2 , whereas
6083-479: The trout adds an ultraviolet subgroup to short, medium, and long subtypes that are similar to humans. Some fish are sensitive to the polarization of light as well. In the photoreceptors, exposure to light hyperpolarizes the membrane in a series of graded shifts. The outer cell segment contains a photopigment . Inside the cell the normal levels of cyclic guanosine monophosphate (cGMP) keep the Na+ channel open, and thus in
6162-436: The unique ribbon synapse . The optic nerve carries the ganglion-cell axons to the brain, and the blood vessels that supply the retina. The ganglion cells lie innermost in the eye while the photoreceptive cells lie beyond. Because of this counter-intuitive arrangement, light must first pass through and around the ganglion cells and through the thickness of the retina, (including its capillary vessels, not shown) before reaching
6241-467: The word is often used informally to identify a color model. However, even though identifying a color space automatically identifies the associated color model, this usage is incorrect in a strict sense. For example, although several specific color spaces are based on the RGB color model , there is no such thing as the singular RGB color space . In 1802, Thomas Young postulated the existence of three types of photoreceptors (now known as cone cells ) in
#711288