Cloud condensation nuclei ( CCNs ), also known as cloud seeds , are small particles typically 0.2 μm , or one hundredth the size of a cloud droplet. CCNs are a unique subset of aerosols in the atmosphere on which water vapour condenses. This can affect the radiative properties of clouds and the overall atmosphere. Water vapour requires a non- gaseous surface to make the transition to a liquid ; this process is called condensation .
123-448: Rain is water droplets that have condensed from atmospheric water vapor and then fall under gravity . Rain is a major component of the water cycle and is responsible for depositing most of the fresh water on the Earth. It provides water for hydroelectric power plants , crop irrigation , and suitable conditions for many types of ecosystems . The major cause of rain production
246-474: A solvent ). It is vital for all known forms of life , despite not providing food energy or organic micronutrients . Its chemical formula, H 2 O , indicates that each of its molecules contains one oxygen and two hydrogen atoms , connected by covalent bonds . The hydrogen atoms are attached to the oxygen atom at an angle of 104.45°. In liquid form, H 2 O is also called "water" at standard temperature and pressure . Because Earth's environment
369-601: A 1 cm sample cell. Aquatic plants , algae , and other photosynthetic organisms can live in water up to hundreds of meters deep, because sunlight can reach them. Practically no sunlight reaches the parts of the oceans below 1,000 metres (3,300 ft) of depth. The refractive index of liquid water (1.333 at 20 °C (68 °F)) is much higher than that of air (1.0), similar to those of alkanes and ethanol , but lower than those of glycerol (1.473), benzene (1.501), carbon disulfide (1.627), and common types of glass (1.4 to 1.6). The refraction index of ice (1.31)
492-499: A feedback loop due to the relationship between CCNs, the temperature regulating behaviors of clouds, and oceanic phytoplankton. This phenomenon has since been referred to as the CLAW hypothesis, after the authors of the original study. A common CCN over oceans is sulphate aerosols. These aerosols are formed from the dimethyl sulfide (DMS) produced by algae found in seawater. Large algal blooms , observed to have increased in areas such as
615-525: A field study published in 2021 by researchers at Stockholm University found that they are often transferred from water to air when waves reach land, are a significant source of air pollution , and eventually get into rain. The researchers concluded that pollution may impact large areas. In 2024, a worldwide study of 45,000 groundwater samples found that 31% of samples contained levels of PFAS that were harmful to human health; these samples were taken from areas not near any obvious source of contamination. Rain
738-481: A large amount of sediment transport that occurs on the surface of the earth. Deposition of transported sediment forms many types of sedimentary rocks , which make up the geologic record of Earth history . The water cycle (known scientifically as the hydrologic cycle) is the continuous exchange of water within the hydrosphere , between the atmosphere , soil water, surface water , groundwater, and plants. Water moves perpetually through each of these regions in
861-481: A long duration. The final droplet size distribution is an exponential distribution . The number of droplets with diameter between d {\displaystyle d} and D + d D {\displaystyle D+dD} per unit volume of space is n ( d ) = n 0 e − d / ⟨ d ⟩ d D {\displaystyle n(d)=n_{0}e^{-d/\langle d\rangle }dD} . This
984-435: A mountain ( orographic lift ). Conductive cooling occurs when the air comes into contact with a colder surface, usually by being blown from one surface to another, for example from a liquid water surface to colder land. Radiational cooling occurs due to the emission of infrared radiation , either by the air or by the surface underneath. Evaporative cooling occurs when moisture is added to the air through evaporation, which forces
1107-406: A particular air temperature. How much water vapor a parcel of air can contain before it becomes saturated (100% relative humidity) and forms into a cloud (a group of visible tiny water or ice particles suspended above the Earth's surface) depends on its temperature. Warmer air can contain more water vapor than cooler air before becoming saturated. Therefore, one way to saturate a parcel of air
1230-541: A point are estimated by using the value of reflectivity data at individual grid points. A radar equation is then used, which is Z = A R b , {\displaystyle Z=AR^{b},} where Z represents the radar reflectivity, R represents the rainfall rate, and A and b are constants. Satellite-derived rainfall estimates use passive microwave instruments aboard polar orbiting as well as geostationary weather satellites to indirectly measure rainfall rates. If one wants an accumulated rainfall over
1353-408: A probability of occurring of 10 percent in any given year, and a 100-year storm occurs with a 1 percent probability in a year. As with all probability events, it is possible, though improbable, to have multiple 100-year storms in a single year. The Quantitative Precipitation Forecast (abbreviated QPF) is the expected amount of liquid precipitation accumulated over a specified time period over
SECTION 10
#17327657611271476-477: A property that is exploited by cetaceans and humans for communication and environment sensing ( sonar ). Metallic elements which are more electropositive than hydrogen, particularly the alkali metals and alkaline earth metals such as lithium , sodium , calcium , potassium and cesium displace hydrogen from water, forming hydroxides and releasing hydrogen. At high temperatures, carbon reacts with steam to form carbon monoxide and hydrogen. Hydrology
1599-405: A result of this warming, monthly rainfall is about 28% greater between 32 and 64 km (20 and 40 mi) downwind of cities, compared with upwind. Some cities induce a total precipitation increase of 51%. Increasing temperatures tend to increase evaporation which can lead to more precipitation. Precipitation generally increased over land north of 30°N from 1900 through 2005 but has declined over
1722-466: A specified area. A QPF will be specified when a measurable precipitation type reaching a minimum threshold is forecast for any hour during a QPF valid period. Precipitation forecasts tend to be bound by synoptic hours such as 0000, 0600, 1200 and 1800 GMT . Terrain is considered in QPFs by use of topography or based upon climatological precipitation patterns from observations with fine detail. Starting in
1845-440: A structure of rigid oxygen atoms in which hydrogen atoms flowed freely. When sandwiched between layers of graphene , ice forms a square lattice. The details of the chemical nature of liquid water are not well understood; some theories suggest that its unusual behavior is due to the existence of two liquid states. Pure water is usually described as tasteless and odorless, although humans have specific sensors that can feel
1968-412: A swimming pool when the light source is sunlight reflected from the pool's white tiles. In nature, the color may also be modified from blue to green due to the presence of suspended solids or algae. In industry, near-infrared spectroscopy is used with aqueous solutions as the greater intensity of the lower overtones of water means that glass cuvettes with short path-length may be employed. To observe
2091-646: A teardrop. The biggest raindrops on Earth were recorded over Brazil and the Marshall Islands in 2004 — some of them were as large as 10 mm (0.39 in). The large size is explained by condensation on large smoke particles or by collisions between drops in small regions with particularly high content of liquid water. Raindrops associated with melting hail tend to be larger than other raindrops. Intensity and duration of rainfall are usually inversely related, i.e., high-intensity storms are likely to be of short duration and low-intensity storms can have
2214-423: A tendency to break up at larger sizes. Smaller drops are called cloud droplets, and their shape is spherical. As a raindrop increases in size, its shape becomes more oblate, with its largest cross-section facing the oncoming airflow. Large rain drops become increasingly flattened on the bottom, like hamburger buns; very large ones are shaped like parachutes . Contrary to popular belief, their shape does not resemble
2337-467: A time period, one has to add up all the accumulations from each grid box within the images during that time. Rainfall intensity is classified according to the rate of precipitation, which depends on the considered time. The following categories are used to classify rainfall intensity: Terms used for a heavy or violent rain include gully washer, trash-mover and toad-strangler. The intensity can also be expressed by rainfall erosivity R-factor or in terms of
2460-461: A variety of applications including high-temperature electrochemistry and as an ecologically benign solvent or catalyst in chemical reactions involving organic compounds. In Earth's mantle, it acts as a solvent during mineral formation, dissolution and deposition. The normal form of ice on the surface of Earth is ice I h , a phase that forms crystals with hexagonal symmetry . Another with cubic crystalline symmetry , ice I c , can occur in
2583-427: A year's time. There are many different types of atmospheric particulates that can act as CCN. The particles may be composed of dust or clay , soot or black carbon from grassland or forest fires, sea salt from ocean wave spray, soot from factory smokestacks or internal combustion engines, sulfate from volcanic activity, phytoplankton or the oxidation of sulfur dioxide and secondary organic matter formed by
SECTION 20
#17327657611272706-977: Is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating in industry and homes. Water is an excellent solvent for a wide variety of substances, both mineral and organic; as such, it is widely used in industrial processes and in cooking and washing. Water, ice, and snow are also central to many sports and other forms of entertainment, such as swimming , pleasure boating, boat racing , surfing , sport fishing , diving , ice skating , snowboarding , and skiing . The word water comes from Old English wæter , from Proto-Germanic * watar (source also of Old Saxon watar , Old Frisian wetir , Dutch water , Old High German wazzar , German Wasser , vatn , Gothic 𐍅𐌰𐍄𐍉 ( wato )), from Proto-Indo-European * wod-or , suffixed form of root * wed- ( ' water ' ; ' wet ' ). Also cognate , through
2829-489: Is visibly blue due to absorption of light in the region c. 600–800 nm. The color can be easily observed in a glass of tap-water placed against a pure white background, in daylight. The principal absorption bands responsible for the color are overtones of the O–H stretching vibrations . The apparent intensity of the color increases with the depth of the water column, following Beer's law . This also applies, for example, with
2952-439: Is 917 kg/m (57.25 lb/cu ft), an expansion of 9%. This expansion can exert enormous pressure, bursting pipes and cracking rocks. In a lake or ocean, water at 4 °C (39 °F) sinks to the bottom, and ice forms on the surface, floating on the liquid water. This ice insulates the water below, preventing it from freezing solid. Without this protection, most aquatic organisms residing in lakes would perish during
3075-471: Is a grassland biome located in semi-arid to semi-humid climate regions of subtropical and tropical latitudes , with rainfall between 750 and 1,270 mm (30 and 50 in) a year. They are widespread on Africa, and are also found in India, the northern parts of South America, Malaysia , and Australia. The humid subtropical climate zone is where winter rainfall is associated with large storms that
3198-507: Is a time when air quality improves, freshwater quality improves, and vegetation grows significantly. Tropical cyclones , a source of very heavy rainfall, consist of large air masses several hundred miles across with low pressure at the centre and with winds blowing inward towards the centre in either a clockwise direction (southern hemisphere) or counterclockwise (northern hemisphere). Although cyclones can take an enormous toll in lives and personal property, they may be important factors in
3321-426: Is about 2 mm in diameter, a typical cloud droplet is on the order of 0.02 mm, and a typical cloud condensation nucleus ( aerosol ) is on the order of 0.0001 mm or 0.1 μm or greater in diameter. The number of cloud condensation nuclei in the air can be measured at ranges between around 100 to 1000 per cm . The total mass of CCNs injected into the atmosphere has been estimated at 2 × 10 kg over
3444-650: Is accompanied by plentiful precipitation year-round. The Mediterranean climate regime resembles the climate of the lands in the Mediterranean Basin , parts of western North America, parts of Western and South Australia , in southwestern South Africa and in parts of central Chile . The climate is characterized by hot, dry summers and cool, wet winters. A steppe is a dry grassland . Subarctic climates are cold with continuous permafrost and little precipitation. In 2022, levels of at least four perfluoroalkyl acids (PFAAs) in rain water worldwide greatly exceeded
3567-562: Is also causing changes in the precipitation pattern, including wetter conditions across eastern North America and drier conditions in the tropics. Antarctica is the driest continent. The globally averaged annual precipitation over land is 715 mm (28.1 in), but over the whole Earth, it is much higher at 990 mm (39 in). Climate classification systems such as the Köppen classification system use average annual rainfall to help differentiate between differing climate regimes. Rainfall
3690-493: Is at a temperature of 273.16 K (0.01 °C; 32.02 °F) and a pressure of 611.657 pascals (0.00604 atm; 0.0887 psi); it is the lowest pressure at which liquid water can exist. Until 2019 , the triple point was used to define the Kelvin temperature scale . The water/vapor phase curve terminates at 647.096 K (373.946 °C; 705.103 °F) and 22.064 megapascals (3,200.1 psi; 217.75 atm). This
3813-836: Is commonly referred to as the Marshall–Palmer law after the researchers who first characterized it. The parameters are somewhat temperature-dependent, and the slope also scales with the rate of rainfall ⟨ d ⟩ − 1 = 41 R − 0.21 {\displaystyle \langle d\rangle ^{-1}=41R^{-0.21}} (d in centimeters and R in millimeters per hour). Deviations can occur for small droplets and during different rainfall conditions. The distribution tends to fit averaged rainfall, while instantaneous size spectra often deviate and have been modeled as gamma distributions . The distribution has an upper limit due to droplet fragmentation. Raindrops impact at their terminal velocity , which
Rain - Misplaced Pages Continue
3936-410: Is derived from natural sources such as volcanoes, and wetlands (sulfate-reducing bacteria); and anthropogenic sources such as the combustion of fossil fuels , and mining where H 2 S is present. Nitric acid is produced by natural sources such as lightning, soil bacteria, and natural fires; while also produced anthropogenically by the combustion of fossil fuels and from power plants. In the past 20 years,
4059-485: Is equally distributed through the year. Some areas with pronounced rainy seasons will see a break in rainfall mid-season when the Intertropical Convergence Zone or monsoon trough move poleward of their location during the middle of the warm season. When the wet season occurs during the warm season, or summer , rain falls mainly during the late afternoon and early evening hours. The wet season
4182-496: Is greater for larger drops due to their larger mass-to-drag ratio. At sea level and without wind, 0.5 mm (0.020 in) drizzle impacts at 2 m/s (6.6 ft/s) or 7.2 km/h (4.5 mph), while large 5 mm (0.20 in) drops impact at around 9 m/s (30 ft/s) or 32 km/h (20 mph). Rain falling on loosely packed material such as newly fallen ash can produce dimples that can be fossilized, called raindrop impressions . The air density dependence of
4305-428: Is greater than the repulsion between the hydrogen atoms. The O–H bond length is about 0.096 nm. Other substances have a tetrahedral molecular structure, for example methane ( CH 4 ) and hydrogen sulfide ( H 2 S ). However, oxygen is more electronegative than most other elements, so the oxygen atom has a negative partial charge while the hydrogen atoms are partially positively charged. Along with
4428-435: Is important in many geological processes. Groundwater is present in most rocks , and the pressure of this groundwater affects patterns of faulting . Water in the mantle is responsible for the melt that produces volcanoes at subduction zones . On the surface of the Earth, water is important in both chemical and physical weathering processes. Water, and to a lesser but still significant extent, ice, are also responsible for
4551-470: Is it a noble gas (and therefore is not removed from the atmosphere through chemical reactions with other elements), but comparisons between the abundances of its nine stable isotopes in the modern atmosphere reveal that the Earth lost at least one ocean of water early in its history, between the Hadean and Archean eons. Any water on Earth during the latter part of its accretion would have been disrupted by
4674-498: Is known as the critical point . At higher temperatures and pressures the liquid and vapor phases form a continuous phase called a supercritical fluid . It can be gradually compressed or expanded between gas-like and liquid-like densities; its properties (which are quite different from those of ambient water) are sensitive to density. For example, for suitable pressures and temperatures it can mix freely with nonpolar compounds , including most organic compounds . This makes it useful in
4797-413: Is lower than that of liquid water. In a water molecule, the hydrogen atoms form a 104.5° angle with the oxygen atom. The hydrogen atoms are close to two corners of a tetrahedron centered on the oxygen. At the other two corners are lone pairs of valence electrons that do not participate in the bonding. In a perfect tetrahedron, the atoms would form a 109.5° angle, but the repulsion between the lone pairs
4920-564: Is maximized within windward sides of the terrain at elevation which forces moist air to condense and fall out as rainfall along the sides of mountains. On the leeward side of mountains, desert climates can exist due to the dry air caused by downslope flow which causes heating and drying of the air mass . The movement of the monsoon trough , or Intertropical Convergence Zone , brings rainy seasons to savannah climes . The urban heat island effect leads to increased rainfall, both in amounts and intensity, downwind of cities. Global warming
5043-493: Is measured in units of length per unit time, typically in millimeters per hour, or in countries where imperial units are more common, inches per hour. The "length", or more accurately, "depth" being measured is the depth of rain water that would accumulate on a flat, horizontal and impermeable surface during a given amount of time, typically an hour. One millimeter of rainfall is the equivalent of one liter of water per square meter. The standard way of measuring rainfall or snowfall
Rain - Misplaced Pages Continue
5166-406: Is measured using rain gauges . Rainfall amounts can be estimated by weather radar . Air contains water vapor, and the amount of water in a given mass of dry air, known as the mixing ratio , is measured in grams of water per kilogram of dry air (g/kg). The amount of moisture in the air is also commonly reported as relative humidity ; which is the percentage of the total water vapor air can hold at
5289-410: Is moisture moving along three-dimensional zones of temperature and moisture contrasts known as weather fronts . If enough moisture and upward motion is present, precipitation falls from convective clouds (those with strong upward vertical motion) such as cumulonimbus (thunder clouds) which can organize into narrow rainbands . In mountainous areas, heavy precipitation is possible where upslope flow
5412-422: Is poor at dissolving nonpolar substances. This allows it to be the " solvent of life": indeed, water as found in nature almost always includes various dissolved substances, and special steps are required to obtain chemically pure water . Water is the only common substance to exist as a solid , liquid, and gas in normal terrestrial conditions. Along with oxidane , water is one of the two official names for
5535-420: Is referred to as banded structure. Rainbands in advance of warm occluded fronts and warm fronts are associated with weak upward motion, and tend to be wide and stratiform in nature. Rainbands spawned near and ahead of cold fronts can be squall lines which are able to produce tornadoes . Rainbands associated with cold fronts can be warped by mountain barriers perpendicular to the front's orientation due to
5658-430: Is relatively close to water's triple point , water exists on Earth as a solid , a liquid , and a gas . It forms precipitation in the form of rain and aerosols in the form of fog . Clouds consist of suspended droplets of water and ice , its solid state. When finely divided, crystalline ice may precipitate in the form of snow . The gaseous state of water is steam or water vapor . Water covers about 71% of
5781-410: Is the presence of a thick layer of air aloft which is above the melting point of water, which melts the frozen precipitation well before it reaches the ground. If there is a shallow near-surface layer that is below freezing, freezing rain (rain which freezes on contact with surfaces in subfreezing environments) will result. Hail becomes an increasingly infrequent occurrence when the freezing level within
5904-439: Is the standard rain gauge, which can be found in 100-mm (4-in) plastic and 200-mm (8-in) metal varieties. The inner cylinder is filled by 25 mm (0.98 in) of rain, with overflow flowing into the outer cylinder. Plastic gauges have markings on the inner cylinder down to 0.25 mm (0.0098 in) resolution, while metal gauges require use of a stick designed with the appropriate 0.25 mm (0.0098 in) markings. After
6027-458: Is the study of the movement, distribution, and quality of water throughout the Earth. The study of the distribution of water is hydrography . The study of the distribution and movement of groundwater is hydrogeology , of glaciers is glaciology , of inland waters is limnology and distribution of oceans is oceanography . Ecological processes with hydrology are in the focus of ecohydrology . The collective mass of water found on, under, and over
6150-424: Is to cool it. The dew point is the temperature to which a parcel must be cooled in order to become saturated. There are four main mechanisms for cooling the air to its dew point: adiabatic cooling, conductive cooling, radiational cooling, and evaporative cooling. Adiabatic cooling occurs when air rises and expands. The air can rise due to convection , large-scale atmospheric motions, or a physical barrier such as
6273-488: Is used in cloud seeding , which tries to encourage rainfall by seeding the air with condensation nuclei. It has further been suggested that creating such nuclei could be used for marine cloud brightening , a climate engineering technique. Some natural environmental phenomena, such as the one proposed in the CLAW hypothesis also arise from the interaction between naturally produced CCNs and cloud formation. A typical raindrop
SECTION 50
#17327657611276396-584: The Great Basin and Mojave Deserts . The wet, or rainy, season is the time of year, covering one or more months, when most of the average annual rainfall in a region falls. The term green season is also sometimes used as a euphemism by tourist authorities. Areas with wet seasons are dispersed across portions of the tropics and subtropics . Savanna climates and areas with monsoon regimes have wet summers and dry winters. Tropical rainforests technically do not have dry or wet seasons, since their rainfall
6519-485: The Moon-forming impact (~4.5 billion years ago), which likely vaporized much of Earth's crust and upper mantle and created a rock-vapor atmosphere around the young planet. The rock vapor would have condensed within two thousand years, leaving behind hot volatiles which probably resulted in a majority carbon dioxide atmosphere with hydrogen and water vapor . Afterward, liquid water oceans may have existed despite
6642-432: The elements hydrogen and oxygen by passing an electric current through it—a process called electrolysis . The decomposition requires more energy input than the heat released by the inverse process (285.8 kJ/ mol , or 15.9 MJ/kg). Liquid water can be assumed to be incompressible for most purposes: its compressibility ranges from 4.4 to 5.1 × 10 Pa in ordinary conditions. Even in oceans at 4 km depth, where
6765-529: The molar volumes of the liquid and solid phases, and L f {\displaystyle L_{\text{f}}} is the molar latent heat of melting. In most substances, the volume increases when melting occurs, so the melting temperature increases with pressure. However, because ice is less dense than water, the melting temperature decreases. In glaciers, pressure melting can occur under sufficiently thick volumes of ice, resulting in subglacial lakes . The Clausius-Clapeyron relation also applies to
6888-405: The tropics appears to be convective; however, it has been suggested that stratiform precipitation also occurs. Graupel and hail indicate convection. In mid-latitudes, convective precipitation is intermittent and often associated with baroclinic boundaries such as cold fronts , squall lines , and warm fronts. Orographic precipitation occurs on the windward side of mountains and is caused by
7011-451: The water cycle consisting of the following transfer processes: Cloud condensation nuclei In the atmosphere of Earth , this surface presents itself as tiny solid or liquid particles called CCNs. When no CCNs are present, water vapour can be supercooled at about −13 °C (9 °F) for 5–6 hours before droplets spontaneously form. This is the basis of the cloud chamber for detecting subatomic particles. The concept of CCN
7134-453: The westerlies steer from west to east. Most summer rainfall occurs during thunderstorms and from occasional tropical cyclones. Humid subtropical climates lie on the east side continents, roughly between latitudes 20° and 40° degrees away from the equator. An oceanic (or maritime) climate is typically found along the west coasts at the middle latitudes of all the world's continents, bordering cool oceans, as well as southeastern Australia, and
7257-460: The EPA's lifetime drinking water health advisories as well as comparable Danish, Dutch, and European Union safety standards, leading to the conclusion that "the global spread of these four PFAAs in the atmosphere has led to the planetary boundary for chemical pollution being exceeded". It had been thought that PFAAs would eventually end up in the oceans, where they would be diluted over decades, but
7380-444: The Earth was younger and less massive , water would have been lost to space more easily. Lighter elements like hydrogen and helium are expected to leak from the atmosphere continually, but isotopic ratios of heavier noble gases in the modern atmosphere suggest that even the heavier elements in the early atmosphere were subject to significant losses. In particular, xenon is useful for calculations of water loss over time. Not only
7503-402: The Earth's atmosphere which form clouds decks such as altostratus or cirrostratus . Stratus is a stable cloud deck which tends to form when a cool, stable air mass is trapped underneath a warm air mass. It can also form due to the lifting of advection fog during breezy conditions. Coalescence occurs when water droplets fuse to create larger water droplets. Air resistance typically causes
SECTION 60
#17327657611277626-513: The Earth's surface, with seas and oceans making up most of the water volume (about 96.5%). Small portions of water occur as groundwater (1.7%), in the glaciers and the ice caps of Antarctica and Greenland (1.7%), and in the air as vapor , clouds (consisting of ice and liquid water suspended in air), and precipitation (0.001%). Water moves continually through the water cycle of evaporation , transpiration ( evapotranspiration ), condensation , precipitation, and runoff , usually reaching
7749-538: The Indo-European root, with Greek ύδωρ ( ýdor ; from Ancient Greek ὕδωρ ( hýdōr ), whence English ' hydro- ' ), Russian вода́ ( vodá ), Irish uisce , and Albanian ujë . One factor in estimating when water appeared on Earth is that water is continually being lost to space. H 2 O molecules in the atmosphere are broken up by photolysis , and the resulting free hydrogen atoms can sometimes escape Earth's gravitational pull. When
7872-674: The Internet, such as CoCoRAHS or GLOBE. If a network is not available in the area where one lives, the nearest local weather or met office will likely be interested in the measurement. One of the main uses of weather radar is to be able to assess the amount of precipitations fallen over large basins for hydrological purposes. For instance, river flood control , sewer management and dam construction are all areas where planners use rainfall accumulation data. Radar-derived rainfall estimates complement surface station data which can be used for calibration. To produce radar accumulations, rain rates over
7995-885: The Northeast and Midwest, which in the past decade, have seen 31 and 16 percent more heavy downpours compared to the 1950s. Rhode Island is the state with the largest increase, 104%. McAllen, Texas is the city with the largest increase, 700%. Heavy downpour in the analysis are the days where total precipitation exceeded the top one percent of all rain and snow days during the years 1950–2014. The most successful attempts at influencing weather involve cloud seeding , which include techniques used to increase winter precipitation over mountains and suppress hail . Rainbands are cloud and precipitation areas which are significantly elongated. Rainbands can be stratiform or convective , and are generated by differences in temperature. When noted on weather radar imagery, this precipitation elongation
8118-530: The South China Sea, can contribute a substantial amount of DMS into their surrounding atmospheres, leading to increased cloud formation. As the activity of phytoplankton is temperature reliant, this negative-feedback loop can act as a form of climate regulation. The Revenge of Gaia , written by James Lovelock, an author of the 1987 study, proposes an alternative relationship between ocean temperatures and phytoplankton population size. This has been named
8241-656: The air temperature to cool to its wet-bulb temperature , or until it reaches saturation. The main ways water vapor is added to the air are wind convergence into areas of upward motion, precipitation or virga falling from above, daytime heating evaporating water from the surface of oceans, water bodies or wet land, transpiration from plants, cool or dry air moving over warmer water, and lifting air over mountains. Water vapor normally begins to condense on condensation nuclei such as dust, ice, and salt in order to form clouds. Elevated portions of weather fronts (which are three-dimensional in nature) force broad areas of upward motion within
8364-454: The anti-CLAW hypothesis In this scenario, the stratification of oceans causes nutrient-rich cold water to become trapped under warmer water, where sunlight for photosynthesis is most abundant. This inhibits the growth of phytoplankton, resulting in the decrease in their population, and the sulfate CCNs they produce, with increasing temperature. This interaction thus lowers cloud albedo through decreasing CCN-induced cloud formations and increases
8487-404: The atmosphere exceeds 3,400 m (11,000 ft) above ground level. Convective rain , or showery precipitation, occurs from convective clouds (e.g., cumulonimbus or cumulus congestus ). It falls as showers with rapidly changing intensity. Convective precipitation falls over a certain area for a relatively short time, as convective clouds have limited horizontal extent. Most precipitation in
8610-401: The atmosphere that can act as nuclei. Marine cloud brightening is a climate engineering technique which involves the injection of small particles into clouds to enhance their reflectivity, or albedo . The motive behind this technique is to control the amount of sunlight allowed to reach ocean surfaces in hopes of lowering surface temperatures through radiative forcing . Many methods involve
8733-573: The atmosphere to induce cloud formation and precipitation. This has been done by dispersing salts using aerial or ground-based methods. Other methods have been researched, like using laser pulses to excite molecules in the atmosphere, and more recently, in 2021, electric charge emission using drones. The effectiveness of these methods is not consistent. Many studies did not notice a statistically significant difference in precipitation while others have. Cloud seeding may also occur from natural processes such as forest fires, which release small particles into
8856-403: The atmosphere, the increase of sulfur dioxide CCNs can impact the climate by causing global cooling . Almost 9.2 Tg of sulfur dioxide ( SO 2 ) is emitted from volcanoes annually. This sulphur dioxide undergoes a transformation into sulfuric acid , which quickly condenses in the stratosphere to produce fine sulphate aerosols. The Earth's lower atmosphere, or troposphere, cools as a result of
8979-431: The atmosphere. There is also speculation that solar variation may affect cloud properties via CCNs, and hence affect climate . The airborne measurements of these individual mixed aerosols that can form CCN at SGP site were performed using a research aircraft. CCN study by Kulkarni et al 2023 describes the complexity in modeling CCN concentrations . Cloud seeding is a process by which small particulates are added to
9102-577: The bent structure, this gives the molecule an electrical dipole moment and it is classified as a polar molecule . Water is a good polar solvent , dissolving many salts and hydrophilic organic molecules such as sugars and simple alcohols such as ethanol . Water also dissolves many gases, such as oxygen and carbon dioxide —the latter giving the fizz of carbonated beverages, sparkling wines and beers. In addition, many substances in living organisms, such as proteins , DNA and polysaccharides , are dissolved in water. The interactions between water and
9225-537: The boiling point, but with the liquid/gas transition the vapor phase has a much lower density than the liquid phase, so the boiling point increases with pressure. Water can remain in a liquid state at high temperatures in the deep ocean or underground. For example, temperatures exceed 205 °C (401 °F) in Old Faithful , a geyser in Yellowstone National Park . In hydrothermal vents ,
9348-785: The chemical compound H 2 O ; it is also the liquid phase of H 2 O . The other two common states of matter of water are the solid phase, ice , and the gaseous phase, water vapor or steam . The addition or removal of heat can cause phase transitions : freezing (water to ice), melting (ice to water), vaporization (water to vapor), condensation (vapor to water), sublimation (ice to vapor) and deposition (vapor to ice). Water differs from most liquids in that it becomes less dense as it freezes. In 1 atm pressure, it reaches its maximum density of 999.972 kg/m (62.4262 lb/cu ft) at 3.98 °C (39.16 °F), or almost 1,000 kg/m (62.43 lb/cu ft) at almost 4 °C (39 °F). The density of ice
9471-516: The concentrations of nitric and sulfuric acid has decreased in presence of rainwater, which may be due to the significant increase in ammonium (most likely as ammonia from livestock production), which acts as a buffer in acid rain and raises the pH. The Köppen classification depends on average monthly values of temperature and precipitation. The most commonly used form of the Köppen classification has five primary types labeled A through E. Specifically,
9594-611: The contiguous United States, total annual precipitation increased at an average rate of 6.1 percent since 1900, with the greatest increases within the East North Central climate region (11.6 percent per century) and the South (11.1 percent). Hawaii was the only region to show a decrease (−9.25 percent). Analysis of 65 years of United States of America rainfall records show the lower 48 states have an increase in heavy downpours since 1950. The largest increases are in
9717-709: The course of the week, the likelihood of rain increases: it peaks by Saturday, after five days of weekday pollution has been built up. In heavily populated areas that are near the coast, such as the United States' Eastern Seaboard , the effect can be dramatic: there is a 22% higher chance of rain on Saturdays than on Mondays. The urban heat island effect warms cities 0.6 to 5.6 °C (33.1 to 42.1 °F) above surrounding suburbs and rural areas. This extra heat leads to greater upward motion, which can induce additional shower and thunderstorm activity. Rainfall rates downwind of cities are increased between 48% and 116%. Partly as
9840-506: The creation of small droplets of seawater to deliver sea salt particles into overlying clouds. Complications may arise when reactive chlorine and bromine from sea salt react with existing molecules in the atmosphere. They have been shown to reduce ozone in the atmosphere; the same effect reduces hydroxide which correlates to the increased longevity of methane, a greenhouse gas . A 1987 article in Nature found that global climate may occur in
9963-411: The crystal and neighboring water droplets. This process is temperature dependent, as supercooled water droplets only exist in a cloud that is below freezing. In addition, because of the great temperature difference between cloud and ground level, these ice crystals may melt as they fall and become rain. Raindrops have sizes ranging from 0.1 to 9 mm (0.0039 to 0.3543 in) mean diameter but develop
10086-556: The descending and generally warming, leeward side where a rain shadow is observed. In Hawaii , Mount Waiʻaleʻale , on the island of Kauai, is notable for its extreme rainfall, as it is amongst the places in the world with the highest levels of rainfall, with 9,500 mm (373 in). Systems known as Kona storms affect the state with heavy rains between October and April. Local climates vary considerably on each island due to their topography, divisible into windward ( Koʻolau ) and leeward ( Kona ) regions based upon location relative to
10209-433: The desired result. Conversely, a pressure cooker can be used to decrease cooking times by raising the boiling temperature. In a vacuum, water will boil at room temperature. On a pressure/temperature phase diagram (see figure), there are curves separating solid from vapor, vapor from liquid, and liquid from solid. These meet at a single point called the triple point , where all three phases can coexist. The triple point
10332-631: The fact that many of the chemical species may be mixed within the particles (in particular the sulfate and organic carbon). Additionally, while some particles (such as soot and minerals) do not make very good CCN, they do act as ice nuclei in colder parts of the atmosphere. The number and type of CCNs can affect the precipitation amount, lifetimes, and radiative properties of clouds and their lifetimes. Ultimately, this has an influence on climate change . Modeling research led by Marcia Baker revealed that sources and sinks are balanced by coagulation and coalescence which leads to stable levels of CCNs in
10455-415: The flooding will be worse than the worst storm expected in any single year. A 100-year storm describes an extremely rare rainfall event occurring on average once in a century. The rainfall will be extreme and flooding worse than a 10-year event. The probability of an event in any year is the inverse of the return period (assuming the probability remains the same for each year). For instance, a 10-year storm has
10578-486: The force of gravity . This property is relied upon by all vascular plants , such as trees. Water is a weak solution of hydronium hydroxide—there is an equilibrium 2H 2 O ⇌ H 3 O + OH , in combination with solvation of the resulting hydronium and hydroxide ions. Pure water has a low electrical conductivity , which increases with the dissolution of a small amount of ionic material such as common salt . Liquid water can be split into
10701-509: The formation of a low-level barrier jet . Bands of thunderstorms can form with sea breeze and land breeze boundaries if enough moisture is present. If sea breeze rainbands become active enough just ahead of a cold front, they can mask the location of the cold front itself. Once a cyclone occludes an occluded front (a trough of warm air aloft) will be caused by strong southerly winds on its eastern periphery rotating aloft around its northeast, and ultimately northwestern, periphery (also termed
10824-480: The front is unstable enough for convection. Banding within the comma head precipitation pattern of an extratropical cyclone can yield significant amounts of rain. Behind extratropical cyclones during fall and winter, rainbands can form downwind of relative warm bodies of water such as the Great Lakes . Downwind of islands, bands of showers and thunderstorms can develop due to low-level wind convergence downwind of
10947-450: The fundamental stretching absorption spectrum of water or of an aqueous solution in the region around 3,500 cm (2.85 μm) a path length of about 25 μm is needed. Also, the cuvette must be both transparent around 3500 cm and insoluble in water; calcium fluoride is one material that is in common use for the cuvette windows with aqueous solutions. The Raman-active fundamental vibrations may be observed with, for example,
11070-400: The ground. This is termed virga and is more often seen in hot and dry climates. Stratiform (a broad shield of precipitation with a relatively similar intensity) and dynamic precipitation (convective precipitation which is showery in nature with large changes in intensity over short distances) occur as a consequence of slow ascent of air in synoptic systems (on the order of cm/s), such as in
11193-550: The higher mountains. Windward sides face the east to northeast trade winds and receive much more rainfall; leeward sides are drier and sunnier, with less rain and less cloud cover. In South America, the Andes mountain range blocks Pacific moisture that arrives in that continent, resulting in a desert-like climate just downwind across western Argentina. The Sierra Nevada range creates the same effect in North America forming
11316-436: The inner cylinder is filled, the amount inside it is discarded, then filled with the remaining rainfall in the outer cylinder until all the fluid in the outer cylinder is gone, adding to the overall total until the outer cylinder is empty. Other types of gauges include the popular wedge gauge (the cheapest rain gauge and most fragile), the tipping bucket rain gauge, and the weighing rain gauge. For those looking to measure rainfall
11439-420: The island edges. Offshore California , this has been noted in the wake of cold fronts. Rainbands within tropical cyclones are curved in orientation. Tropical cyclone rainbands contain showers and thunderstorms that, together with the eyewall and the eye, constitute a hurricane or tropical storm . The extent of rainbands around a tropical cyclone can help determine the cyclone's intensity. The phrase acid rain
11562-416: The liquid is known as boiling ). Sublimation and deposition also occur on surfaces. For example, frost is deposited on cold surfaces while snowflakes form by deposition on an aerosol particle or ice nucleus. In the process of freeze-drying , a food is frozen and then stored at low pressure so the ice on its surface sublimates. The melting and boiling points depend on pressure. A good approximation for
11685-753: The liquid or solid state can form up to four hydrogen bonds with neighboring molecules. Hydrogen bonds are about ten times as strong as the Van der Waals force that attracts molecules to each other in most liquids. This is the reason why the melting and boiling points of water are much higher than those of other analogous compounds like hydrogen sulfide. They also explain its exceptionally high specific heat capacity (about 4.2 J /(g·K)), heat of fusion (about 333 J/g), heat of vaporization ( 2257 J/g ), and thermal conductivity (between 0.561 and 0.679 W/(m·K)). These properties make water more effective at moderating Earth's climate , by storing heat and transporting it between
11808-423: The maximum raindrop diameter together with fossil raindrop imprints has been used to constrain the density of the air 2.7 billion years ago. The sound of raindrops hitting water is caused by bubbles of air oscillating underwater . The METAR code for rain is RA, while the coding for rain showers is SHRA. In certain conditions, precipitation may fall from a cloud but then evaporate or sublime before reaching
11931-436: The mid to late 1990s, QPFs were used within hydrologic forecast models to simulate impact to rivers throughout the United States. Water Water is an inorganic compound with the chemical formula H 2 O . It is a transparent, tasteless, odorless, and nearly colorless chemical substance . It is the main constituent of Earth 's hydrosphere and the fluids of all known living organisms (in which it acts as
12054-427: The most inexpensively, a can that is cylindrical with straight sides will act as a rain gauge if left out in the open, but its accuracy will depend on what ruler is used to measure the rain with. Any of the above rain gauges can be made at home, with enough know-how. When a precipitation measurement is made, various networks exist across the United States and elsewhere where rainfall measurements can be submitted through
12177-462: The number of heavy precipitation events over many areas during the past century, as well as an increase since the 1970s in the prevalence of droughts—especially in the tropics and subtropics. Changes in precipitation and evaporation over the oceans are suggested by the decreased salinity of mid- and high-latitude waters (implying more precipitation), along with increased salinity in lower latitudes (implying less precipitation and/or more evaporation). Over
12300-418: The oceans and the atmosphere. The hydrogen bonds of water are around 23 kJ/mol (compared to a covalent O-H bond at 492 kJ/mol). Of this, it is estimated that 90% is attributable to electrostatics, while the remaining 10% is partially covalent. These bonds are the cause of water's high surface tension and capillary forces. The capillary action refers to the tendency of water to move up a narrow tube against
12423-538: The oceans may have always been on the Earth since the beginning of the planet's formation . Water ( H 2 O ) is a polar inorganic compound . At room temperature it is a tasteless and odorless liquid , nearly colorless with a hint of blue . The simplest hydrogen chalcogenide , it is by far the most studied chemical compound and is sometimes described as the "universal solvent" for its ability to dissolve more substances than any other liquid, though it
12546-424: The oxidation of volatile organic compounds . The ability of these different types of particles to form cloud droplets varies according to their size and also their exact composition, as the hygroscopic properties of these different constituents are very different. Sulfate and sea salt, for instance, readily absorb water whereas soot, organic carbon, and mineral particles do not. This is made even more complicated by
12669-476: The precipitation regimes of places they impact, as they may bring much-needed precipitation to otherwise dry regions. Areas in their path can receive a year's worth of rainfall from a tropical cyclone passage. The fine particulate matter produced by car exhaust and other human sources of pollution forms cloud condensation nuclei leads to the production of clouds and increases the likelihood of rain. As commuters and commercial traffic cause pollution to build up over
12792-402: The presence of water in their mouths, and frogs are known to be able to smell it. However, water from ordinary sources (including mineral water ) usually has many dissolved substances that may give it varying tastes and odors. Humans and other animals have developed senses that enable them to evaluate the potability of water in order to avoid water that is too salty or putrid . Pure water
12915-437: The pressure is 400 atm, water suffers only a 1.8% decrease in volume. The viscosity of water is about 10 Pa· s or 0.01 poise at 20 °C (68 °F), and the speed of sound in liquid water ranges between 1,400 and 1,540 metres per second (4,600 and 5,100 ft/s) depending on temperature. Sound travels long distances in water with little attenuation , especially at low frequencies (roughly 0.03 dB /km for 1 k Hz ),
13038-578: The primary types are A, tropical; B, dry; C, mild mid-latitude; D, cold mid-latitude; and E, polar. The five primary classifications can be further divided into secondary classifications such as rain forest , monsoon , tropical savanna , humid subtropical , humid continental , oceanic climate , Mediterranean climate , steppe , subarctic climate , tundra , polar ice cap , and desert . Rain forests are characterized by high rainfall, with definitions setting minimum normal annual rainfall between 1,750 and 2,000 mm (69 and 79 in). A tropical savanna
13161-498: The rainfall time-structure n-index . The average time between occurrences of an event with a specified intensity and duration is called the return period . The intensity of a storm can be predicted for any return period and storm duration, from charts based on historic data for the location. The return period is often expressed as an n -year event. For instance, a 10-year storm describes a rare rainfall event occurring on average once every 10 years. The rainfall will be greater and
13284-587: The rate of change of the melting temperature with pressure is given by the Clausius–Clapeyron relation : d T d P = T ( v L − v S ) L f {\displaystyle {\frac {dT}{dP}}={\frac {T\left(v_{\text{L}}-v_{\text{S}}\right)}{L_{\text{f}}}}} where v L {\displaystyle v_{\text{L}}} and v S {\displaystyle v_{\text{S}}} are
13407-442: The rising air motion of a large-scale flow of moist air across the mountain ridge, resulting in adiabatic cooling and condensation. In mountainous parts of the world subjected to relatively consistent winds (for example, the trade winds ), a more moist climate usually prevails on the windward side of a mountain than on the leeward or downwind side. Moisture is removed by orographic lift, leaving drier air (see katabatic wind ) on
13530-404: The sea. Water plays an important role in the world economy . Approximately 70% of the fresh water used by humans goes to agriculture . Fishing in salt and fresh water bodies has been, and continues to be, a major source of food for many parts of the world, providing 6.5% of global protein. Much of the long-distance trade of commodities (such as oil, natural gas, and manufactured products)
13653-759: The solar radiation allowed to reach ocean surfaces, resulting in a positive-feedback loop. Volcanoes emit a significant amount of microscopic gas and ash particles into the atmosphere when they erupt, which become atmospheric aerosols. By increasing the number of aerosol particles through gas-to-particle conversion processes, the contents of these eruptions can then affect the concentrations of potential cloud condensation nuclei (CCN) and ice nucleating particles (INP) , which in turn affects cloud properties and leads to changes in local or regional climate. Of these gases, sulfur dioxide, carbon dioxide, and water vapour are most commonly found in volcanic eruptions. While water vapour and carbon dioxide CCNs are naturally abundant in
13776-413: The subunits of these biomacromolecules shape protein folding , DNA base pairing , and other phenomena crucial to life ( hydrophobic effect ). Many organic substances (such as fats and oils and alkanes ) are hydrophobic , that is, insoluble in water. Many inorganic substances are insoluble too, including most metal oxides , sulfides , and silicates . Because of its polarity, a molecule of water in
13899-488: The surface of a planet is called the hydrosphere . Earth's approximate water volume (the total water supply of the world) is 1.386 billion cubic kilometres (333 million cubic miles). Liquid water is found in bodies of water , such as an ocean, sea, lake, river, stream, canal , pond, or puddle . The majority of water on Earth is seawater . Water is also present in the atmosphere in solid, liquid, and vapor states. It also exists as groundwater in aquifers . Water
14022-537: The surface temperature of 230 °C (446 °F) due to the increased atmospheric pressure of the CO 2 atmosphere. As the cooling continued, most CO 2 was removed from the atmosphere by subduction and dissolution in ocean water, but levels oscillated wildly as new surface and mantle cycles appeared. Geological evidence also helps constrain the time frame for liquid water existing on Earth. A sample of pillow basalt (a type of rock formed during an underwater eruption)
14145-403: The temperature can exceed 400 °C (752 °F). At sea level , the boiling point of water is 100 °C (212 °F). As atmospheric pressure decreases with altitude, the boiling point decreases by 1 °C every 274 meters. High-altitude cooking takes longer than sea-level cooking. For example, at 1,524 metres (5,000 ft), cooking time must be increased by a fourth to achieve
14268-492: The tropics since the 1970s. Globally there has been no statistically significant overall trend in precipitation over the past century, although trends have varied widely by region and over time. Eastern portions of North and South America, northern Europe, and northern and central Asia have become wetter. The Sahel, the Mediterranean, southern Africa and parts of southern Asia have become drier. There has been an increase in
14391-458: The upper atmosphere. As the pressure increases, ice forms other crystal structures . As of 2024, twenty have been experimentally confirmed and several more are predicted theoretically. The eighteenth form of ice, ice XVIII , a face-centred-cubic, superionic ice phase, was discovered when a droplet of water was subject to a shock wave that raised the water's pressure to millions of atmospheres and its temperature to thousands of degrees, resulting in
14514-541: The vicinity of cold fronts and near and poleward of surface warm fronts . Similar ascent is seen around tropical cyclones outside the eyewall , and in comma-head precipitation patterns around mid-latitude cyclones . A wide variety of weather can be found along an occluded front, with thunderstorms possible, but usually, their passage is associated with a drying of the air mass. Occluded fronts usually form around mature low-pressure areas. What separates rainfall from other precipitation types, such as ice pellets and snow,
14637-408: The warm conveyor belt), forcing a surface trough to continue into the cold sector on a similar curve to the occluded front. The front creates the portion of an occluded cyclone known as its comma head , due to the comma -like shape of the mid-tropospheric cloudiness that accompanies the feature. It can also be the focus of locally heavy precipitation, with thunderstorms possible if the atmosphere along
14760-554: The water droplets in a cloud to remain stationary. When air turbulence occurs, water droplets collide, producing larger droplets. As these larger water droplets descend, coalescence continues, so that drops become heavy enough to overcome air resistance and fall as rain. Coalescence generally happens most often in clouds above freezing (in their top) and is also known as the warm rain process. In clouds below freezing, when ice crystals gain enough mass they begin to fall. This generally requires more mass than coalescence when occurring between
14883-441: The winter. Water is a diamagnetic material. Though interaction is weak, with superconducting magnets it can attain a notable interaction. At a pressure of one atmosphere (atm), ice melts or water freezes (solidifies) at 0 °C (32 °F) and water boils or vapor condenses at 100 °C (212 °F). However, even below the boiling point, water can change to vapor at its surface by evaporation (vaporization throughout
15006-556: Was first used by Scottish chemist Robert Augus Smith in 1852. The pH of rain varies, especially due to its origin. On America's East Coast, rain that is derived from the Atlantic Ocean typically has a pH of 5.0–5.6; rain that comes across the continental from the west has a pH of 3.8–4.8; and local thunderstorms can have a pH as low as 2.0. Rain becomes acidic primarily due to the presence of two strong acids, sulfuric acid (H 2 SO 4 ) and nitric acid (HNO 3 ). Sulfuric acid
15129-809: Was recovered from the Isua Greenstone Belt and provides evidence that water existed on Earth 3.8 billion years ago. In the Nuvvuagittuq Greenstone Belt , Quebec, Canada, rocks dated at 3.8 billion years old by one study and 4.28 billion years old by another show evidence of the presence of water at these ages. If oceans existed earlier than this, any geological evidence has yet to be discovered (which may be because such potential evidence has been destroyed by geological processes like crustal recycling ). More recently, in August 2020, researchers reported that sufficient water to fill
#126873