Misplaced Pages

RC-5

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The RC-5 protocol was developed by Philips in the early 1980s as a semi-proprietary consumer IR ( infrared ) remote control communication protocol for consumer electronics. It was subsequently adopted by most European manufacturers, as well as by many US manufacturers of specialty audio and video equipment. The other main protocol relevant to consumer electronics is the NEC protocol, which is largely used by Japanese manufacturers.

#457542

109-490: The RC-5 protocol, when properly implemented, has the advantage that any CD handset (for example) may be used to control any compatible brand of CD player. By comparison, the NEC protocol assigns each brand its own unique header(s) after which may follow any desired command set; this confers the advantage that there cannot be any interference between remote handsets for pieces of equipment made by different manufacturers. The basics of

218-492: A design flow that engineers use to design, verify, and analyze entire semiconductor chips. Some of the latest EDA tools use artificial intelligence (AI) to help engineers save time and improve chip performance. Integrated circuits can be broadly classified into analog , digital and mixed signal , consisting of analog and digital signaling on the same IC. Digital integrated circuits can contain billions of logic gates , flip-flops , multiplexers , and other circuits in

327-627: A fabrication facility (commonly known as a semiconductor fab ) can cost over US$ 12 billion to construct. The cost of a fabrication facility rises over time because of increased complexity of new products; this is known as Rock's law . Such a facility features: ICs can be manufactured either in-house by integrated device manufacturers (IDMs) or using the foundry model . IDMs are vertically integrated companies (like Intel and Samsung ) that design, manufacture and sell their own ICs, and may offer design and/or manufacturing (foundry) services to other companies (the latter often to fabless companies ). In

436-501: A field-effect transistor , or may have two kinds of charge carriers in bipolar junction transistor devices. Compared with the vacuum tube , transistors are generally smaller and require less power to operate. Certain vacuum tubes have advantages over transistors at very high operating frequencies or high operating voltages, such as Traveling-wave tubes and Gyrotrons . Many types of transistors are made to standardized specifications by multiple manufacturers. The thermionic triode ,

545-509: A microchip , computer chip , or simply chip , is a small electronic device made up of multiple interconnected electronic components such as transistors , resistors , and capacitors . These components are etched onto a small piece of semiconductor material, usually silicon . Integrated circuits are used in a wide range of electronic devices, including computers , smartphones , and televisions , to perform various functions such as processing and storing information. They have greatly impacted

654-412: A microprocessor will have memory on the chip. (See the regular array structure at the bottom of the first image. ) Although the structures are intricate – with widths which have been shrinking for decades – the layers remain much thinner than the device widths. The layers of material are fabricated much like a photographic process, although light waves in the visible spectrum cannot be used to "expose"

763-532: A p-n-p transistor symbol, the arrow " P oints i N P roudly". However, this does not apply to MOSFET-based transistor symbols as the arrow is typically reversed (i.e. the arrow for the n-p-n points inside). The field-effect transistor , sometimes called a unipolar transistor , uses either electrons (in n-channel FET ) or holes (in p-channel FET ) for conduction. The four terminals of the FET are named source , gate , drain , and body ( substrate ). On most FETs,

872-476: A vacuum tube invented in 1907, enabled amplified radio technology and long-distance telephony . The triode, however, was a fragile device that consumed a substantial amount of power. In 1909, physicist William Eccles discovered the crystal diode oscillator . Physicist Julius Edgar Lilienfeld filed a patent for a field-effect transistor (FET) in Canada in 1925, intended as a solid-state replacement for

981-466: A common active area, but there was no electrical isolation to separate them from each other. The monolithic integrated circuit chip was enabled by the inventions of the planar process by Jean Hoerni and p–n junction isolation by Kurt Lehovec . Hoerni's invention was built on Carl Frosch and Lincoln Derick's work on surface protection and passivation by silicon dioxide masking and predeposition, as well as Fuller, Ditzenberger's and others work on

1090-561: A common substrate in a three-stage amplifier arrangement. Jacobi disclosed small and cheap hearing aids as typical industrial applications of his patent. An immediate commercial use of his patent has not been reported. Another early proponent of the concept was Geoffrey Dummer (1909–2002), a radar scientist working for the Royal Radar Establishment of the British Ministry of Defence . Dummer presented

1199-578: A device had been built. In 1934, inventor Oskar Heil patented a similar device in Europe. From November 17 to December 23, 1947, John Bardeen and Walter Brattain at AT&T 's Bell Labs in Murray Hill, New Jersey , performed experiments and observed that when two gold point contacts were applied to a crystal of germanium , a signal was produced with the output power greater than the input. Solid State Physics Group leader William Shockley saw

SECTION 10

#1732797587458

1308-600: A few hundred milliwatts, but power and audio fidelity gradually increased as better transistors became available and amplifier architecture evolved. Modern transistor audio amplifiers of up to a few hundred watts are common and relatively inexpensive. Before transistors were developed, vacuum (electron) tubes (or in the UK "thermionic valves" or just "valves") were the main active components in electronic equipment. The key advantages that have allowed transistors to replace vacuum tubes in most applications are Transistors may have

1417-491: A few square millimeters. The small size of these circuits allows high speed, low power dissipation, and reduced manufacturing cost compared with board-level integration. These digital ICs, typically microprocessors , DSPs , and microcontrollers , use boolean algebra to process "one" and "zero" signals . Among the most advanced integrated circuits are the microprocessors or " cores ", used in personal computers, cell-phones, etc. Several cores may be integrated together in

1526-425: A field-effect transistor (FET) by trying to modulate the conductivity of a semiconductor, but was unsuccessful, mainly due to problems with the surface states , the dangling bond , and the germanium and copper compound materials. Trying to understand the mysterious reasons behind this failure led them instead to invent the bipolar point-contact and junction transistors . In 1948, the point-contact transistor

1635-472: A lack of widespread distribution of accurate information on the RC-5 protocol.) While the RC-5 protocol is well known and understood, what is not so well documented are the system number allocations and the actual RC-5 commands used for each system. The information provided below is the most complete and accurate information available at this time. It is from a printed document from Philips dated December 1992 that

1744-408: A layer of material, as they would be too large for the features. Thus photons of higher frequencies (typically ultraviolet ) are used to create the patterns for each layer. Because each feature is so small, electron microscopes are essential tools for a process engineer who might be debugging a fabrication process. Each device is tested before packaging using automated test equipment (ATE), in

1853-428: A number of steps for the p–n junction isolation of transistors on a chip, MOSFETs required no such steps but could be easily isolated from each other. Its advantage for integrated circuits was pointed out by Dawon Kahng in 1961. The list of IEEE milestones includes the first integrated circuit by Kilby in 1958, Hoerni's planar process and Noyce's planar IC in 1959. The earliest experimental MOS IC to be fabricated

1962-412: A particular type, varies depending on the collector current. In the example of a light-switch circuit, as shown, the resistor is chosen to provide enough base current to ensure the transistor is saturated. The base resistor value is calculated from the supply voltage, transistor C-E junction voltage drop, collector current, and amplification factor beta. The common-emitter amplifier is designed so that

2071-420: A process known as wafer testing , or wafer probing. The wafer is then cut into rectangular blocks, each of which is called a die . Each good die (plural dice , dies , or die ) is then connected into a package using aluminium (or gold) bond wires which are thermosonically bonded to pads , usually found around the edge of the die. Thermosonic bonding was first introduced by A. Coucoulas which provided

2180-421: A rate predicted by Moore's law , leading to large-scale integration (LSI) with hundreds of transistors on a single MOS chip by the late 1960s. Following the development of the self-aligned gate (silicon-gate) MOSFET by Robert Kerwin, Donald Klein and John Sarace at Bell Labs in 1967, the first silicon-gate MOS IC technology with self-aligned gates , the basis of all modern CMOS integrated circuits,

2289-407: A reliable means of forming these vital electrical connections to the outside world. After packaging, the devices go through final testing on the same or similar ATE used during wafer probing. Industrial CT scanning can also be used. Test cost can account for over 25% of the cost of fabrication on lower-cost products, but can be negligible on low-yielding, larger, or higher-cost devices. As of 2022 ,

SECTION 20

#1732797587458

2398-426: A semiconductor to modulate its electronic properties. Doping is the process of adding dopants to a semiconductor material. Since a CMOS device only draws current on the transition between logic states , CMOS devices consume much less current than bipolar junction transistor devices. A random-access memory is the most regular type of integrated circuit; the highest density devices are thus memories; but even

2507-467: A silicon MOS transistor in 1959 and successfully demonstrated a working MOS device with their Bell Labs team in 1960. Their team included E. E. LaBate and E. I. Povilonis who fabricated the device; M. O. Thurston, L. A. D’Asaro, and J. R. Ligenza who developed the diffusion processes, and H. K. Gummel and R. Lindner who characterized the device. With its high scalability , much lower power consumption, and higher density than bipolar junction transistors,

2616-859: A single IC or chip. Digital memory chips and application-specific integrated circuits (ASICs) are examples of other families of integrated circuits. In the 1980s, programmable logic devices were developed. These devices contain circuits whose logical function and connectivity can be programmed by the user, rather than being fixed by the integrated circuit manufacturer. This allows a chip to be programmed to do various LSI-type functions such as logic gates , adders and registers . Programmability comes in various forms – devices that can be programmed only once , devices that can be erased and then re-programmed using UV light , devices that can be (re)programmed using flash memory , and field-programmable gate arrays (FPGAs) which can be programmed at any time, including during operation. Current FPGAs can (as of 2016) implement

2725-532: A single die. A technique has been demonstrated to include microfluidic cooling on integrated circuits, to improve cooling performance as well as peltier thermoelectric coolers on solder bumps, or thermal solder bumps used exclusively for heat dissipation, used in flip-chip . The cost of designing and developing a complex integrated circuit is quite high, normally in the multiple tens of millions of dollars. Therefore, it only makes economic sense to produce integrated circuit products with high production volume, so

2834-495: A single layer on one side of a chip of silicon in a flat two-dimensional planar process . Researchers have produced prototypes of several promising alternatives, such as: As it becomes more difficult to manufacture ever smaller transistors, companies are using multi-chip modules / chiplets , three-dimensional integrated circuits , package on package , High Bandwidth Memory and through-silicon vias with die stacking to increase performance and reduce size, without having to reduce

2943-486: A six-pin device. Radios with the Loewe 3NF were less expensive than other radios, showing one of the advantages of integration over using discrete components , that would be seen decades later with ICs. Early concepts of an integrated circuit go back to 1949, when German engineer Werner Jacobi ( Siemens AG ) filed a patent for an integrated-circuit-like semiconductor amplifying device showing five transistors on

3052-605: A small change in voltage ( V in ) changes the small current through the base of the transistor whose current amplification combined with the properties of the circuit means that small swings in V in produce large changes in V out . Various configurations of single transistor amplifiers are possible, with some providing current gain, some voltage gain, and some both. From mobile phones to televisions , vast numbers of products include amplifiers for sound reproduction , radio transmission , and signal processing . The first discrete-transistor audio amplifiers barely supplied

3161-440: A type of 3D non-planar multi-gate MOSFET, originated from the research of Digh Hisamoto and his team at Hitachi Central Research Laboratory in 1989. Because transistors are the key active components in practically all modern electronics , many people consider them one of the 20th century's greatest inventions. The invention of the first transistor at Bell Labs was named an IEEE Milestone in 2009. Other Milestones include

3270-416: A weaker input signal, acting as an amplifier . It can also be used as an electrically controlled switch , where the amount of current is determined by other circuit elements. There are two types of transistors, with slight differences in how they are used: The top image in this section represents a typical bipolar transistor in a circuit. A charge flows between emitter and collector terminals depending on

3379-461: A working bipolar NPN junction amplifying germanium transistor. Bell announced the discovery of this new "sandwich" transistor in a press release on July 4, 1951. The first high-frequency transistor was the surface-barrier germanium transistor developed by Philco in 1953, capable of operating at frequencies up to 60 MHz . They were made by etching depressions into an n-type germanium base from both sides with jets of indium(III) sulfate until it

RC-5 - Misplaced Pages Continue

3488-505: A year after Kilby, Robert Noyce at Fairchild Semiconductor invented the first true monolithic IC chip. More practical than Kilby's implementation, Noyce's chip was made of silicon , whereas Kilby's was made of germanium , and Noyce's was fabricated using the planar process , developed in early 1959 by his colleague Jean Hoerni and included the critical on-chip aluminum interconnecting lines. Modern IC chips are based on Noyce's monolithic IC, rather than Kilby's. NASA's Apollo Program

3597-420: Is amplified, filtered, and demodulated so that the receiving device can act upon the received command. RC-5 only provides a one-way link, with information travelling from the handset to the receiving unit. The command comprises 14 bits: The 36 kHz carrier frequency was chosen to render the system immune to interference from TV scan lines. Since the repetition of the 36 kHz carrier is 27.778 μs and

3706-496: Is high because the IC's components switch quickly and consume comparatively little power because of their small size and proximity. The main disadvantage of ICs is the high initial cost of designing them and the enormous capital cost of factory construction. This high initial cost means ICs are only commercially viable when high production volumes are anticipated. An integrated circuit is defined as: A circuit in which all or some of

3815-448: Is no category listing for DVD players in the system table. (They were not developed until five years after the date of publication of the material from which this information was obtained.) It would obviously be useful therefore to expand these tables with known accurate information. At this time, there are only a few possible ways to do so. The first would be to capture the IR bitstream from

3924-481: Is not observed in modern devices, for example, at the 65 nm technology node. For low noise at narrow bandwidth , the higher input resistance of the FET is advantageous. FETs are divided into two families: junction FET ( JFET ) and insulated gate FET (IGFET). The IGFET is more commonly known as a metal–oxide–semiconductor FET ( MOSFET ), reflecting its original construction from layers of metal (the gate), oxide (the insulation), and semiconductor. Unlike IGFETs,

4033-690: Is obsolete. An early attempt at combining several components in one device (like modern ICs) was the Loewe 3NF vacuum tube first made in 1926. Unlike ICs, it was designed with the purpose of tax avoidance , as in Germany, radio receivers had a tax that was levied depending on how many tube holders a radio receiver had. It allowed radio receivers to have a single tube holder. One million were manufactured, and were "a first step in integration of radioelectronic devices". The device contained an amplifier , composed of three triodes, two capacitors and four resistors in

4142-421: Is often easier and cheaper to use a standard microcontroller and write a computer program to carry out a control function than to design an equivalent mechanical system. A transistor can use a small signal applied between one pair of its terminals to control a much larger signal at another pair of terminals, a property called gain . It can produce a stronger output signal, a voltage or current, proportional to

4251-421: Is out of date. There are no longer any systems using CD-Video or CD-Photo, for example. In addition, many of the "Reserved" system numbers have no doubt been allocated by Philips during the intervening 16 years. In order to maintain compatibility, it would be helpful to obtain this information. Unfortunately, this has proven to be difficult. When designing a product using the RC-5 protocol, the designer must follow

4360-549: Is the metal–oxide–semiconductor field-effect transistor (MOSFET), the MOSFET was invented at Bell Labs between 1955 and 1960. Transistors revolutionized the field of electronics and paved the way for smaller and cheaper radios , calculators , computers , and other electronic devices. Most transistors are made from very pure silicon , and some from germanium , but certain other semiconductor materials are sometimes used. A transistor may have only one kind of charge carrier in

4469-469: Is unfortunately not available in electronic format (e.g., PDF), nor is an updated version available. This information is provided so that companies that wish to use the RC-5 protocol can use it properly, and avoid conflicts with other equipment that may or may not be using the correct system numbers and commands. The information in the tables on this page is known to be accurate. Yet it is also clear that there are many gaps in these tables. For example, there

RC-5 - Misplaced Pages Continue

4578-476: The dual in-line package (DIP), first in ceramic and later in plastic, which is commonly cresol - formaldehyde - novolac . In the 1980s pin counts of VLSI circuits exceeded the practical limit for DIP packaging, leading to pin grid array (PGA) and leadless chip carrier (LCC) packages. Surface mount packaging appeared in the early 1980s and became popular in the late 1980s, using finer lead pitch with leads formed as either gull-wing or J-lead, as exemplified by

4687-488: The non-recurring engineering (NRE) costs are spread across typically millions of production units. Modern semiconductor chips have billions of components, and are far too complex to be designed by hand. Software tools to help the designer are essential. Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing electronic systems , including integrated circuits. The tools work together in

4796-498: The periodic table of the chemical elements were identified as the most likely materials for a solid-state vacuum tube . Starting with copper oxide , proceeding to germanium , then silicon , the materials were systematically studied in the 1940s and 1950s. Today, monocrystalline silicon is the main substrate used for ICs although some III-V compounds of the periodic table such as gallium arsenide are used for specialized applications like LEDs , lasers , solar cells and

4905-544: The small-outline integrated circuit (SOIC) package – a carrier which occupies an area about 30–50% less than an equivalent DIP and is typically 70% thinner. This package has "gull wing" leads protruding from the two long sides and a lead spacing of 0.050 inches. In the late 1990s, plastic quad flat pack (PQFP) and thin small-outline package (TSOP) packages became the most common for high pin count devices, though PGA packages are still used for high-end microprocessors . Ball grid array (BGA) packages have existed since

5014-399: The surface state barrier that prevented the external electric field from penetrating the material. In 1955, Carl Frosch and Lincoln Derick accidentally grew a layer of silicon dioxide over the silicon wafer, for which they observed surface passivation effects. By 1957 Frosch and Derick, using masking and predeposition, were able to manufacture silicon dioxide field effect transistors;

5123-416: The switching power consumption per transistor goes down, while the memory capacity and speed go up, through the relationships defined by Dennard scaling ( MOSFET scaling ). Because speed, capacity, and power consumption gains are apparent to the end user, there is fierce competition among the manufacturers to use finer geometries. Over the years, transistor sizes have decreased from tens of microns in

5232-503: The very large-scale integration (VLSI) of more than 10,000 transistors on a single chip. At first, MOS-based computers only made sense when high density was required, such as aerospace and pocket calculators . Computers built entirely from TTL, such as the 1970 Datapoint 2200 , were much faster and more powerful than single-chip MOS microprocessors such as the 1972 Intel 8008 until the early 1980s. Advances in IC technology, primarily smaller features and larger chips, have allowed

5341-413: The 1960s, the size, speed, and capacity of chips have progressed enormously, driven by technical advances that fit more and more transistors on chips of the same size – a modern chip may have many billions of transistors in an area the size of a human fingernail. These advances, roughly following Moore's law , make the computer chips of today possess millions of times the capacity and thousands of times

5450-425: The 1970s. Flip-chip Ball Grid Array packages, which allow for a much higher pin count than other package types, were developed in the 1990s. In an FCBGA package, the die is mounted upside-down (flipped) and connects to the package balls via a package substrate that is similar to a printed-circuit board rather than by wires. FCBGA packages allow an array of input-output signals (called Area-I/O) to be distributed over

5559-542: The 20th century's greatest inventions. Physicist Julius Edgar Lilienfeld proposed the concept of a field-effect transistor (FET) in 1926, but it was not possible to construct a working device at that time. The first working device was a point-contact transistor invented in 1947 by physicists John Bardeen , Walter Brattain , and William Shockley at Bell Labs who shared the 1956 Nobel Prize in Physics for their achievement. The most widely used type of transistor

SECTION 50

#1732797587458

5668-482: The 22 nm node (Intel) or 16/14 nm nodes. Mono-crystal silicon wafers are used in most applications (or for special applications, other semiconductors such as gallium arsenide are used). The wafer need not be entirely silicon. Photolithography is used to mark different areas of the substrate to be doped or to have polysilicon, insulators or metal (typically aluminium or copper) tracks deposited on them. Dopants are impurities intentionally introduced to

5777-412: The MOSFET made it possible to build high-density integrated circuits, allowing the integration of more than 10,000 transistors in a single IC. Bardeen and Brattain's 1948 inversion layer concept forms the basis of CMOS technology today. The CMOS (complementary MOS ) was invented by Chih-Tang Sah and Frank Wanlass at Fairchild Semiconductor in 1963. The first report of a floating-gate MOSFET

5886-775: The Regency Division of Industrial Development Engineering Associates, I.D.E.A. and Texas Instruments of Dallas, Texas, the TR-1 was manufactured in Indianapolis, Indiana. It was a near pocket-sized radio with four transistors and one germanium diode. The industrial design was outsourced to the Chicago firm of Painter, Teague and Petertil. It was initially released in one of six colours: black, ivory, mandarin red, cloud grey, mahogany and olive green. Other colours shortly followed. The first production all-transistor car radio

5995-431: The basis of modern digital electronics since the late 20th century, paving the way for the digital age . The US Patent and Trademark Office calls it a "groundbreaking invention that transformed life and culture around the world". Its ability to be mass-produced by a highly automated process ( semiconductor device fabrication ), from relatively basic materials, allows astonishingly low per-transistor costs. MOSFETs are

6104-404: The body is connected to the source inside the package, and this will be assumed for the following description. In a FET, the drain-to-source current flows via a conducting channel that connects the source region to the drain region. The conductivity is varied by the electric field that is produced when a voltage is applied between the gate and source terminals, hence the current flowing between

6213-719: The circuit elements are inseparably associated and electrically interconnected so that it is considered to be indivisible for the purposes of construction and commerce. In strict usage, integrated circuit refers to the single-piece circuit construction originally known as a monolithic integrated circuit , which comprises a single piece of silicon. In general usage, circuits not meeting this strict definition are sometimes referred to as ICs, which are constructed using many different technologies, e.g. 3D IC , 2.5D IC , MCM , thin-film transistors , thick-film technologies , or hybrid integrated circuits . The choice of terminology frequently appears in discussions related to whether Moore's Law

6322-437: The collector to the emitter. If the voltage difference between the collector and emitter were zero (or near zero), the collector current would be limited only by the load resistance (light bulb) and the supply voltage. This is called saturation because the current is flowing from collector to emitter freely. When saturated, the switch is said to be on . The use of bipolar transistors for switching applications requires biasing

6431-583: The command tables shown in standard font was obtained from the Philips publication referenced at the bottom of this page. Information in italics is information that is known to be accurate, as it was derived by one of the methods described above. Commands for video extension systems 3 (TV) and 9 (VCR) which use the common video command numbers are given in Tables 4b (TV) and 7b (VCR). Integrated circuit An integrated circuit ( IC ), also known as

6540-479: The components of the electronic circuit are completely integrated". The first customer for the new invention was the US Air Force . Kilby won the 2000 Nobel Prize in physics for his part in the invention of the integrated circuit. However, Kilby's invention was not a true monolithic integrated circuit chip since it had external gold-wire connections, which would have made it difficult to mass-produce. Half

6649-445: The concept of an inversion layer, forms the basis of CMOS and DRAM technology today. In the early years of the semiconductor industry , companies focused on the junction transistor , a relatively bulky device that was difficult to mass-produce , limiting it to several specialized applications. Field-effect transistors (FETs) were theorized as potential alternatives, but researchers could not get them to work properly, largely due to

SECTION 60

#1732797587458

6758-559: The current in the base. Because the base and emitter connections behave like a semiconductor diode, a voltage drop develops between them. The amount of this drop, determined by the transistor's material, is referred to as V BE . (Base Emitter Voltage) Transistors are commonly used in digital circuits as electronic switches which can be either in an "on" or "off" state, both for high-power applications such as switched-mode power supplies and for low-power applications such as logic gates . Important parameters for this application include

6867-456: The current switched, the voltage handled, and the switching speed, characterized by the rise and fall times . In a switching circuit, the goal is to simulate, as near as possible, the ideal switch having the properties of an open circuit when off, the short circuit when on, and an instantaneous transition between the two states. Parameters are chosen such that the "off" output is limited to leakage currents too small to affect connected circuitry,

6976-473: The desktop Datapoint 2200 were built from bipolar integrated circuits, either TTL or the even faster emitter-coupled logic (ECL). Nearly all modern IC chips are metal–oxide–semiconductor (MOS) integrated circuits, built from MOSFETs (metal–oxide–silicon field-effect transistors). The MOSFET invented at Bell Labs between 1955 and 1960, made it possible to build high-density integrated circuits . In contrast to bipolar transistors which required

7085-418: The die must pass through the material electrically connecting the die to the package, through the conductive traces (paths) in the package, through the leads connecting the package to the conductive traces on the printed circuit board . The materials and structures used in the path these electrical signals must travel have very different electrical properties, compared to those that travel to different parts of

7194-541: The diffusion of impurities into silicon. A precursor idea to the IC was to create small ceramic substrates (so-called micromodules ), each containing a single miniaturized component. Components could then be integrated and wired into a bidimensional or tridimensional compact grid. This idea, which seemed very promising in 1957, was proposed to the US Army by Jack Kilby and led to the short-lived Micromodule Program (similar to 1951's Project Tinkertoy). However, as

7303-460: The drain and source is controlled by the voltage applied between the gate and source. As the gate–source voltage ( V GS ) is increased, the drain–source current ( I DS ) increases exponentially for V GS below threshold, and then at a roughly quadratic rate: ( I DS ∝ ( V GS − V T ) , where V T is the threshold voltage at which drain current begins) in the " space-charge-limited " region above threshold. A quadratic behavior

7412-511: The duty factor is 25 %, the carrier pulse duration is 6.944 μs. Each bit of the RC-5 code word contains 32 carrier pulses, and an equal duration of silence, so the bit time is 64×27.778 μs = 1.778 ms, and the 14 symbols (bits) of a complete RC-5 code word take 24.889 ms to transmit. The code word is repeated every 113.778 ms (4096 ÷ 36 kHz) as long as a key remains pressed. (Again, please note that these timings are not strictly followed by all manufacturers, due to

7521-537: The early 1970s to 10 nanometers in 2017 with a corresponding million-fold increase in transistors per unit area. As of 2016, typical chip areas range from a few square millimeters to around 600 mm , with up to 25 million transistors per mm . The expected shrinking of feature sizes and the needed progress in related areas was forecast for many years by the International Technology Roadmap for Semiconductors (ITRS). The final ITRS

7630-541: The entire die rather than being confined to the die periphery. BGA devices have the advantage of not needing a dedicated socket but are much harder to replace in case of device failure. Intel transitioned away from PGA to land grid array (LGA) and BGA beginning in 2004, with the last PGA socket released in 2014 for mobile platforms. As of 2018 , AMD uses PGA packages on mainstream desktop processors, BGA packages on mobile processors, and high-end desktop and server microprocessors use LGA packages. Electrical signals leaving

7739-580: The equivalent of millions of gates and operate at frequencies up to 1 GHz . Analog ICs, such as sensors , power management circuits , and operational amplifiers (op-amps), process continuous signals , and perform analog functions such as amplification , active filtering , demodulation , and mixing . ICs can combine analog and digital circuits on a chip to create functions such as analog-to-digital converters and digital-to-analog converters . Such mixed-signal circuits offer smaller size and lower cost, but must account for signal interference. Prior to

7848-545: The field of electronics by enabling device miniaturization and enhanced functionality. Integrated circuits are orders of magnitude smaller, faster, and less expensive than those constructed of discrete components, allowing a large transistor count . The IC's mass production capability, reliability, and building-block approach to integrated circuit design have ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized

7957-463: The first planar transistors, in which drain and source were adjacent at the same surface. They showed that silicon dioxide insulated, protected silicon wafers and prevented dopants from diffusing into the wafer. After this, J.R. Ligenza and W.G. Spitzer studied the mechanism of thermally grown oxides, fabricated a high quality Si/ SiO 2 stack and published their results in 1960. Following this research, Mohamed Atalla and Dawon Kahng proposed

8066-454: The following limitations: Transistors are categorized by Hence, a particular transistor may be described as silicon, surface-mount, BJT, NPN, low-power, high-frequency switch . Convenient mnemonic to remember the type of transistor (represented by an electrical symbol ) involves the direction of the arrow. For the BJT , on an n-p-n transistor symbol, the arrow will " N ot P oint i N" . On

8175-412: The foundry model, fabless companies (like Nvidia ) only design and sell ICs and outsource all manufacturing to pure play foundries such as TSMC . These foundries may offer IC design services. The earliest integrated circuits were packaged in ceramic flat packs , which continued to be used by the military for their reliability and small size for many years. Commercial circuit packaging quickly moved to

8284-481: The handset of newer Philips products, such as DVD players and analyze them to see what system number is used. The other would be to use the popular Philips Pronto series of programmable remote controls. These can be programmed to operate Philips components using the RC-5 protocol. Again, the bitstream output of the handset would need to be captured and analyzed. The only other way is to obtain the appropriate documents directly from Philips. As can be seen, this information

8393-568: The highest-speed integrated circuits. It took decades to perfect methods of creating crystals with minimal defects in semiconducting materials' crystal structure . Semiconductor ICs are fabricated in a planar process which includes three key process steps – photolithography , deposition (such as chemical vapor deposition ), and etching . The main process steps are supplemented by doping and cleaning. More recent or high-performance ICs may instead use multi-gate FinFET or GAAFET transistors instead of planar ones, starting at

8502-450: The idea of a field-effect transistor that used an electric field as a "grid" was not new. Instead, what Bardeen, Brattain, and Shockley invented in 1947 was the first point-contact transistor . To acknowledge this accomplishment, Shockley, Bardeen and Brattain jointly received the 1956 Nobel Prize in Physics "for their researches on semiconductors and their discovery of the transistor effect". Shockley's team initially attempted to build

8611-602: The idea to the public at the Symposium on Progress in Quality Electronic Components in Washington, D.C. , on 7 May 1952. He gave many symposia publicly to propagate his ideas and unsuccessfully attempted to build such a circuit in 1956. Between 1953 and 1957, Sidney Darlington and Yasuo Tarui ( Electrotechnical Laboratory ) proposed similar chip designs where several transistors could share

8720-418: The inventions of the junction transistor in 1948 and the MOSFET in 1959. The MOSFET is by far the most widely used transistor, in applications ranging from computers and electronics to communications technology such as smartphones . It has been considered the most important transistor, possibly the most important invention in electronics, and the device that enabled modern electronics. It has been

8829-421: The late 1990s, radios could not be fabricated in the same low-cost CMOS processes as microprocessors. But since 1998, radio chips have been developed using RF CMOS processes. Examples include Intel's DECT cordless phone, or 802.11 ( Wi-Fi ) chips created by Atheros and other companies. Modern electronic component distributors often further sub-categorize integrated circuits: The semiconductors of

8938-613: The mechanical encoding from punched metal cards. The first prototype pocket transistor radio was shown by INTERMETALL, a company founded by Herbert Mataré in 1952, at the Internationale Funkausstellung Düsseldorf from August 29 to September 6, 1953. The first production-model pocket transistor radio was the Regency TR-1 , released in October 1954. Produced as a joint venture between

9047-927: The most numerously produced artificial objects in history, with more than 13 sextillion manufactured by 2018. Although several companies each produce over a billion individually packaged (known as discrete ) MOS transistors every year, the vast majority are produced in integrated circuits (also known as ICs , microchips, or simply chips ), along with diodes , resistors , capacitors and other electronic components , to produce complete electronic circuits. A logic gate consists of up to about 20 transistors, whereas an advanced microprocessor , as of 2022, may contain as many as 57 billion MOSFETs. Transistors are often organized into logic gates in microprocessors to perform computation. The transistor's low cost, flexibility and reliability have made it ubiquitous. Transistorized mechatronic circuits have replaced electromechanical devices in controlling appliances and machinery. It

9156-433: The number of MOS transistors in an integrated circuit to double every two years, a trend known as Moore's law. Moore originally stated it would double every year, but he went on to change the claim to every two years in 1975. This increased capacity has been used to decrease cost and increase functionality. In general, as the feature size shrinks, almost every aspect of an IC's operation improves. The cost per transistor and

9265-548: The potential in this, and over the next few months worked to greatly expand the knowledge of semiconductors . The term transistor was coined by John R. Pierce as a contraction of the term transresistance . According to Lillian Hoddeson and Vicki Daitch, Shockley proposed that Bell Labs' first patent for a transistor should be based on the field-effect and that he be named as the inventor. Having unearthed Lilienfeld's patents that went into obscurity years earlier, lawyers at Bell Labs advised against Shockley's proposal because

9374-497: The project was gaining momentum, Kilby came up with a new, revolutionary design: the IC. Newly employed by Texas Instruments , Kilby recorded his initial ideas concerning the integrated circuit in July 1958, successfully demonstrating the first working example of an integrated circuit on 12 September 1958. In his patent application of 6 February 1959, Kilby described his new device as "a body of semiconductor material … wherein all

9483-425: The protocol are well known. The handset contains a keypad and a transmitter integrated circuit (IC) driving an IR LED . The command data is a Manchester-coded bitstream modulating a 36 kHz carrier. (Often the carrier used is 38 kHz or 40 kHz, apparently due to misinformation about the actual protocol.) The IR signal from the transmitter is detected by a specialized IC with an integral photo-diode, and

9592-403: The published information as closely as possible. For example, one surround-sound processor from a US specialty manufacturer used the system number 16, designated for "Preamp 1". This caused many problems with home theater installations that also included a separate two-channel preamplifier, which if of US or European origin, would also use the RC-5 protocol with system number 16. If the designers of

9701-405: The resistance of the transistor in the "on" state is too small to affect circuitry, and the transition between the two states is fast enough not to have a detrimental effect. In a grounded-emitter transistor circuit, such as the light-switch circuit shown, as the base voltage rises, the emitter and collector currents rise exponentially. The collector voltage drops because of reduced resistance from

9810-546: The same die. As a result, they require special design techniques to ensure the signals are not corrupted, and much more electric power than signals confined to the die itself. Transistor A transistor is a semiconductor device used to amplify or switch electrical signals and power . It is one of the basic building blocks of modern electronics . It is composed of semiconductor material , usually with at least three terminals for connection to an electronic circuit . A voltage or current applied to one pair of

9919-474: The size of the transistors. Such techniques are collectively known as advanced packaging . Advanced packaging is mainly divided into 2.5D and 3D packaging. 2.5D describes approaches such as multi-chip modules while 3D describes approaches where dies are stacked in one way or another, such as package on package and high bandwidth memory. All approaches involve 2 or more dies in a single package. Alternatively, approaches such as 3D NAND stack multiple layers on

10028-427: The speed of the computer chips of the early 1970s. ICs have three main advantages over circuits constructed out of discrete components: size, cost and performance. The size and cost is low because the chips, with all their components, are printed as a unit by photolithography rather than being constructed one transistor at a time. Furthermore, packaged ICs use much less material than discrete circuits. Performance

10137-439: The surround-sound processor had the correct information available to them, it would have been obvious that a better choice would have been to use system number 19, designated for "Preamp 2", as this would have avoided needless conflict between products. Over time, the information will also be added for the command tables so that all of the available information regarding the RC-5 protocol is gathered in one place. The information in

10246-409: The transistor so that it operates between its cut-off region in the off-state and the saturation region ( on ). This requires sufficient base drive current. As the transistor provides current gain, it facilitates the switching of a relatively large current in the collector by a much smaller current into the base terminal. The ratio of these currents varies depending on the type of transistor, and even for

10355-450: The transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Some transistors are packaged individually, but many more in miniature form are found embedded in integrated circuits . Because transistors are the key active components in practically all modern electronics , many people consider them one of

10464-483: The transistor, the company rushed to get its "transistron" into production for amplified use in France's telephone network, filing his first transistor patent application on August 13, 1948. The first bipolar junction transistors were invented by Bell Labs' William Shockley, who applied for patent (2,569,347) on June 26, 1948. On April 12, 1950, Bell Labs chemists Gordon Teal and Morgan Sparks successfully produced

10573-486: The triode. He filed identical patents in the United States in 1926 and 1928. However, he did not publish any research articles about his devices nor did his patents cite any specific examples of a working prototype. Because the production of high-quality semiconductor materials was still decades away, Lilienfeld's solid-state amplifier ideas would not have found practical use in the 1920s and 1930s, even if such

10682-408: The widespread adoption of transistor radios. Seven million TR-63s were sold worldwide by the mid-1960s. Sony's success with transistor radios led to transistors replacing vacuum tubes as the dominant electronic technology in the late 1950s. The first working silicon transistor was developed at Bell Labs on January 26, 1954, by Morris Tanenbaum . The first production commercial silicon transistor

10791-400: The world of electronics . Computers, mobile phones, and other home appliances are now essential parts of the structure of modern societies, made possible by the small size and low cost of ICs such as modern computer processors and microcontrollers . Very-large-scale integration was made practical by technological advancements in semiconductor device fabrication . Since their origins in

10900-401: Was a 16-transistor chip built by Fred Heiman and Steven Hofstein at RCA in 1962. General Microelectronics later introduced the first commercial MOS integrated circuit in 1964, a 120-transistor shift register developed by Robert Norman. By 1964, MOS chips had reached higher transistor density and lower manufacturing costs than bipolar chips. MOS chips further increased in complexity at

11009-525: Was a few ten-thousandths of an inch thick. Indium electroplated into the depressions formed the collector and emitter. AT&T first used transistors in telecommunications equipment in the No. 4A Toll Crossbar Switching System in 1953, for selecting trunk circuits from routing information encoded on translator cards. Its predecessor, the Western Electric No. 3A phototransistor , read

11118-486: Was announced by Texas Instruments in May 1954. This was the work of Gordon Teal , an expert in growing crystals of high purity, who had previously worked at Bell Labs. The basic principle of the field-effect transistor (FET) was first proposed by physicist Julius Edgar Lilienfeld when he filed a patent for a device similar to MESFET in 1926, and for an insulated-gate field-effect transistor in 1928. The FET concept

11227-441: Was developed at Fairchild Semiconductor by Federico Faggin in 1968. The application of MOS LSI chips to computing was the basis for the first microprocessors , as engineers began recognizing that a complete computer processor could be contained on a single MOS LSI chip. This led to the inventions of the microprocessor and the microcontroller by the early 1970s. During the early 1970s, MOS integrated circuit technology enabled

11336-521: Was developed by Chrysler and Philco corporations and was announced in the April 28, 1955, edition of The Wall Street Journal . Chrysler made the Mopar model 914HR available as an option starting in fall 1955 for its new line of 1956 Chrysler and Imperial cars, which reached dealership showrooms on October 21, 1955. The Sony TR-63, released in 1957, was the first mass-produced transistor radio, leading to

11445-918: Was independently invented by physicists Herbert Mataré and Heinrich Welker while working at the Compagnie des Freins et Signaux Westinghouse , a Westinghouse subsidiary in Paris . Mataré had previous experience in developing crystal rectifiers from silicon and germanium in the German radar effort during World War II . With this knowledge, he began researching the phenomenon of "interference" in 1947. By June 1948, witnessing currents flowing through point-contacts, he produced consistent results using samples of germanium produced by Welker, similar to what Bardeen and Brattain had accomplished earlier in December 1947. Realizing that Bell Labs' scientists had already invented

11554-514: Was issued in 2016, and it is being replaced by the International Roadmap for Devices and Systems . Initially, ICs were strictly electronic devices. The success of ICs has led to the integration of other technologies, in an attempt to obtain the same advantages of small size and low cost. These technologies include mechanical devices, optics, and sensors. As of 2018 , the vast majority of all transistors are MOSFETs fabricated in

11663-455: Was later also theorized by engineer Oskar Heil in the 1930s and by William Shockley in the 1940s. In 1945 JFET was patented by Heinrich Welker . Following Shockley's theoretical treatment on JFET in 1952, a working practical JFET was made in 1953 by George C. Dacey and Ian M. Ross . In 1948, Bardeen and Brattain patented the progenitor of MOSFET at Bell Labs, an insulated-gate FET (IGFET) with an inversion layer. Bardeen's patent, and

11772-521: Was made by Dawon Kahng and Simon Sze in 1967. In 1967, Bell Labs researchers Robert Kerwin, Donald Klein and John Sarace developed the self-aligned gate (silicon-gate) MOS transistor, which Fairchild Semiconductor researchers Federico Faggin and Tom Klein used to develop the first silicon-gate MOS integrated circuit . A double-gate MOSFET was first demonstrated in 1984 by Electrotechnical Laboratory researchers Toshihiro Sekigawa and Yutaka Hayashi. The FinFET (fin field-effect transistor),

11881-480: Was the largest single consumer of integrated circuits between 1961 and 1965. Transistor–transistor logic (TTL) was developed by James L. Buie in the early 1960s at TRW Inc. TTL became the dominant integrated circuit technology during the 1970s to early 1980s. Dozens of TTL integrated circuits were a standard method of construction for the processors of minicomputers and mainframe computers . Computers such as IBM 360 mainframes, PDP-11 minicomputers and

#457542