Misplaced Pages

Red Deer Regional Airport

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Red Deer Regional Airport ( IATA : YQF , ICAO : CYQF ) is located 6 nautical miles (11 km; 6.9 mi) south southwest of Red Deer , Alberta , Canada . The airport serves Charter and General Aviation.

#23976

51-534: In October 2015, Red Deer Regional announced it was to undergo a $ 9.5 million expansion, including a 2,000 ft (610 m) extension of runway 16/34 (now 17/35), from 5,528 ft (1,685 m). Construction began in April 2016, and was completed on September 16, 2016. However, the extended runway, which measured 7,500 ft (2,300 m), was not posted in the Canada Flight Supplement until

102-443: A runway is a "defined rectangular area on a land aerodrome prepared for the landing and takeoff of aircraft ". Runways may be a human-made surface (often asphalt , concrete , or a mixture of both) or a natural surface ( grass , dirt , gravel , ice , sand or salt ). Runways, taxiways and ramps , are sometimes referred to as "tarmac", though very few runways are built using tarmac . Takeoff and landing areas defined on

153-411: A windsock beside a landing strip. Types of runway safety incidents include: The choice of material used to construct the runway depends on the use and the local ground conditions. For a major airport, where the ground conditions permit, the most satisfactory type of pavement for long-term minimum maintenance is concrete . Although certain airports have used reinforcement in concrete pavements, this

204-480: A 7 will indicate 7,000 ft (2,134 m) remaining. The runway threshold is marked by a line of green lights. [REDACTED] There are three types of runways: Waterways may be unmarked or marked with buoys that follow maritime notation instead. For runways and taxiways that are permanently closed, the lighting circuits are disconnected. The runway threshold, runway designation, and touchdown markings are obliterated and yellow "Xs" are placed at each end of

255-731: A base until 1990, when it was made a detachment of CFB Edmonton . The base hosted Cadet Summer Training from the Second World War until 2014. The former base was closed in 1994 and the former Married Quarters were renamed from Mynarski Park to Springbrook in 1995. The former military base was converted into an industrial park known as Harvard Park. Time Air served the airport during the 1970s and early 1980s with nonstop flights to Calgary International Airport (YYC) and Edmonton Municipal Airport (YXD) operated with de Havilland DHC-6 Twin Otter turboprop aircraft. Air Canada later served

306-490: A flying club, COPA Flight 92-Red Deer Flying Club. As well as the FBO operated by Tucana Aviation. The airport is also home to AirSpray Air Tankers and Buffalo Airways Maintenance, two avionics repair shops, QF Avionics and Titan Avionics as well as two light aircraft maintenance facilities, Hillman Air Ltd and Lorne Provincial Aircraft Maintenance. An aircraft paint facility rounds out the services provided. During World War II ,

357-486: A landing site for the Space Shuttle . Takeoff and landing distances available are given using one of the following terms: There are standards for runway markings. There are runway markings and signs on most large runways. Larger runways have a distance remaining sign (black box with white numbers). This sign uses a single number to indicate the remaining distance of the runway in thousands of feet. For example,

408-451: A new $ 3 million terminal expansion project to accommodate 189 passengers, the number of passengers on a fully loaded Boeing 737 Max. It was supposed to take place from the spring to fall of 2022 but the rehabilitation of the taxiway, apron and terminal expansion have been pushed back until 2023 due to heavy rain in June and July. The airport is open 24/7 and has a control tower on field that

459-542: A periodic basis. Fields with very low traffic of light planes may use a sod surface. Some runways make use of salt flats. For pavement designs, borings are taken to determine the subgrade condition, and based on the relative bearing capacity of the subgrade, the specifications are established. For heavy-duty commercial aircraft, the pavement thickness, no matter what the top surface, varies from 10 to 48 in (25 to 122 cm), including subgrade. Airport pavements have been designed by two methods. The first, Westergaard ,

510-415: A third parallel runway was opened at Phoenix Sky Harbor International Airport in 2000 to the south of existing 8R/26L—rather than confusingly becoming the "new" 8R/26L it was instead designated 7R/25L, with the former 8R/26L becoming 7L/25R and 8L/26R becoming 8/26. Suffixes may also be used to denote special use runways. Airports that have seaplane waterways may choose to denote the waterway on charts with

561-445: Is an extrapolation of the original test results, which are not applicable to modern aircraft pavements or to modern aircraft landing gear . Some designs were made by a mixture of these two design theories. A more recent method is an analytical system based on the introduction of vehicle response as an important design parameter. Essentially it takes into account all factors, including the traffic conditions, service life, materials used in

SECTION 10

#1732800741024

612-469: Is based on the assumption that the pavement is an elastic plate supported on a heavy fluid base with a uniform reaction coefficient known as the K value . Experience has shown that the K values on which the formula was developed are not applicable for newer aircraft with very large footprint pressures. The second method is called the California bearing ratio and was developed in the late 1940s. It

663-399: Is considered to have the longest takeoff distance of the more common aircraft types and has set the standard for runway lengths of larger international airports. At sea level , 3,200 m (10,500 ft) can be considered an adequate length to land virtually any aircraft. For example, at O'Hare International Airport , when landing simultaneously on 4L/22R and 10/28 or parallel 9R/27L, it

714-418: Is generally found to be unnecessary, with the exception of expansion joints across the runway where a dowel assembly, which permits relative movement of the concrete slabs, is placed in the concrete. Where it can be anticipated that major settlements of the runway will occur over the years because of unstable ground conditions, it is preferable to install asphalt concrete surface, as it is easier to patch on

765-408: Is included for all ICAO and some U.S. military airports (such as Edwards Air Force Base ). However, most U.S.  civil aviation airports drop the leading zero as required by FAA regulation. This also includes some military airfields such as Cairns Army Airfield . This American anomaly may lead to inconsistencies in conversations between American pilots and controllers in other countries. It

816-454: Is most nearly aligned with the wind. Airports with one runway are often constructed to be aligned with the prevailing wind . Compiling a wind rose is one of the preliminary steps taken in constructing airport runways. Wind direction is given as the direction the wind is coming from : a plane taking off from runway 09 faces east, into an "east wind" blowing from 090°. Originally in the 1920s and 1930s, airports and air bases (particularly in

867-447: Is operational 13-05Z(6am-10pm Local). The airport is equipped with HIRL (High intensity runway lighting) on runway 17/35 and MIRL (Medium intensity runway lighting) on runway 12/30. Runway 17/35 is equipped with PAPI (precision approach path indicator) and REIL (runway end identifier lights). The airport is equipped with non-precision instrument approaches on Runway 17/35. The airport hosts two flight schools, Montair and Skywings; and

918-737: Is published, separately in English and French, as a paper book by Nav Canada and is issued once every 56 days on the ICAO AIRAC schedule. The CFS was published by Natural Resources Canada on behalf of Transport Canada and the Department of National Defence until 15 March 2007 edition, at which time Nav Canada took over production. The CFS presents runway data, arrival and departure procedures, air traffic control (ATC) and other radio frequencies and services such as fuel , hangarage that are available at each listed aerodrome. As well,

969-578: Is routine for arrivals from East Asia , which would normally be vectored for 4L/22R (2,300 m (7,546 ft)) or 9R/27L (2,400 m (7,874 ft)) to request 28R (4,000 m (13,123 ft)). It is always accommodated, although occasionally with a delay. Another example is that the Luleå Airport in Sweden was extended to 3,500 m (11,483 ft) to allow any fully loaded freight aircraft to take off. These distances are also influenced by

1020-451: Is slow, runway designation changes are uncommon, and not welcomed, as they require an accompanying change in aeronautical charts and descriptive documents. When a runway designation does change, especially at major airports, it is often done at night, because taxiway signs need to be changed and the numbers at each end of the runway need to be repainted to the new runway designators. In July 2009 for example, London Stansted Airport in

1071-459: Is usually adequate for aircraft weights below approximately 100,000 kg (220,000 lb). Larger aircraft including widebodies will usually require at least 2,400 m (7,900 ft) at sea level. International widebody flights, which carry substantial amounts of fuel and are therefore heavier, may also have landing requirements of 3,200 m (10,500 ft) or more and takeoff requirements of 4,000 m (13,000 ft). The Boeing 747

SECTION 20

#1732800741024

1122-557: Is very common in a country such as Canada for a controller to clear an incoming American aircraft to, for example, runway 04, and the pilot read back the clearance as runway 4. In flight simulation programs those of American origin might apply U.S. usage to airports around the world. For example, runway 05 at Halifax will appear on the program as the single digit 5 rather than 05. Military airbases may include smaller paved runways known as "assault strips" for practice and training next to larger primary runways. These strips eschew

1173-515: The CFS contains useful reference pages, including interception instructions for civil aircraft, chart updating data and search and rescue information. Most pilots flying in Canada carry a copy of the CFS in case a weather or mechanical diversion to another airport becomes necessary. The Canada Flight Supplement is made up of seven sections: Carrying "current aeronautical charts and publications covering

1224-594: The Nav Canada Collaborative Flight Planning Services (CFPS) or by contacting the appropriate regional Nav Canada Flight Information Centre . While Nav Canada's CFS has the monopoly on paper-version airport directories in Canada, there are several competing internet publications, including the Canadian Owners and Pilots Association 's Places to Fly user-editable airport directory. Nav Canada also publishes

1275-659: The United Kingdom changed its runway designations from 05/23 to 04/22 during the night. Runway dimensions vary from as small as 245 m (804 ft) long and 8 m (26 ft) wide in smaller general aviation airports, to 5,500 m (18,045 ft) long and 80 m (262 ft) wide at large international airports built to accommodate the largest jets , to the huge 11,917 m × 274 m (39,098 ft × 899 ft) lake bed runway 17/35 at Edwards Air Force Base in California – developed as

1326-468: The United Kingdom) were built in a triangle-like pattern of three runways at 60° angles to each other. The reason was that aviation was only starting, and although it was known that wind affected the runway distance required, not much was known about wind behaviour. As a result, three runways in a triangle-like pattern were built, and the runway with the heaviest traffic would eventually expand into

1377-585: The Water Aerodrome Supplement (WAS) (French: Canada Supplément hydroaérodromes ), as a single volume in English and French. This contains information on all Canadian water aerodromes as shown on visual flight rules (VFR) charts and other information such as navaids . The WAS is published on an annual basis. Runway According to the International Civil Aviation Organization (ICAO),

1428-559: The aircraft tyres. To maintain the macrotexturing built into the runway by the grooves, maintenance crews engage in airfield rubber removal or hydrocleaning in order to meet required FAA , or other aviation authority friction levels. Subsurface underdrains help provide extended life and excellent and reliable pavement performance. At the Hartsfield Atlanta, GA airport the underdrains usually consist of trenches 18 in (46 cm) wide and 48 in (120 cm) deep from

1479-655: The airport but then dropped its three daily flights between Calgary and Red Deer on November 1, 2018. Canada Flight Supplement The Canada Flight Supplement ( CFS ) (French: Supplément de vol Canada ) is a joint civil/military publication and is a supplement of the Aeronautical Information Publication (AIP Canada). It is the nation's official airport directory. It contains information on all registered Canadian and certain Atlantic aerodromes and certified airports. The CFS

1530-584: The airport was RCAF Station Penhold . The airbase was home to the Royal Air Force, No. 36 Service Flying Training School (SFTS). After the war the base was closed. The base was reopened in 1952 to train NATO pilots. The airfield side of the base was closed in 1965, and the City of Red Deer took over operation of the airport in 1966. The non-airport side of the base was renamed CFB Penhold in 1966 and remained

1581-447: The airport's main runway, while the other two runways would be either abandoned or converted into taxiways. Runways are named by a number between 01 and 36, which is generally the magnetic azimuth of the runway's heading in deca degrees . This heading differs from true north by the local magnetic declination . A runway numbered 09 points east (90°), runway 18 is south (180°), runway 27 points west (270°) and runway 36 points to

Red Deer Regional Airport - Misplaced Pages Continue

1632-543: The ambiguity that would result with more than three parallel runways. For example, in Los Angeles, this system results in runways 6L, 6R, 7L, and 7R, even though all four runways are actually parallel at approximately 69°. At Dallas/Fort Worth International Airport , there are five parallel runways, named 17L, 17C, 17R, 18L, and 18R, all oriented at a heading of 175.4°. Occasionally, an airport with only three parallel runways may use different runway identifiers, such as when

1683-411: The construction, and, especially important, the dynamic response of the vehicles using the landing area. Because airport pavement construction is so expensive, manufacturers aim to minimize aircraft stresses on the pavement. Manufacturers of the larger planes design landing gear so that the weight of the plane is supported on larger and more numerous tires. Attention is also paid to the characteristics of

1734-418: The edition dated 0901Z 2 March 2017 to 0901Z 27 April 2017. This allowed the airport to accommodate larger aircraft. In February 2022, The Government of Alberta announced $ 7.5 million of funding towards an $ 18 million Expansion and Rehabilitation Project that involves the widening of runway 17/35 from 100 ft (30 m) to 150 ft (46 m). The rehabilitation of taxiway Bravo and apron 1, as well as

1785-638: The following: According to Transport Canada 's regulations, the runway-edge lighting must be visible for at least 2 mi (3 km). Additionally, a new system of advisory lighting, runway status lights , is currently being tested in the United States. The edge lights must be arranged such that: Typically the lights are controlled by a control tower , a flight service station or another designated authority. Some airports/airfields (particularly uncontrolled ones ) are equipped with pilot-controlled lighting , so that pilots can temporarily turn on

1836-496: The lack of designated landing direction. If there is more than one runway pointing in the same direction (parallel runways), each runway is identified by appending left (L), center (C) and right (R) to the end of the runway number to identify its position (when facing its direction)—for example, runways one-five-left (15L), one-five-center (15C), and one-five-right (15R). Runway zero-three-left (03L) becomes runway two-one-right (21R) when used in

1887-432: The landing gear itself, so that adverse effects on the pavement are minimized. Sometimes it is possible to reinforce a pavement for higher loading by applying an overlay of asphaltic concrete or portland cement concrete that is bonded to the original slab. Post-tensioning concrete has been developed for the runway surface. This permits the use of thinner pavements and should result in longer concrete pavement life. Because of

1938-409: The lights when the relevant authority is not available. This avoids the need for automatic systems or staff to turn the lights on at night or in other low visibility situations. This also avoids the cost of having the lighting system on for extended periods. Smaller airports may not have lighted runways or runway markings. Particularly at private airfields for light planes, there may be nothing more than

1989-458: The nearest 10°, this affects some runways sooner than others. For example, if the magnetic heading of a runway is 233°, it is designated Runway 23. If the magnetic heading changes downwards by 5 degrees to 228°, the runway remains Runway 23. If on the other hand the original magnetic heading was 226° (Runway 23), and the heading decreased by only 2 degrees to 224°, the runway becomes Runway 22. Because magnetic drift itself

2040-521: The need for "distinctly marked and carefully prepared landing places, [but] the preparing of the surface of reasonably flat ground [is] an expensive undertaking [and] there would also be a continuous expense for the upkeep." For fixed-wing aircraft , it is advantageous to perform takeoffs and landings into the wind to reduce takeoff or landing roll and reduce the ground speed needed to attain flying speed . Larger airports usually have several runways in different directions, so that one can be selected that

2091-581: The north (360° rather than 0°). When taking off from or landing on runway 09, a plane is heading around 90° (east). A runway can normally be used in both directions, and is named for each direction separately: e.g., "runway 15" in one direction is "runway 33" when used in the other. The two numbers differ by 18 (= 180°). For clarity in radio communications, each digit in the runway name is pronounced individually: runway one-five, runway three-three, etc. (instead of "fifteen" or "thirty-three"). A leading zero, for example in "runway zero-six" or "runway zero-one-left",

Red Deer Regional Airport - Misplaced Pages Continue

2142-589: The opposite direction (derived from adding 18 to the original number for the 180° difference when approaching from the opposite direction). In some countries, regulations mandate that where parallel runways are too close to each other, only one may be used at a time under certain conditions (usually adverse weather ). At large airports with four or more parallel runways (for example, at Chicago O'Hare , Los Angeles , Detroit Metropolitan Wayne County , Hartsfield-Jackson Atlanta , Denver , Dallas–Fort Worth and Orlando ), some runway identifiers are shifted by 1 to avoid

2193-574: The route of the proposed flight and any probable diversionary route" is a requirement under CAR 602.60 (1) (b) for night VFR, VFR over-the-top and instrument flight rules (IFR) flights. This Canadian Aviation Regulation (CAR) does not specifically require carriage of a copy of the CFS, but that is one way to satisfy the regulation. Because information in the CFS may be out of date, particularly with regard to such issues as runway closures and fuel availability, pilots should check NOTAMs before each flight. NOTAM information in Canada can be obtained from

2244-478: The runway grade (slope) such that, for example, each 1 percent of runway down slope increases the landing distance by 10 percent. An aircraft taking off at a higher altitude must do so at reduced weight due to decreased density of air at higher altitudes, which reduces engine power and wing lift. An aircraft must also take off at a reduced weight in hotter or more humid conditions (see density altitude ). Most commercial aircraft carry manufacturer's tables showing

2295-406: The runway and at 1,000 ft (305 m) intervals. A line of lights on an airfield or elsewhere to guide aircraft in taking off or coming in to land or an illuminated runway is sometimes also known as a flare path . Runway lighting is used at airports during periods of darkness and low visibility. Seen from the air, runway lights form an outline of the runway. A runway may have some or all of

2346-623: The standard numerical naming convention and instead employ the runway's full three digit heading; examples include Dobbins Air Reserve Base 's Runway 110/290 and Duke Field 's Runway 180/360. Runways with non-hard surfaces, such as small turf airfields and waterways for seaplanes , may use the standard numerical scheme or may use traditional compass point naming, examples include Ketchikan Harbor Seaplane Base 's Waterway E/W. Airports with unpredictable or chaotic water currents, such as Santa Catalina Island 's Pebbly Beach Seaplane Base, may designate their landing area as Waterway ALL/WAY to denote

2397-414: The suffix T; this is advantageous for certain airfields in the far north such as Thule Air Base (08T/26T). Runway designations may change over time because Earth's magnetic lines slowly drift on the surface and the magnetic direction changes. Depending on the airport location and how much drift occurs, it may be necessary to change the runway designation. As runways are designated with headings rounded to

2448-577: The suffix W; such as Daniel K. Inouye International Airport in Honolulu and Lake Hood Seaplane Base in Anchorage . Small airports that host various forms of air traffic may employ additional suffixes to denote special runway types based on the type of aircraft expected to use them, including STOL aircraft (S), gliders (G), rotorcraft (H), and ultralights (U). Runways that are numbered relative to true north rather than magnetic north will use

2499-652: The surface of water for seaplanes are generally referred to as waterways . Runway lengths are now commonly given in meters worldwide , except in North America where feet are commonly used. In 1916, in a World War I war effort context, the first concrete-paved runway was built in Clermont-Ferrand in France , allowing local company Michelin to manufacture Bréguet Aviation military aircraft. In January 1919, aviation pioneer Orville Wright underlined

2550-441: The susceptibility of thinner pavements to frost heave , this process is generally applicable only where there is no appreciable frost action . Runway pavement surface is prepared and maintained to maximize friction for wheel braking. To minimize hydroplaning following heavy rain, the pavement surface is usually grooved so that the surface water film flows into the grooves and the peaks between grooves will still be in contact with

2601-547: The top of the pavement. A perforated plastic tube (5.9 in (15 cm) in diameter) is placed at the bottom of the ditch. The ditches are filled with gravel size crushed stone. Excessive moisture under a concrete pavement can cause pumping, cracking, and joint failure. In aviation charts, the surface type is usually abbreviated to a three-letter code. The most common hard surface types are asphalt and concrete. The most common soft surface types are grass and gravel. A runway of at least 1,800 m (5,900 ft) in length

SECTION 50

#1732800741024
#23976