157-444: A nuclear bunker buster , also known as an earth-penetrating weapon ( EPW ), is the nuclear equivalent of the conventional bunker buster . The non-nuclear component of the weapon is designed to penetrate soil , rock , or concrete to deliver a nuclear warhead to an underground target. These weapons would be used to destroy hardened, underground military bunkers or other below-ground facilities. An underground explosion releases
314-569: A conventional bomb can devastate an entire city by blast, fire, and radiation . Since they are weapons of mass destruction , the proliferation of nuclear weapons is a focus of international relations policy. Nuclear weapons have been deployed twice in war , both by the United States against the Japanese cities of Hiroshima and Nagasaki in 1945 during World War II . Nuclear weapons have only twice been used in warfare, both times by
471-405: A glass (or vitreous solid) is a non-crystalline solid formed by rapid melt quenching . However, the term "glass" is often defined in a broader sense, to describe any non-crystalline ( amorphous ) solid that exhibits a glass transition when heated towards the liquid state. Glass is an amorphous solid . Although the atomic-scale structure of glass shares characteristics of the structure of
628-436: A supercooled liquid , glass exhibits all the mechanical properties of a solid. As in other amorphous solids , the atomic structure of a glass lacks the long-range periodicity observed in crystalline solids . Due to chemical bonding constraints, glasses do possess a high degree of short-range order with respect to local atomic polyhedra . The notion that glass flows to an appreciable extent over extended periods well below
785-809: A turquoise colour in glass, in contrast to copper(I) oxide (Cu 2 O) which gives a dull red-brown colour. Soda–lime sheet glass is typically used as a transparent glazing material, typically as windows in external walls of buildings. Float or rolled sheet glass products are cut to size either by scoring and snapping the material, laser cutting , water jets , or diamond-bladed saw. The glass may be thermally or chemically tempered (strengthened) for safety and bent or curved during heating. Surface coatings may be added for specific functions such as scratch resistance, blocking specific wavelengths of light (e.g. infrared or ultraviolet ), dirt-repellence (e.g. self-cleaning glass ), or switchable electrochromic coatings. Structural glazing systems represent one of
942-550: A "direct hole". The Russian continuity of government facility at Kosvinsky Mountain , finished in early 1996, was designed to resist US earth-penetrating warheads and serves a similar role as the American Cheyenne Mountain Complex . The timing of the Kosvinsky completion date is regarded as one explanation for US interest in a new nuclear bunker buster and the declaration of the deployment of
1099-485: A clear "ring" sound when struck. However, lead glass cannot withstand high temperatures well. Lead oxide also facilitates the solubility of other metal oxides and is used in coloured glass. The viscosity decrease of lead glass melt is very significant (roughly 100 times in comparison with soda glass); this allows easier removal of bubbles and working at lower temperatures, hence its frequent use as an additive in vitreous enamels and glass solders . The high ionic radius of
1256-696: A conference—called for in the manifesto—in Pugwash, Nova Scotia , Eaton's birthplace. This conference was to be the first of the Pugwash Conferences on Science and World Affairs , held in July 1957. By the 1960s, steps were taken to limit both the proliferation of nuclear weapons to other countries and the environmental effects of nuclear testing . The Partial Nuclear Test Ban Treaty (1963) restricted all nuclear testing to underground nuclear testing , to prevent contamination from nuclear fallout, whereas
1413-458: A faster and less vulnerable attack, the development of long-range intercontinental ballistic missiles (ICBMs) and submarine-launched ballistic missiles (SLBMs) has given some nations the ability to plausibly deliver missiles anywhere on the globe with a high likelihood of success. More advanced systems, such as multiple independently targetable reentry vehicles (MIRVs), can launch multiple warheads at different targets from one missile, reducing
1570-656: A fission ("atomic") bomb released an amount of energy approximately equal to 20,000 tons of TNT (84 TJ ). The first thermonuclear ("hydrogen") bomb test released energy approximately equal to 10 million tons of TNT (42 PJ). Nuclear bombs have had yields between 10 tons TNT (the W54 ) and 50 megatons for the Tsar Bomba (see TNT equivalent ). A thermonuclear weapon weighing as little as 600 pounds (270 kg) can release energy equal to more than 1.2 megatonnes of TNT (5.0 PJ). A nuclear device no larger than
1727-492: A fission bomb to initiate them. Such a device might provide a simpler path to thermonuclear weapons than one that required the development of fission weapons first, and pure fusion weapons would create significantly less nuclear fallout than other thermonuclear weapons because they would not disperse fission products. In 1998, the United States Department of Energy divulged that the United States had, "...made
SECTION 10
#17327904034061884-421: A fusion weapon as of January 2016 , though this claim is disputed. Thermonuclear weapons are considered much more difficult to successfully design and execute than primitive fission weapons. Almost all of the nuclear weapons deployed today use the thermonuclear design because it results in an explosion hundreds of times stronger than that of a fission bomb of similar weight. Thermonuclear bombs work by using
2041-443: A green tint in thick sections. Manganese dioxide (MnO 2 ), which gives glass a purple colour, may be added to remove the green tint given by FeO. FeO and chromium(III) oxide (Cr 2 O 3 ) additives are used in the production of green bottles. Iron (III) oxide , on the other-hand, produces yellow or yellow-brown glass. Low concentrations (0.025 to 0.1%) of cobalt oxide (CoO) produce rich, deep blue cobalt glass . Chromium
2198-408: A human timescale. Silicon dioxide (SiO 2 ) is a common fundamental constituent of glass. Fused quartz is a glass made from chemically pure silica. It has very low thermal expansion and excellent resistance to thermal shock , being able to survive immersion in water while red hot, resists high temperatures (1000–1500 °C) and chemical weathering, and is very hard. It is also transparent to
2355-399: A large amount of the total energy output. All existing nuclear weapons derive some of their explosive energy from nuclear fission reactions. Weapons whose explosive output is exclusively from fission reactions are commonly referred to as atomic bombs or atom bombs (abbreviated as A-bombs ). This has long been noted as something of a misnomer , as their energy comes from the nucleus of
2512-471: A larger fraction of its energy into the ground, compared to a surface burst or air burst explosion at or above the surface, and so can destroy an underground target using a lower explosive yield . This in turn could lead to a reduced amount of radioactive fallout . However, it is unlikely that the explosion would be completely contained underground. As a result, significant amounts of rock and soil would be rendered radioactive and lofted as dust or vapor into
2669-405: A lighter alternative to traditional glass. Molecular liquids, electrolytes , molten salts , and aqueous solutions are mixtures of different molecules or ions that do not form a covalent network but interact only through weak van der Waals forces or transient hydrogen bonds . In a mixture of three or more ionic species of dissimilar size and shape, crystallization can be so difficult that
2826-561: A long period at a temperature just insufficient to cause fusion. In this way, the crystalline, devitrified material, known as Réaumur's glass porcelain is produced. Although generally transparent to visible light, glasses may be opaque to other wavelengths of light . While silicate glasses are generally opaque to infrared wavelengths with a transmission cut-off at 4 μm, heavy-metal fluoride and chalcogenide glasses are transparent to infrared wavelengths of 7 to 18 μm. The addition of metallic oxides results in different coloured glasses as
2983-482: A mass of hot semi-molten glass, inflating it into a bubble using a hollow blowpipe, and forming it into the required shape by blowing, swinging, rolling, or moulding. While hot, the glass can be worked using hand tools, cut with shears, and additional parts such as handles or feet attached by welding. Flat glass for windows and similar applications is formed by the float glass process, developed between 1953 and 1957 by Sir Alastair Pilkington and Kenneth Bickerstaff of
3140-472: A nation's economic electronics-based infrastructure. Because the effect is most effectively produced by high altitude nuclear detonations (by military weapons delivered by air, though ground bursts also produce EMP effects over a localized area), it can produce damage to electronics over a wide, even continental, geographical area. Research has been done into the possibility of pure fusion bombs : nuclear weapons that consist of fusion reactions without requiring
3297-537: A new nuclear strategy, one that is distinct from that which gave relative stability during the Cold War. Since 1996, the United States has had a policy of allowing the targeting of its nuclear weapons at terrorists armed with weapons of mass destruction . Robert Gallucci argues that although traditional deterrence is not an effective approach toward terrorist groups bent on causing a nuclear catastrophe, Gallucci believes that "the United States should instead consider
SECTION 20
#17327904034063454-453: A non-crystalline intergranular phase of grain boundaries . Glass-ceramics exhibit advantageous thermal, chemical, biological, and dielectric properties as compared to metals or organic polymers. The most commercially important property of glass-ceramics is their imperviousness to thermal shock. Thus, glass-ceramics have become extremely useful for countertop cooking and industrial processes. The negative thermal expansion coefficient (CTE) of
3611-490: A nuclear penetrator (the "Robust Nuclear Earth Penetrator", or "RNEP") was never built, the U.S. DOE was allotted budget to develop it, and tests were conducted by the U.S. Air Force Research Laboratory . The RNEP was to use the 1.2 megaton B83 physics package. The Bush administration removed its request for funding of the weapon in October 2005. Additionally, then U.S. Senator Pete Domenici announced funding for
3768-425: A nuclear war between two nations would result in mutual annihilation. From this point of view, the significance of nuclear weapons is to deter war because any nuclear war would escalate out of mutual distrust and fear, resulting in mutually assured destruction . This threat of national, if not global, destruction has been a strong motivation for anti-nuclear weapons activism. Critics from the peace movement and within
3925-411: A nuclear weapon from another country by threatening nuclear retaliation is known as the strategy of nuclear deterrence . The goal in deterrence is to always maintain a second strike capability (the ability of a country to respond to a nuclear attack with one of its own) and potentially to strive for first strike status (the ability to destroy an enemy's nuclear forces before they could retaliate). During
4082-527: A nuclear weapon is a gravity bomb dropped from aircraft ; this was the method used by the United States against Japan in 1945. This method places few restrictions on the size of the weapon. It does, however, limit attack range, response time to an impending attack, and the number of weapons that a country can field at the same time. With miniaturization, nuclear bombs can be delivered by both strategic bombers and tactical fighter-bombers . This method
4239-409: A nuclear weapon to its target is an important factor affecting both nuclear weapon design and nuclear strategy . The design, development, and maintenance of delivery systems are among the most expensive parts of a nuclear weapons program; they account, for example, for 57% of the financial resources spent by the United States on nuclear weapons projects since 1940. The simplest method for delivering
4396-433: A nuclear weapon with suitable materials (such as cobalt or gold ) creates a weapon known as a salted bomb . This device can produce exceptionally large quantities of long-lived radioactive contamination . It has been conjectured that such a device could serve as a "doomsday weapon" because such a large quantity of radioactivities with half-lives of decades, lifted into the stratosphere where winds would distribute it around
4553-422: A penetrator may actually travel further through soil, its effect may be lessened due to its inability to transmit shock to the target. Further thinking on the subject envisions a hardened penetrator using kinetic energy to defeat the target's defenses and subsequently deliver a nuclear explosive to the buried target. The primary difficulty facing the designers of such a penetrator is the tremendous heat applied to
4710-401: A plastic resin with glass fibres . It is made by melting glass and stretching the glass into fibres. These fibres are woven together into a cloth and left to set in a plastic resin. Fibreglass has the properties of being lightweight and corrosion resistant and is a good insulator enabling its use as building insulation material and for electronic housing for consumer products. Fibreglass
4867-421: A policy of expanded deterrence, which focuses not solely on the would-be nuclear terrorists but on those states that may deliberately transfer or inadvertently leak nuclear weapons and materials to them. By threatening retaliation against those states, the United States may be able to deter that which it cannot physically prevent.". Graham Allison makes a similar case, arguing that the key to expanded deterrence
Nuclear bunker buster - Misplaced Pages Continue
5024-409: A proliferating message to non-nuclear powers, undermining non-proliferation efforts. Critics also worry that the existence of lower-yield nuclear weapons for relatively limited tactical purposes will lower the threshold for their actual use, thus blurring the sharp line between conventional weapons intended for use and weapons of mass destruction intended only for hypothetical deterrence, and increasing
5181-462: A refractive index of 1.4 to 2.4, and an Abbe number (which characterises dispersion) of 15 to 100. The refractive index may be modified by high-density (refractive index increases) or low-density (refractive index decreases) additives. Glass transparency results from the absence of grain boundaries which diffusely scatter light in polycrystalline materials. Semi-opacity due to crystallization may be induced in many glasses by maintaining them for
5338-510: A significant portion of their energy from fission reactions used to "trigger" fusion reactions, and fusion reactions can themselves trigger additional fission reactions. Only six countries—the United States , Russia , the United Kingdom , China , France , and India —have conducted thermonuclear weapon tests. Whether India has detonated a "true" multi-staged thermonuclear weapon is controversial. North Korea claims to have tested
5495-412: A spinning metal disk. Several alloys have been produced in layers with thicknesses exceeding 1 millimetre. These are known as bulk metallic glasses (BMG). Liquidmetal Technologies sells several zirconium -based BMGs. Batches of amorphous steel have also been produced that demonstrate mechanical properties far exceeding those found in conventional steel alloys. Experimental evidence indicates that
5652-435: A structural analogue of silica, fluoride , aluminate , phosphate , borate , and chalcogenide glasses) have physicochemical properties useful for their application in fibre-optic waveguides in communication networks and other specialised technological applications. Silica-free glasses may often have poor glass-forming tendencies. Novel techniques, including containerless processing by aerodynamic levitation (cooling
5809-413: A structurally metastable state with respect to its crystalline form, although in certain circumstances, for example in atactic polymers, there is no crystalline analogue of the amorphous phase. Glass is sometimes considered to be a liquid due to its lack of a first-order phase transition where certain thermodynamic variables such as volume , entropy and enthalpy are discontinuous through
5966-550: A substantial investment" in the past to develop pure fusion weapons, but that, "The U.S. does not have and is not developing a pure fusion weapon", and that, "No credible design for a pure fusion weapon resulted from the DOE investment". Nuclear isomers provide a possible pathway to fissionless fusion bombs. These are naturally occurring isotopes ( Hf being a prominent example) which exist in an elevated energy state. Mechanisms to release this energy as bursts of gamma radiation (as in
6123-521: A wider spectral range than ordinary glass, extending from the visible further into both the UV and IR ranges, and is sometimes used where transparency to these wavelengths is necessary. Fused quartz is used for high-temperature applications such as furnace tubes, lighting tubes, melting crucibles, etc. However, its high melting temperature (1723 °C) and viscosity make it difficult to work with. Therefore, normally, other substances (fluxes) are added to lower
6280-454: Is liquefaction of the concrete in the target, which tends to flow over the projectile. Variation in the speed of the penetrator can either cause it to be vaporized on impact (in the case of traveling too fast), or to not penetrate far enough (in the case of traveling too slowly). An approximation for the penetration depth is obtained with an impact depth formula derived by Sir Isaac Newton . Another school of thought on nuclear bunker busters
6437-418: Is 3.25 × 10 /°C as compared to about 9 × 10 /°C for a typical soda–lime glass ). They are, therefore, less subject to stress caused by thermal expansion and thus less vulnerable to cracking from thermal shock . They are commonly used for e.g. labware , household cookware , and sealed beam car head lamps . The addition of lead(II) oxide into silicate glass lowers the melting point and viscosity of
Nuclear bunker buster - Misplaced Pages Continue
6594-552: Is a common volcanic glass with high silica (SiO 2 ) content formed when felsic lava extruded from a volcano cools rapidly. Impactite is a form of glass formed by the impact of a meteorite , where Moldavite (found in central and eastern Europe), and Libyan desert glass (found in areas in the eastern Sahara , the deserts of eastern Libya and western Egypt ) are notable examples. Vitrification of quartz can also occur when lightning strikes sand , forming hollow, branching rootlike structures called fulgurites . Trinitite
6751-714: Is a glassy residue formed from the desert floor sand at the Trinity nuclear bomb test site. Edeowie glass , found in South Australia , is proposed to originate from Pleistocene grassland fires, lightning strikes, or hypervelocity impact by one or several asteroids or comets . Naturally occurring obsidian glass was used by Stone Age societies as it fractures along very sharp edges, making it ideal for cutting tools and weapons. Glassmaking dates back at least 6000 years, long before humans had discovered how to smelt iron. Archaeological evidence suggests that
6908-420: Is a thermonuclear weapon that yields a relatively small explosion but a relatively large amount of neutron radiation . Such a weapon could, according to tacticians, be used to cause massive biological casualties while leaving inanimate infrastructure mostly intact and creating minimal fallout. Because high energy neutrons are capable of penetrating dense matter, such as tank armor, neutron warheads were procured in
7065-418: Is a very powerful colouring agent, yielding dark green. Sulphur combined with carbon and iron salts produces amber glass ranging from yellowish to almost black. A glass melt can also acquire an amber colour from a reducing combustion atmosphere. Cadmium sulfide produces imperial red , and combined with selenium can produce shades of yellow, orange, and red. Addition of copper(II) oxide (CuO) produces
7222-449: Is achieved by homogenizing the raw materials mixture ( glass batch ), stirring the melt, and crushing and re-melting the first melt. The obtained glass is usually annealed to prevent breakage during processing. Colour in glass may be obtained by addition of homogenously distributed electrically charged ions (or colour centres ). While ordinary soda–lime glass appears colourless in thin section, iron(II) oxide (FeO) impurities produce
7379-456: Is analogous to identifying a criminal by fingerprints. "The goal would be twofold: first, to deter leaders of nuclear states from selling weapons to terrorists by holding them accountable for any use of their weapons; second, to give leaders every incentive to tightly secure their nuclear weapons and materials." According to the Pentagon's June 2019 " Doctrine for Joint Nuclear Operations " of
7536-403: Is coming up with ways of tracing nuclear material to the country that forged the fissile material. "After a nuclear bomb detonates, nuclear forensics cops would collect debris samples and send them to a laboratory for radiological analysis. By identifying unique attributes of the fissile material, including its impurities and contaminants, one could trace the path back to its origin." The process
7693-676: Is extensively used for fibreglass , used for making glass-reinforced plastics (boats, fishing rods, etc.), top-of-stove cookware, and halogen bulb glass. The addition of barium also increases the refractive index. Thorium oxide gives glass a high refractive index and low dispersion and was formerly used in producing high-quality lenses, but due to its radioactivity has been replaced by lanthanum oxide in modern eyeglasses. Iron can be incorporated into glass to absorb infrared radiation, for example in heat-absorbing filters for movie projectors, while cerium(IV) oxide can be used for glass that absorbs ultraviolet wavelengths. Fluorine lowers
7850-481: Is for the purpose of achieving different yields for different situations , and in manipulating design elements to attempt to minimize weapon size, radiation hardness or requirements for special materials, especially fissile fuel or tritium. Some nuclear weapons are designed for special purposes; most of these are for non-strategic (decisively war-winning) purposes and are referred to as tactical nuclear weapons . The neutron bomb purportedly conceived by Sam Cohen
8007-455: Is in widespread use in optical systems due to its ability to refract, reflect, and transmit light following geometrical optics . The most common and oldest applications of glass in optics are as lenses , windows , mirrors , and prisms . The key optical properties refractive index , dispersion , and transmission , of glass are strongly dependent on chemical composition and, to a lesser degree, its thermal history. Optical glass typically has
SECTION 50
#17327904034068164-489: Is incorrect, as once solidified, glass stops flowing. The sags and ripples observed in old glass were already there the day it was made; manufacturing processes used in the past produced sheets with imperfect surfaces and non-uniform thickness (the near-perfect float glass used today only became widespread in the 1960s). A 2017 study computed the rate of flow of the medieval glass used in Westminster Abbey from
8321-503: Is no evidence that it is feasible beyond the military domain. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War , and began considering its possible use in weapons, not just as a trigger, but as the explosive itself. A fourth generation nuclear weapon design is related to, and relies upon, the same principle as antimatter-catalyzed nuclear pulse propulsion . Most variation in nuclear weapon design
8478-409: Is not a fusion bomb. In the boosted bomb, the neutrons produced by the fusion reactions serve primarily to increase the efficiency of the fission bomb. There are two types of boosted fission bomb: internally boosted, in which a deuterium-tritium mixture is injected into the bomb core, and externally boosted, in which concentric shells of lithium-deuteride and depleted uranium are layered on the outside of
8635-490: Is not clear that this has ever been implemented, and their plausible use in nuclear weapons is a matter of dispute. The other basic type of nuclear weapon produces a large proportion of its energy in nuclear fusion reactions. Such fusion weapons are generally referred to as thermonuclear weapons or more colloquially as hydrogen bombs (abbreviated as H-bombs ), as they rely on fusion reactions between isotopes of hydrogen ( deuterium and tritium ). All such weapons derive
8792-901: Is produced by forcing molten glass through a fine mesh by centripetal force and breaking the extruded glass fibres into short lengths using a stream of high-velocity air. The fibres are bonded with an adhesive spray and the resulting wool mat is cut and packed in rolls or panels. Besides common silica-based glasses many other inorganic and organic materials may also form glasses, including metals , aluminates , phosphates , borates , chalcogenides , fluorides , germanates (glasses based on GeO 2 ), tellurites (glasses based on TeO 2 ), antimonates (glasses based on Sb 2 O 3 ), arsenates (glasses based on As 2 O 3 ), titanates (glasses based on TiO 2 ), tantalates (glasses based on Ta 2 O 5 ), nitrates , carbonates , plastics , acrylic , and many other substances. Some of these glasses (e.g. Germanium dioxide (GeO 2 , Germania), in many respects
8949-461: Is stronger than most metals, with a theoretical tensile strength for pure, flawless glass estimated at 14 to 35 gigapascals (2,000,000 to 5,100,000 psi) due to its ability to undergo reversible compression without fracture. However, the presence of scratches, bubbles, and other microscopic flaws lead to a typical range of 14 to 175 megapascals (2,000 to 25,400 psi) in most commercial glasses. Several processes such as toughening can increase
9106-408: Is sufficiently rapid (relative to the characteristic crystallization time) then crystallization is prevented and instead, the disordered atomic configuration of the supercooled liquid is frozen into the solid state at T g . The tendency for a material to form a glass while quenched is called glass-forming ability. This ability can be predicted by the rigidity theory . Generally, a glass exists in
9263-430: Is that, while the conventional version is meant for one target, the nuclear version can destroy an entire underground bunker system. The main principles in modern bunker design are largely centered around survivability in nuclear war. As a result of this both American and Soviet sites reached a state of "super hardening", involving defenses against the effects of a nuclear weapon such as spring- or counterweight-mounted (in
9420-558: Is the only country to have independently developed and then renounced and dismantled its nuclear weapons. The Treaty on the Non-Proliferation of Nuclear Weapons aims to reduce the spread of nuclear weapons, but there are different views of its effectiveness. There are two basic types of nuclear weapons: those that derive the majority of their energy from nuclear fission reactions alone, and those that use fission reactions to begin nuclear fusion reactions that produce
9577-454: Is the primary means of nuclear weapons delivery; the majority of U.S. nuclear warheads, for example, are free-fall gravity bombs, namely the B61 , which is being improved upon to this day. Preferable from a strategic point of view is a nuclear weapon mounted on a missile , which can use a ballistic trajectory to deliver the warhead over the horizon. Although even short-range missiles allow for
SECTION 60
#17327904034069734-531: Is to reduce the required yield needed to ensure the destruction of the target by coupling the explosion to the ground, yielding a shock wave similar to an earthquake. For example, the United States retired the B-53 warhead , with a yield of nine megatons , because the B-61 Mod 11 could attack similar targets with much lower yield (400 kilotons ), due to the latter's superior ground penetration. By burying itself into
9891-436: Is transparent, easily formed, and most suitable for window glass and tableware. However, it has a high thermal expansion and poor resistance to heat. Soda–lime glass is typically used for windows , bottles , light bulbs , and jars . Borosilicate glasses (e.g. Pyrex , Duran ) typically contain 5–13% boron trioxide (B 2 O 3 ). Borosilicate glasses have fairly low coefficients of thermal expansion (7740 Pyrex CTE
10048-635: Is unlikely the blast would be completely contained. Critics further state that the testing of new nuclear weapons would be prohibited by the proposed Comprehensive Test Ban Treaty . Although Congress refused to ratify the CTBT in 1999, and therefore this treaty has no legal force in the US, the US has adhered to the spirit of the treaty by maintaining a moratorium on nuclear testing since 1992. Proponents, however, contend that lower explosive yield devices and subsurface bursts would produce little to no climatic effects in
10205-432: Is using a light penetrator to travel 15 to 30 meters through shielding, and detonate a nuclear charge there. Such an explosion would generate powerful shock waves, which would be transmitted very effectively through the solid material comprising the shielding (see "scabbing" above). The main criticisms of nuclear bunker busters regard fallout and nuclear proliferation. The purpose of an earth-penetrating nuclear bunker buster
10362-524: The Late Bronze Age , there was a rapid growth in glassmaking technology in Egypt and Western Asia . Archaeological finds from this period include coloured glass ingots , vessels, and beads. Much early glass production relied on grinding techniques borrowed from stoneworking , such as grinding and carving glass in a cold state. The term glass has its origins in the late Roman Empire , in
10519-535: The Renaissance period in Europe, the use of large stained glass windows became much less prevalent, although stained glass had a major revival with Gothic Revival architecture in the 19th century. During the 13th century, the island of Murano , Venice , became a centre for glass making, building on medieval techniques to produce colourful ornamental pieces in large quantities. Murano glass makers developed
10676-537: The Roman glass making centre at Trier (located in current-day Germany) where the late-Latin term glesum originated, likely from a Germanic word for a transparent , lustrous substance. Glass objects have been recovered across the Roman Empire in domestic, funerary , and industrial contexts, as well as trade items in marketplaces in distant provinces. Examples of Roman glass have been found outside of
10833-695: The Starfish Prime high-altitude nuclear test in 1962, an unexpected effect was produced which is called a nuclear electromagnetic pulse . This is an intense flash of electromagnetic energy produced by a rain of high-energy electrons which in turn are produced by a nuclear bomb's gamma rays. This flash of energy can permanently destroy or disrupt electronic equipment if insufficiently shielded. It has been proposed to use this effect to disable an enemy's military and civilian infrastructure as an adjunct to other nuclear or conventional military operations. By itself it could as well be useful to terrorists for crippling
10990-633: The Treaty on the Non-Proliferation of Nuclear Weapons (1968) attempted to place restrictions on the types of activities signatories could participate in, with the goal of allowing the transference of non-military nuclear technology to member countries without fear of proliferation. Glass Glass is an amorphous ( non-crystalline ) solid. Because it is often transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window panes, tableware , and optics . Some common objects made of glass are named after
11147-676: The Tsar Bomba of the USSR, which released an energy equivalent of over 50 megatons of TNT (210 PJ), was a three-stage weapon. Most thermonuclear weapons are considerably smaller than this, due to practical constraints from missile warhead space and weight requirements. In the early 1950s the Livermore Laboratory in the United States had plans for the testing of two massive bombs, Gnomon and Sundial , 1 gigaton of TNT and 10 gigatons of TNT respectively. Fusion reactions do not create fission products, and thus contribute far less to
11304-575: The United States against Japan at the end of World War II . On August 6, 1945, the United States Army Air Forces (USAAF) detonated a uranium gun-type fission bomb nicknamed " Little Boy " over the Japanese city of Hiroshima ; three days later, on August 9, the USAAF detonated a plutonium implosion-type fission bomb nicknamed " Fat Man " over the Japanese city of Nagasaki . These bombings caused injuries that resulted in
11461-545: The United States , the Soviet Union (succeeded as a nuclear power by Russia ), the United Kingdom , France , China , India , Pakistan , and North Korea . Israel is believed to possess nuclear weapons, though, in a policy of deliberate ambiguity , it does not acknowledge having them. Germany , Italy , Turkey , Belgium , the Netherlands , and Belarus are nuclear weapons sharing states. South Africa
11618-516: The Valentin submarine pens had ferrous concrete roofs 4.5 metres (15 feet) thick which were penetrated by two Grand Slams on 27 March 1945), but rather to penetrate under the target and explode leaving a camouflet (cavern) which would undermine foundations of structures above, causing it to collapse, thus negating any possible hardening. The destruction of targets such as the V3 battery at Mimoyecques
11775-465: The dielectric constant of glass. Fluorine is highly electronegative and lowers the polarizability of the material. Fluoride silicate glasses are used in the manufacture of integrated circuits as an insulator. Glass-ceramic materials contain both non-crystalline glass and crystalline ceramic phases. They are formed by controlled nucleation and partial crystallisation of a base glass by heat treatment. Crystalline grains are often embedded within
11932-436: The glass batch preparation and mixing, the raw materials are transported to the furnace. Soda–lime glass for mass production is melted in glass-melting furnaces . Smaller-scale furnaces for speciality glasses include electric melters, pot furnaces, and day tanks. After melting, homogenization and refining (removal of bubbles), the glass is formed . This may be achieved manually by glassblowing , which involves gathering
12089-424: The hafnium controversy ) have been proposed as possible triggers for conventional thermonuclear reactions. Antimatter , which consists of particles resembling ordinary matter particles in most of their properties but having opposite electric charge , has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there
12246-614: The head of government or head of state . Despite controls and regulations governing nuclear weapons, there is an inherent danger of "accidents, mistakes, false alarms, blackmail, theft, and sabotage". In the late 1940s, lack of mutual trust prevented the United States and the Soviet Union from making progress on arms control agreements. The Russell–Einstein Manifesto was issued in London on July 9, 1955, by Bertrand Russell in
12403-436: The tropopause into the stratosphere , where the calm non-turbulent winds permit the debris to travel great distances from the burst, eventually settling and unpredictably contaminating areas far removed from the target of the explosion. There are other types of nuclear weapons as well. For example, a boosted fission weapon is a fission bomb that increases its explosive yield through a small number of fusion reactions, but it
12560-537: The "implosion" method, is more sophisticated and more efficient (smaller, less massive, and requiring less of the expensive fissile fuel) than the former. A major challenge in all nuclear weapon designs is to ensure that a significant fraction of the fuel is consumed before the weapon destroys itself. The amount of energy released by fission bombs can range from the equivalent of just under a ton to upwards of 500,000 tons (500 kilotons ) of TNT (4.2 to 2.1 × 10 GJ). All fission reactions generate fission products ,
12717-510: The 10th century onwards, glass was employed in stained glass windows of churches and cathedrals , with famous examples at Chartres Cathedral and the Basilica of Saint-Denis . By the 14th century, architects were designing buildings with walls of stained glass such as Sainte-Chapelle , Paris, (1203–1248) and the East end of Gloucester Cathedral . With the change in architectural style during
12874-461: The 1930s, which later became known as Depression glass . In the 1950s, Pilkington Bros. , England , developed the float glass process, producing high-quality distortion-free flat sheets of glass by floating on molten tin . Modern multi-story buildings are frequently constructed with curtain walls made almost entirely of glass. Laminated glass has been widely applied to vehicles for windscreens. Optical glass for spectacles has been used since
13031-533: The 1980s (though not deployed in Europe) for use as tactical payloads for US Army artillery shells (200 mm W79 and 155 mm W82 ) and short range missile forces. Soviet authorities announced similar intentions for neutron warhead deployment in Europe; indeed, they claimed to have originally invented the neutron bomb, but their deployment on USSR tactical nuclear forces is unverifiable. A type of nuclear explosive most suitable for use by ground special forces
13188-552: The B-61 Mod 11 in 1997. Kosvinsky is protected by about 300 meters (1000 feet) of granite . The weapon was revisited after the Cold War during the 2001 U.S. invasion of Afghanistan , and again during the 2003 invasion of Iraq . During the campaign in Tora Bora in particular, the United States believed that "vast underground complexes," deeply buried, were protecting opposing forces. Such complexes were not found. While
13345-425: The Cold War, policy and military theorists considered the sorts of policies that might prevent a nuclear attack, and they developed game theory models that could lead to stable deterrence conditions. Different forms of nuclear weapons delivery (see above) allow for different types of nuclear strategies. The goals of any strategy are generally to make it difficult for an enemy to launch a pre-emptive strike against
13502-494: The Joint Chiefs of Staffs website Publication, "Integration of nuclear weapons employment with conventional and special operations forces is essential to the success of any mission or operation." Because they are weapons of mass destruction, the proliferation and possible use of nuclear weapons are important issues in international relations and diplomacy. In most countries, the use of nuclear force can only be authorized by
13659-687: The Middle Ages. The production of lenses has become increasingly proficient, aiding astronomers as well as having other applications in medicine and science. Glass is also employed as the aperture cover in many solar energy collectors. In the 21st century, glass manufacturers have developed different brands of chemically strengthened glass for widespread application in touchscreens for smartphones , tablet computers , and many other types of information appliances . These include Gorilla Glass , developed and manufactured by Corning , AGC Inc. 's Dragontrail and Schott AG 's Xensation. Glass
13816-503: The Nuclear Age (1961) that mere possession of a nuclear arsenal was enough to ensure deterrence, and thus concluded that the spread of nuclear weapons could increase international stability . Some prominent neo-realist scholars, such as Kenneth Waltz and John Mearsheimer , have argued, along the lines of Gallois, that some forms of nuclear proliferation would decrease the likelihood of total war , especially in troubled regions of
13973-543: The Pb ion renders it highly immobile and hinders the movement of other ions; lead glasses therefore have high electrical resistance, about two orders of magnitude higher than soda–lime glass (10 vs 10 Ω⋅cm, DC at 250 °C). Aluminosilicate glass typically contains 5–10% alumina (Al 2 O 3 ). Aluminosilicate glass tends to be more difficult to melt and shape compared to borosilicate compositions but has excellent thermal resistance and durability. Aluminosilicate glass
14130-533: The UK's Pilkington Brothers, who created a continuous ribbon of glass using a molten tin bath on which the molten glass flows unhindered under the influence of gravity. The top surface of the glass is subjected to nitrogen under pressure to obtain a polished finish. Container glass for common bottles and jars is formed by blowing and pressing methods. This glass is often slightly modified chemically (with more alumina and calcium oxide) for greater water resistance. Once
14287-777: The USAF AIR-2 Genie , the AIM-26 Falcon and US Army Nike Hercules . Missile interceptors such as the Sprint and the Spartan also used small nuclear warheads (optimized to produce neutron or X-ray flux) but were for use against enemy strategic warheads. Other small, or tactical, nuclear weapons were deployed by naval forces for use primarily as antisubmarine weapons. These included nuclear depth bombs or nuclear armed torpedoes. Nuclear mines for use on land or at sea are also possibilities. The system used to deliver
14444-526: The United States. Small, two-man portable tactical weapons (somewhat misleadingly referred to as suitcase bombs ), such as the Special Atomic Demolition Munition , have been developed, although the difficulty of combining sufficient yield with portability limits their military utility. Nuclear warfare strategy is a set of policies that deal with preventing or fighting a nuclear war. The policy of trying to prevent an attack by
14601-418: The United States. The complex fuel storage facilities and equipment needed to fuel missiles for launch and de-fuel them for frequent maintenance add additional weaknesses and vulnerabilities. Therefore, a similar degree of silo "hardening" does not automatically equate to a similar level of missile "survivability". Major advancements in the accuracy and precision of nuclear and conventional weapons subsequent to
14758-719: The action of water, making it an ideal material for the manufacture of containers for foodstuffs and most chemicals. Nevertheless, although usually highly resistant to chemical attack, glass will corrode or dissolve under some conditions. The materials that make up a particular glass composition affect how quickly the glass corrodes. Glasses containing a high proportion of alkali or alkaline earth elements are more susceptible to corrosion than other glass compositions. The density of glass varies with chemical composition with values ranging from 2.2 grams per cubic centimetre (2,200 kg/m ) for fused silica to 7.2 grams per cubic centimetre (7,200 kg/m ) for dense flint glass. Glass
14915-447: The atmosphere, generating significant fallout . While conventional bunker busters use several methods to penetrate concrete structures, these are for the purpose of destroying the structure directly, and are generally limited in how much of a bunker (or system of bunkers) they can destroy by depth and their relatively low explosive force (compared to nuclear weapons). The primary difference between conventional and nuclear bunker busters
15072-455: The atom, just as it does with fusion weapons. In fission weapons, a mass of fissile material ( enriched uranium or plutonium ) is forced into supercriticality —allowing an exponential growth of nuclear chain reactions —either by shooting one piece of sub-critical material into another (the "gun" method) or by compression of a sub-critical sphere or cylinder of fissile material using chemically fueled explosive lenses . The latter approach,
15229-655: The bunker's depth, rather than above it. Geologic factors also play a major role in weapon effectiveness and facility survivability. Locating facilities in hard rock may appear to reduce the effectiveness of bunker-buster type weapons by decreasing penetration, but the hard rock also transmits shock forces to a far higher degree than softer soil types. The difficulties of drilling into and constructing facilities within hard rock also increase construction time and expense, as well as making it more likely construction will be discovered and new sites targeted by foreign militaries. Concrete structure design has not changed significantly in
15386-513: The case of the R-36) control capsules and thick concrete walls (3 to 4 feet (0.91 to 1.22 m) for the Minuteman ICBM launch control capsule) heavily reinforced with rebar . These systems were designed to survive a near miss of 20 megatons. Liquid-fueled missiles such as those historically used by Russia are more fragile and easily damaged than solid-fueled missiles such as those used by
15543-485: The chance of a successful missile defense . Today, missiles are most common among systems designed for delivery of nuclear weapons. Making a warhead small enough to fit onto a missile, though, can be difficult. Tactical weapons have involved the most variety of delivery types, including not only gravity bombs and missiles but also artillery shells, land mines , and nuclear depth charges and torpedoes for anti-submarine warfare . An atomic mortar has been tested by
15700-411: The cost factor has a low priority. In the laboratory mostly pure chemicals are used. Care must be taken that the raw materials have not reacted with moisture or other chemicals in the environment (such as alkali or alkaline earth metal oxides and hydroxides, or boron oxide ), or that the impurities are quantified (loss on ignition). Evaporation losses during glass melting should be considered during
15857-424: The countermeasures involved in the protection of underground bunkers by penetrating the defenses prior to detonating. A relatively low yield may be able to produce seismic forces beyond those of an air burst or even ground burst of a weapon with twice its yield. Additionally, the weapon has the ability to impart more severe horizontal shock waves than many bunker systems are designed to combat by detonating at or near
16014-435: The creation of nuclear fallout than fission reactions, but because all thermonuclear weapons contain at least one fission stage, and many high-yield thermonuclear devices have a final fission stage, thermonuclear weapons can generate at least as much nuclear fallout as fission-only weapons. Furthermore, high yield thermonuclear explosions (most dangerously ground bursts) have the force to lift radioactive debris upwards past
16171-427: The crystalline ceramic phase can be balanced with the positive CTE of the glassy phase. At a certain point (~70% crystalline) the glass-ceramic has a net CTE near zero. This type of glass-ceramic exhibits excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 °C. Fibreglass (also called glass fibre reinforced plastic, GRP) is a composite material made by reinforcing
16328-591: The deaths of approximately 200,000 civilians and military personnel . The ethics of these bombings and their role in Japan's surrender are to this day, still subjects of debate . Since the atomic bombings of Hiroshima and Nagasaki , nuclear weapons have been detonated over 2,000 times for testing and demonstration. Only a few nations possess such weapons or are suspected of seeking them. The only countries known to have detonated nuclear weapons—and acknowledge possessing them—are (chronologically by date of first test)
16485-455: The decision process. The prospect of mutually assured destruction might not deter an enemy who expects to die in the confrontation. Further, if the initial act is from a stateless terrorist instead of a sovereign nation, there might not be a nation or specific target to retaliate against. It has been argued, especially after the September 11, 2001, attacks , that this complication calls for
16642-683: The desired form is obtained, glass is usually annealed for the removal of stresses and to increase the glass's hardness and durability. Surface treatments, coatings or lamination may follow to improve the chemical durability ( glass container coatings , glass container internal treatment ), strength ( toughened glass , bulletproof glass , windshields ), or optical properties ( insulated glazing , anti-reflective coating ). New chemical glass compositions or new treatment techniques can be initially investigated in small-scale laboratory experiments. The raw materials for laboratory-scale glass melts are often different from those used in mass production because
16799-469: The energy of a fission bomb to compress and heat fusion fuel. In the Teller-Ulam design , which accounts for all multi-megaton yield hydrogen bombs, this is accomplished by placing a fission bomb and fusion fuel ( tritium , deuterium , or lithium deuteride ) in proximity within a special, radiation-reflecting container. When the fission bomb is detonated, gamma rays and X-rays emitted first compress
16956-399: The event of a nuclear war, in contrast to multi-megaton air and surface bursts (that is, if the nuclear winter hypothesis proves accurate). Lower fuzing heights , which would result from partially buried warheads, would limit or completely obstruct the range of the burning thermal rays of a nuclear detonation, therefore limiting the target, and its surroundings, to a fire hazard by reducing
17113-530: The exception of strictly earth penetrating weapons, others were designed with air burst capability and some were depth charges as well. Nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions , either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb ), producing a nuclear explosion . Both bomb types release large quantities of energy from relatively small amounts of matter . The first test of
17270-466: The exceptionally clear colourless glass cristallo , so called for its resemblance to natural crystal, which was extensively used for windows, mirrors, ships' lanterns, and lenses. In the 13th, 14th, and 15th centuries, enamelling and gilding on glass vessels were perfected in Egypt and Syria. Towards the end of the 17th century, Bohemia became an important region for glass production, remaining so until
17427-459: The first true synthetic glass was made in Lebanon and the coastal north Syria , Mesopotamia or ancient Egypt . The earliest known glass objects, of the mid-third millennium BC, were beads , perhaps initially created as accidental by-products of metalworking ( slags ) or during the production of faience , a pre-glass vitreous material made by a process similar to glazing . Early glass
17584-455: The fission bomb core. The external method of boosting enabled the USSR to field the first partially thermonuclear weapons, but it is now obsolete because it demands a spherical bomb geometry, which was adequate during the 1950s arms race when bomber aircraft were the only available delivery vehicles. The detonation of any nuclear weapon is accompanied by a blast of neutron radiation . Surrounding
17741-754: The former Roman Empire in China , the Baltics , the Middle East , and India . The Romans perfected cameo glass , produced by etching and carving through fused layers of different colours to produce a design in relief on the glass object. In post-classical West Africa, Benin was a manufacturer of glass and glass beads. Glass was used extensively in Europe during the Middle Ages . Anglo-Saxon glass has been found across England during archaeological excavations of both settlement and cemetery sites. From
17898-420: The fusion fuel, then heat it to thermonuclear temperatures. The ensuing fusion reaction creates enormous numbers of high-speed neutrons , which can then induce fission in materials not normally prone to it, such as depleted uranium . Each of these components is known as a "stage", with the fission bomb as the "primary" and the fusion capsule as the "secondary". In large, megaton-range hydrogen bombs, about half of
18055-555: The glass and melt phases. Important polymer glasses include amorphous and glassy pharmaceutical compounds. These are useful because the solubility of the compound is greatly increased when it is amorphous compared to the same crystalline composition. Many emerging pharmaceuticals are practically insoluble in their crystalline forms. Many polymer thermoplastics familiar to everyday use are glasses. For many applications, like glass bottles or eyewear , polymer glasses ( acrylic glass , polycarbonate or polyethylene terephthalate ) are
18212-493: The glass transition range. The glass transition may be described as analogous to a second-order phase transition where the intensive thermodynamic variables such as the thermal expansivity and heat capacity are discontinuous. However, the equilibrium theory of phase transformations does not hold for glass, and hence the glass transition cannot be classed as one of the classical equilibrium phase transformations in solids. Glass can form naturally from volcanic magma. Obsidian
18369-406: The glass transition temperature is not supported by empirical research or theoretical analysis (see viscosity in solids ). Though atomic motion at glass surfaces can be observed, and viscosity on the order of 10 –10 Pa s can be measured in glass, such a high value reinforces the fact that glass would not change shape appreciably over even large periods of time. For melt quenching, if the cooling
18526-535: The globe, would make all life on the planet extinct. In connection with the Strategic Defense Initiative , research into the nuclear pumped laser was conducted under the DOD program Project Excalibur but this did not result in a working weapon. The concept involves the tapping of the energy of an exploding nuclear bomb to power a single-shot laser that is directed at a distant target. During
18683-522: The ground before detonation, a much higher proportion of the explosion energy is transferred to seismic shock when compared to the surface burst produced from the B-53's laydown delivery . Moreover, the globally dispersed fallout of an underground B-61 Mod 11 would likely be less than that of a surface burst B-53. Supporters note that this is one of the reasons nuclear bunker busters should be developed. Critics claim that developing new nuclear weapons sends
18840-461: The initial crater, a crushed aggregate surrounding the crater, and "scabbing" on the surface opposite the crater. Scabbing, also known as spalling , is the violent separation of a mass of material from the opposite face of a plate or slab subjected to an impact or impulsive loading, without necessarily requiring that the barrier itself be penetrated. While soil is a less dense material, it also does not transmit shock waves as well as concrete. So while
18997-505: The invention of the missile silo itself have also rendered many "hardening" technologies useless. With modern weapons capable of striking within feet (meters) of their intended targets, a modern "near miss" can be much more effective than a "hit" decades ago. A weapon need only cover the silo door with sufficient debris to prevent its immediate opening to render the missile inside useless for its intended mission of rapid strike or counter-strike deployment. A nuclear bunker buster negates most of
19154-493: The last 70 years. The majority of protected concrete structures in the U.S. military are derived from standards set forth in Fundamentals of Protective Design , published in 1946 (US Army Corps of Engineers). Various augmentations, such as glass , fibers , and rebar , have made concrete less vulnerable, but far from impenetrable. When explosive force is applied to concrete, three major fracture regions are usually formed:
19311-458: The liquid can easily be supercooled into a glass. Examples include LiCl: R H 2 O (a solution of lithium chloride salt and water molecules) in the composition range 4< R <8. sugar glass , or Ca 0.4 K 0.6 (NO 3 ) 1.4 . Glass electrolytes in the form of Ba-doped Li-glass and Ba-doped Na-glass have been proposed as solutions to problems identified with organic liquid electrolytes used in modern lithium-ion battery cells. Following
19468-622: The material, e.g. "glass" , " glasses ", " magnifying glass ". Glass is most often formed by rapid cooling ( quenching ) of the molten form. Some glasses such as volcanic glass are naturally occurring, and obsidian has been used to make arrowheads and knives since the Stone Age . Archaeological evidence suggests glassmaking dates back to at least 3600 BC in Mesopotamia , Egypt , or Syria . The earliest known glass objects were beads , perhaps created accidentally during metalworking or
19625-481: The melt whilst it floats on a gas stream) or splat quenching (pressing the melt between two metal anvils or rollers), may be used to increase the cooling rate or to reduce crystal nucleation triggers. In the past, small batches of amorphous metals with high surface area configurations (ribbons, wires, films, etc.) have been produced through the implementation of extremely rapid rates of cooling. Amorphous metal wires have been produced by sputtering molten metal onto
19782-433: The melt. The high density of lead glass (silica + lead oxide (PbO) + potassium oxide (K 2 O) + soda (Na 2 O) + zinc oxide (ZnO) + alumina) results in a high electron density, and hence high refractive index, making the look of glassware more brilliant and causing noticeably more specular reflection and increased optical dispersion . Lead glass has a high elasticity, making the glassware more workable and giving rise to
19939-619: The melting temperature and simplify glass processing. Sodium carbonate (Na 2 CO 3 , "soda") is a common additive and acts to lower the glass-transition temperature. However, sodium silicate is water-soluble , so lime (CaO, calcium oxide , generally obtained from limestone ), along with magnesium oxide (MgO), and aluminium oxide (Al 2 O 3 ), are commonly added to improve chemical durability. Soda–lime glasses (Na 2 O) + lime (CaO) + magnesia (MgO) + alumina (Al 2 O 3 ) account for over 75% of manufactured glass, containing about 70 to 74% silica by weight. Soda–lime–silicate glass
20096-410: The metallic ions will absorb wavelengths of light corresponding to specific colours. In the manufacturing process, glasses can be poured, formed, extruded and moulded into forms ranging from flat sheets to highly intricate shapes. The finished product is brittle but can be laminated or tempered to enhance durability. Glass is typically inert, resistant to chemical attack, and can mostly withstand
20253-407: The midst of the Cold War. It highlighted the dangers posed by nuclear weapons and called for world leaders to seek peaceful resolutions to international conflict. The signatories included eleven pre-eminent intellectuals and scientists, including Albert Einstein , who signed it just days before his death on April 18, 1955. A few days after the release, philanthropist Cyrus S. Eaton offered to sponsor
20410-545: The military establishment have questioned the usefulness of such weapons in the current military climate. According to an advisory opinion issued by the International Court of Justice in 1996, the use of (or threat of use of) such weapons would generally be contrary to the rules of international law applicable in armed conflict, but the court did not reach an opinion as to whether or not the threat or use would be lawful in specific extreme circumstances such as if
20567-408: The missiles before they land or implementing civil defense measures using early-warning systems to evacuate citizens to safe areas before an attack. Weapons designed to threaten large populations or to deter attacks are known as strategic weapons . Nuclear weapons for use on a battlefield in military situations are called tactical weapons . Critics of nuclear war strategy often suggest that
20724-409: The most significant architectural innovations of modern times, where glass buildings now often dominate the skylines of many modern cities . These systems use stainless steel fittings countersunk into recesses in the corners of the glass panels allowing strengthened panes to appear unsupported creating a flush exterior. Structural glazing systems have their roots in iron and glass conservatories of
20881-407: The multi-megaton thermonuclear weapons developed in the 1950s and 1960s. Bunker penetration weapons were initially designed within this Cold War context. One likely Soviet Union/Russian target, Mount Yamantau , was regarded in the 1990s by Maryland Republican congressman, Roscoe Bartlett , as capable of surviving "half a dozen" repeated nuclear strikes of an unspecified yield, one after the other in
21038-590: The nuclear B61 , and conventional thermobaric weapons and GBU-28 . One of the more effective housings, the GBU-28 used its large mass (2,130 kg or 4,700 lb) and casing (constructed from barrels of surplus 203 mm howitzers ) to penetrate 6 meters (20 feet) of concrete, and more than 30 metres (98 feet) of earth. The B61 Mod 11, which first entered military service after the Cold war had ended, in January 1997,
21195-644: The nuclear bunker-buster has been dropped from the U.S. Department of Energy 's 2006 budget at the department's request. While the project for the RNEP seems to be in fact canceled, Jane's Information Group speculated in 2005 that work might continue under another name. A more recent development (c. 2012) is the GBU-57 Massive Ordnance Penetrator, a 30,000 pound (14,000 kg) conventional gravity bomb. The USAF's B-2 Spirit bombers can each carry two such weapons. Note that with
21352-657: The penetrator unit when striking the shielding (surface) at hundreds of meters per second. This has partially been solved by using metals such as tungsten (the metal with the highest melting point), and altering the shape of the projectile (such as an ogive ). Altering the shape of the projectile to incorporate an ogive shape has yielded substantial improvement in penetration ability. Rocket sled testing at Eglin Air Force Base has demonstrated penetrations of 100 to 150 feet (30 to 46 m) in concrete when traveling at 4,000 ft/s (1,200 m/s). The reason for this
21509-922: The production of faience , which is a form of pottery using lead glazes. Due to its ease of formability into any shape, glass has been traditionally used for vessels, such as bowls , vases , bottles , jars and drinking glasses. Soda–lime glass , containing around 70% silica , accounts for around 90% of modern manufactured glass. Glass can be coloured by adding metal salts or painted and printed with vitreous enamels , leading to its use in stained glass windows and other glass art objects. The refractive , reflective and transmission properties of glass make glass suitable for manufacturing optical lenses , prisms , and optoelectronics materials. Extruded glass fibres have applications as optical fibres in communications networks, thermal insulating material when matted as glass wool to trap air, or in glass-fibre reinforced plastic ( fibreglass ). The standard definition of
21666-699: The range of thermal radiation with fuzing for subsurface bursts. Professors Altfeld and Cimbala have suggested that belief in the possibility of nuclear winter has actually made nuclear war more likely, contrary to the views of Carl Sagan and others, because it has inspired the development of more accurate, and lower explosive yield, nuclear weapons. As early as 1944, the Barnes Wallis Tallboy bomb and subsequent Grand Slam weapons were designed to penetrate deeply fortified structures through sheer explosive power. These were not designed to directly penetrate defences, though they could do this (for example,
21823-428: The remains of the split atomic nuclei. Many fission products are either highly radioactive (but short-lived) or moderately radioactive (but long-lived), and as such, they are a serious form of radioactive contamination . Fission products are the principal radioactive component of nuclear fallout . Another source of radioactivity is the burst of free neutrons produced by the weapon. When they collide with other nuclei in
21980-452: The risk of escalation to higher-yield nuclear weapons. Local fallout from any nuclear detonation is increased with proximity to the ground. While a megaton-class yield surface burst will inevitably throw up many tons of (newly) radioactive debris, which falls back to the earth as fallout, critics contend that despite their relatively minuscule explosive yield, nuclear bunker busters create more local fallout per kiloton yield. Also, because of
22137-424: The selection of the raw materials, e.g., sodium selenite may be preferred over easily evaporating selenium dioxide (SeO 2 ). Also, more readily reacting raw materials may be preferred over relatively inert ones, such as aluminium hydroxide (Al(OH) 3 ) over alumina (Al 2 O 3 ). Usually, the melts are carried out in platinum crucibles to reduce contamination from the crucible material. Glass homogeneity
22294-603: The start of the 20th century. By the 17th century, glass in the Venetian tradition was also being produced in England . In about 1675, George Ravenscroft invented lead crystal glass, with cut glass becoming fashionable in the 18th century. Ornamental glass objects became an important art medium during the Art Nouveau period in the late 19th century. Throughout the 20th century, new mass production techniques led to
22451-469: The strength of glass. Carefully drawn flawless glass fibres can be produced with a strength of up to 11.5 gigapascals (1,670,000 psi). The observation that old windows are sometimes found to be thicker at the bottom than at the top is often offered as supporting evidence for the view that glass flows over a timescale of centuries, the assumption being that the glass has exhibited the liquid property of flowing from one shape to another. This assumption
22608-533: The subsurface detonation, radioactive debris may contaminate the local groundwater. The Union of Concerned Scientists advocacy group points out that at the Nevada Test Site , the depth required to contain fallout from an average-yield underground nuclear test was over 100 meters, depending upon the weapon's yield. They contend that it is improbable that penetrators could be made to burrow so deeply. With yields between 0.3 and 340 kilotons, they argue, it
22765-402: The surrounding material, the neutrons transmute those nuclei into other isotopes, altering their stability and making them radioactive. The most commonly used fissile materials for nuclear weapons applications have been uranium-235 and plutonium-239 . Less commonly used has been uranium-233 . Neptunium-237 and some isotopes of americium may be usable for nuclear explosives as well, but it
22922-498: The survival of the state were at stake. Another deterrence position is that nuclear proliferation can be desirable. In this case, it is argued that, unlike conventional weapons, nuclear weapons deter all-out war between states, and they succeeded in doing this during the Cold War between the U.S. and the Soviet Union . In the late 1950s and early 1960s, Gen. Pierre Marie Gallois of France, an adviser to Charles de Gaulle , argued in books like The Balance of Terror: Strategy for
23079-460: The system Al-Fe-Si may undergo a first-order transition to an amorphous form (dubbed "q-glass") on rapid cooling from the melt. Transmission electron microscopy (TEM) images indicate that q-glass nucleates from the melt as discrete particles with uniform spherical growth in all directions. While x-ray diffraction reveals the isotropic nature of q-glass, a nucleation barrier exists implying an interfacial discontinuity (or internal surface) between
23236-446: The weapon system and difficult to defend against the delivery of the weapon during a potential conflict. This can mean keeping weapon locations hidden, such as deploying them on submarines or land mobile transporter erector launchers whose locations are difficult to track, or it can mean protecting weapons by burying them in hardened missile silo bunkers. Other components of nuclear strategies included using missile defenses to destroy
23393-451: The widespread availability of glass in much larger amounts, making it practical as a building material and enabling new applications of glass. In the 1920s a mould -etch process was developed, in which art was etched directly into the mould so that each cast piece emerged from the mould with the image already on the surface of the glass. This reduced manufacturing costs and, combined with a wider use of coloured glass, led to cheap glassware in
23550-631: The world where there exists a single nuclear-weapon state. Aside from the public opinion that opposes proliferation in any form, there are two schools of thought on the matter: those, like Mearsheimer, who favored selective proliferation, and Waltz, who was somewhat more non- interventionist . Interest in proliferation and the stability-instability paradox that it generates continues to this day, with ongoing debate about indigenous Japanese and South Korean nuclear deterrent against North Korea . The threat of potentially suicidal terrorists possessing nuclear weapons (a form of nuclear terrorism ) complicates
23707-402: The year 1268. The study found that the room temperature viscosity of this glass was roughly 10 Pa · s which is about 10 times less viscous than a previous estimate made in 1998, which focused on soda-lime silicate glass. Even with this lower viscosity, the study authors calculated that the maximum flow rate of medieval glass is 1 nm per billion years, making it impossible to observe in
23864-624: The yield comes from the final fissioning of depleted uranium. Virtually all thermonuclear weapons deployed today use the "two-stage" design described to the right, but it is possible to add additional fusion stages—each stage igniting a larger amount of fusion fuel in the next stage. This technique can be used to construct thermonuclear weapons of arbitrarily large yield. This is in contrast to fission bombs, which are limited in their explosive power due to criticality danger (premature nuclear chain reaction caused by too-large amounts of pre-assembled fissile fuel). The largest nuclear weapon ever detonated,
24021-517: Was originally used in the United Kingdom and United States during World War II to manufacture radomes . Uses of fibreglass include building and construction materials, boat hulls, car body parts, and aerospace composite materials. Glass-fibre wool is an excellent thermal and sound insulation material, commonly used in buildings (e.g. attic and cavity wall insulation ), and plumbing (e.g. pipe insulation ), and soundproofing . It
24178-556: Was rarely transparent and often contained impurities and imperfections, and is technically faience rather than true glass, which did not appear until the 15th century BC. However, red-orange glass beads excavated from the Indus Valley Civilization dated before 1700 BC (possibly as early as 1900 BC) predate sustained glass production, which appeared around 1600 BC in Mesopotamia and 1500 BC in Egypt. During
24335-406: Was specifically developed to allow for bunker penetration, and is speculated to have the ability to destroy hardened targets a few hundred feet beneath the earth. While penetrations of 20–100 feet (6.1–30.5 m) were sufficient for some shallow targets, both the Soviet Union and the United States were creating bunkers buried under huge volumes of soil or reinforced concrete in order to withstand
24492-744: Was the Special Atomic Demolition Munition , or SADM, sometimes popularly known as a suitcase nuke . This is a nuclear bomb that is man-portable, or at least truck-portable, and though of a relatively small yield (one or two kilotons) is sufficient to destroy important tactical targets such as bridges, dams, tunnels, important military or commercial installations, etc. either behind enemy lines or pre-emptively on friendly territory soon to be overtaken by invading enemy forces. These weapons require plutonium fuel and are particularly "dirty". They also demand especially stringent security precautions in their storage and deployment. Small "tactical" nuclear weapons were deployed for use as antiaircraft weapons. Examples include
24649-509: Was the first operational use of the Tallboy. One bored through a hillside and exploded in the Saumur rail tunnel about 18 m (59 ft) below, completely blocking it, and showing that these weapons could destroy any hardened or deeply excavated installation. Modern targeting techniques allied with multiple strikes could perform a similar task. Development continued, with weapons such as
#405594