FM broadcasting is a method of radio broadcasting that uses frequency modulation ( FM ) of the radio broadcast carrier wave. Invented in 1933 by American engineer Edwin Armstrong , wide-band FM is used worldwide to transmit high-fidelity sound over broadcast radio . FM broadcasting offers higher fidelity—more accurate reproduction of the original program sound—than other broadcasting techniques, such as AM broadcasting . It is also less susceptible to common forms of interference , having less static and popping sounds than are often heard on AM. Therefore, FM is used for most broadcasts of music and general audio (in the audio spectrum). FM radio stations use the very high frequency range of radio frequencies .
91-531: WLVM (98.3 FM ) is an American radio station licensed to serve the community of Chickasaw, Alabama , and broadcasting to the Mobile metropolitan area . The station is owned by the Educational Media Foundation . WLVM began broadcasting a Christian Contemporary music format branded as " K-LOVE " on July 15, 2012. The shift from the previous urban adult contemporary music format was
182-399: A 500 kHz frequency separation even when closer frequency spacing is technically permitted. The ITU publishes Protection Ratio graphs, which give the minimum spacing between frequencies based on their relative strengths. Only broadcast stations with large enough geographic separations between their coverage areas can operate on the same or close frequencies. Frequency modulation or FM
273-539: A brief return to WOMC-FM in Detroit, Michigan . In July 1986, EJM Broadcasting sold WDLT to JAB Broadcasting Co., owned by J. Alex Bowab. One year later, in July 1987, control of the station transferred from JAB Broadcasting Co. to JAB Broadcasting Inc. The station changed hands in July 1992 from JAB Broadcasting Inc. to United Broadcasting, Inc. The new owners adopted an Urban Adult Contemporary/Jazz format. In August 1993,
364-402: A fax program. The original subcarrier frequency used at KE2XCC was 27.5 kHz. The IF bandwidth was ±5 kHz, as the only goal at the time was to relay AM radio-quality audio. This transmission system used 75 μs audio pre-emphasis like the main monaural audio and subsequently the multiplexed stereo audio. In the late 1950s, several systems to add stereo to FM radio were considered by
455-563: A letter to the editor of Wireless Engineer in 1942. For example, the approximate geometric mean of band 7 is 10 MHz, or 10 Hz. The band name "tremendously low frequency" (TLF) has been used for frequencies from 1–3 Hz (wavelengths from 300,000–100,000 km), but the term has not been defined by the ITU. Frequency bands in the microwave range are designated by letters. This convention began around World War II with military designations for frequencies used in radar , which
546-489: A light music station. Initial license holder was broadcaster W.H. ("Bill") Phillips, who opened the station on a tiny patch of land annexed to the city of Chickasaw that actually was located in Mobile. Programmed by radio personality Bob Martin from Detroit, Michigan , it transmitted with a 3,000-watt signal. Despite outperforming crosstown rival WLPR-FM in its first ratings period, the station's ownership decided to transition to
637-490: A move to 2.4 GHz spread spectrum RC control systems. Licensed amateur radio operators use portions of the 6-meter band in North America. Industrial remote control of cranes or railway locomotives use assigned frequencies that vary by area. Radar applications use relatively high power pulse transmitters and sensitive receivers, so radar is operated on bands not used for other purposes. Most radar bands are in
728-671: A multi-station deal. As a result, several format shifts were scheduled to take place simultaneously at noon on July 15, 2012. The urban AC format on WDLT-FM moved to WABD (now WDLT-FM , 104.1 FM), the CHR format on WABD moved to WLVM (now WABD , 97.5 FM), and the Christian programming on WLVM moved to WDLT-FM (now WLVM, 98.3 FM). The FCC accepted the WLVM license transfer application on July 10, 2012, and changed its call sign to WABD on July 16, 2012, but as of July 17, 2012, had yet to approve
819-493: A new country music format and renamed it "Q Country," facing tough local competition from market leader WKSJ-FM. In January 1984, WJQY was sold by Phillips Radio Inc. to EJM Broadcasting, owned by New Orleans, Louisiana , broadcaster Ed Muniz.The call sign was changed to WDLT on February 15, 1984, and the format was switched to light rock . The staff underwent changes, with Bob Martin moving to WKSJ-FM (as personality Kelly Martin) and later shifting to WMXC (as Robert Gauge), with
910-609: A new transmitter and an authorization to increase the ERP to 6,000 watts boosted coverage. In May 1997 United Broadcasting reached an agreement to sell WDLT to April Broadcasting, Inc. The deal was approved by the FCC on July 8, 1997, and the transaction was consummated on October 31, 1997. When AM sister station WHOZ changed its callsign to WDLT, the FM station was assigned the WDLT-FM callsigns by
1001-557: A program feed for AM transmitters of AM/FM stations. SCA subcarriers are typically 67 kHz and 92 kHz. Initially the users of SCA services were private analog audio channels which could be used internally or leased, for example Muzak -type services. There were experiments with quadraphonic sound. If a station does not broadcast in stereo, everything from 23 kHz on up can be used for other services. The guard band around 19 kHz (±4 kHz) must still be maintained, so as not to trigger stereo decoders on receivers. If there
SECTION 10
#17327971909071092-430: A result of a multi-station deal that saw the programming formerly on WDLT-FM move to WABD (now WDLT-FM , 104.1 FM), the contemporary hit radio format on WABD moved to WLVM (now WABD , 97.5 FM), and the Christian programming on WLVM moved to WDLT-FM. In 1980, this station was constructed with the assigned callsign WTUX. By the time it signed on, the call sign had been changed to WJQY and the station operated as "Joy-FM",
1183-417: A stereo/mono switch to allow listening in mono when reception conditions are less than ideal, and most car radios are arranged to reduce the separation as the signal-to-noise ratio worsens, eventually going to mono while still indicating a stereo signal is received. As with monaural transmission, it is normal practice to apply pre-emphasis to the left and right channels before encoding and to apply de-emphasis at
1274-407: A traditional name. For example, the term high frequency (HF) designates the wavelength range from 100 to 10 metres, corresponding to a frequency range of 3 to 30 MHz. This is just a symbol and is not related to allocation; the ITU further divides each band into subbands allocated to different services. Above 300 GHz, the absorption of electromagnetic radiation by Earth's atmosphere
1365-408: Is a form of modulation which conveys information by varying the frequency of a carrier wave ; the older amplitude modulation or AM varies the amplitude of the carrier, with its frequency remaining constant. With FM, frequency deviation from the assigned carrier frequency at any instant is directly proportional to the amplitude of the (audio) input signal, determining the instantaneous frequency of
1456-420: Is a small frequency band (a contiguous section of the range of the radio spectrum) in which channels are usually used or set aside for the same purpose. To prevent interference and allow for efficient use of the radio spectrum, similar services are allocated in bands. For example, broadcasting, mobile radio, or navigation devices, will be allocated in non-overlapping ranges of frequencies. For each radio band,
1547-525: Is added. VHF radio waves usually do not travel far beyond the visual horizon , so reception distances for FM stations are typically limited to 30–40 miles (50–60 km). They can also be blocked by hills and to a lesser extent by buildings. Individuals with more-sensitive receivers or specialized antenna systems, or who are located in areas with more favorable topography, may be able to receive useful FM broadcast signals at considerably greater distances. The knife edge effect can permit reception where there
1638-401: Is as follows: The normal stereo signal can be considered as switching between left and right channels at 38 kHz, appropriately band-limited. The quadraphonic signal can be considered as cycling through LF, LR, RF, RR, at 76 kHz. Early efforts to transmit discrete four-channel quadraphonic music required the use of two FM stations; one transmitting the front audio channels, the other
1729-422: Is authorized for "hybrid" mode operation, wherein both the conventional analog FM carrier and digital sideband subcarriers are transmitted. The output power of an FM broadcasting transmitter is one of the parameters that governs how far a transmission will cover. The other important parameters are the height of the transmitting antenna and the antenna gain . Transmitter powers should be carefully chosen so that
1820-466: Is claimed that no difference can be heard with most newer receivers. At present, the FCC rules do not allow this mode of stereo operation. In 1969, Louis Dorren invented the Quadraplex system of single station, discrete, compatible four-channel FM broadcasting. There are two additional subcarriers in the Quadraplex system, supplementing the single one used in standard stereo FM. The baseband layout
1911-508: Is defined by the time constant of a simple RC filter circuit. In most of the world a 50 μs time constant is used. In the Americas and South Korea , 75 μs is used. This applies to both mono and stereo transmissions. For stereo, pre-emphasis is applied to the left and right channels before multiplexing . The use of pre-emphasis becomes a problem because many forms of contemporary music contain more high-frequency energy than
SECTION 20
#17327971909072002-548: Is designed to be capable of use alongside ARI despite using identical subcarrier frequencies. In the United States and Canada , digital radio services are deployed within the FM band rather than using Eureka 147 or the Japanese standard ISDB . This in-band on-channel approach, as do all digital radio techniques, makes use of advanced compressed audio . The proprietary iBiquity system, branded as HD Radio ,
2093-429: Is limited to 30 Hz to 15 kHz to protect a 19 kHz pilot signal. The (L−R) signal, which is also limited to 15 kHz, is amplitude modulated onto a 38 kHz double-sideband suppressed-carrier (DSB-SC) signal, thus occupying 23 kHz to 53 kHz. A 19 kHz ± 2 Hz pilot tone , at exactly half the 38 kHz sub-carrier frequency and with a precise phase relationship to it, as defined by
2184-480: Is mainly the preserve of talk radio, news, sports, religious programming, ethnic (minority language) broadcasting and some types of minority interest music. This shift has transformed AM into the "alternative band" that FM once was. (Some AM stations have begun to simulcast on, or switch to, FM signals to attract younger listeners and aid reception problems in buildings, during thunderstorms, and near high-voltage wires. Some of these stations now emphasize their presence on
2275-671: Is no direct line of sight between broadcaster and receiver. The reception can vary considerably depending on the position. One example is the Učka mountain range, which makes constant reception of Italian signals from Veneto and Marche possible in a good portion of Rijeka , Croatia, despite the distance being over 200 km (125 miles). Other radio propagation effects such as tropospheric ducting and Sporadic E can occasionally allow distant stations to be intermittently received over very large distances (hundreds of miles), but cannot be relied on for commercial broadcast purposes. Good reception across
2366-531: Is no lower limit to the frequency of radio waves. Radio waves are defined by the ITU as: "electromagnetic waves of frequencies arbitrarily lower than 3000 GHz, propagated in space without artificial guide". At the high frequency end the radio spectrum is bounded by the infrared band. The boundary between radio waves and infrared waves is defined at different frequencies in different scientific fields. The terahertz band , from 300 gigahertz to 3 terahertz, can be considered either as microwaves or infrared. It
2457-496: Is only suitable for text. A few proprietary systems are used for private communications. A variant of RDS is the North American RBDS or "smart radio" system. In Germany the analog ARI system was used prior to RDS to alert motorists that traffic announcements were broadcast (without disturbing other listeners). Plans to use ARI for other European countries led to the development of RDS as a more powerful system. RDS
2548-515: Is open to anyone who does not carry a prohibition and can put up the appropriate licensing and royalty fees. In 2010 around 450 such licences were issued. Radio spectrum The radio spectrum is the part of the electromagnetic spectrum with frequencies from 3 Hz to 3,000 GHz (3 THz ). Electromagnetic waves in this frequency range, called radio waves , are widely used in modern technology, particularly in telecommunication . To prevent interference between different users,
2639-508: Is related to the transmitter 's RF power, the antenna gain , and antenna height . Interference from other stations is also a factor in some places. In the U.S, the FCC publishes curves that aid in calculation of this maximum distance as a function of signal strength at the receiving location. Computer modelling is more commonly used for this around the world. Many FM stations, especially those located in severe multipath areas, use extra audio compression /processing to keep essential sound above
2730-487: Is so great that the atmosphere is effectively opaque, until it becomes transparent again in the near-infrared and optical window frequency ranges. These ITU radio bands are defined in the ITU Radio Regulations . Article 2, provision No. 2.1 states that "the radio spectrum shall be subdivided into nine frequency bands, which shall be designated by progressive whole numbers in accordance with
2821-630: Is stereo, there will typically be a guard band between the upper limit of the DSBSC stereo signal (53 kHz) and the lower limit of any other subcarrier. Digital data services are also available. A 57 kHz subcarrier ( phase locked to the third harmonic of the stereo pilot tone) is used to carry a low-bandwidth digital Radio Data System signal, providing extra features such as station name, alternative frequency (AF), traffic data for satellite navigation systems and radio text (RT). This narrowband signal runs at only 1,187.5 bits per second , thus
WLVM - Misplaced Pages Continue
2912-824: Is the decreasing bandwidth available at low frequencies, which limits the data rate that can be transmitted. Below about 30 kHz, audio modulation is impractical and only slow baud rate data communication is used. The lowest frequencies that have been used for radio communication are around 80 Hz, in ELF submarine communications systems built by a few nations' navies to communicate with their submerged submarines hundreds of meters underwater. These employ huge ground dipole antennas 20–60 km long excited by megawatts of transmitter power, and transmit data at an extremely slow rate of about 1 bit per minute (17 millibits per second , or about 5 minutes per character). The highest frequencies useful for radio communication are limited by
3003-561: Is the highest band categorized as radio waves by the International Telecommunication Union . but spectroscopic scientists consider these frequencies part of the far infrared and mid infrared bands. Because it is a fixed resource, the practical limits and basic physical considerations of the radio spectrum, the frequencies which are useful for radio communication , are determined by technological limitations which are impossible to overcome. So although
3094-402: Is the sum of twice the maximum deviation and twice the maximum modulating frequency. For a transmission that includes RDS this would be 2 × 75 kHz + 2 × 60 kHz = 270 kHz . This is also known as the necessary bandwidth . Random noise has a triangular spectral distribution in an FM system, with the effect that noise occurs predominantly at the higher audio frequencies within
3185-555: Is used in coastal waters and relatively short-range communication between vessels and to shore stations. Radios are channelized, with different channels used for different purposes; marine Channel 16 is used for calling and emergencies. Amateur radio frequency allocations vary around the world. Several bands are common for amateurs worldwide, usually in the HF part of the spectrum. Other bands are national or regional allocations only due to differing allocations for other services, especially in
3276-754: Is usually a multiple of 100 kHz. In most of South Korea , the Americas , the Philippines , and the Caribbean , only odd multiples are used. Some other countries follow this plan because of the import of vehicles, principally from the United States, with radios that can only tune to these frequencies. In some parts of Europe , Greenland , and Africa , only even multiples are used. In the United Kingdom , both odd and even are used. In Italy , multiples of 50 kHz are used. In most countries
3367-831: The FCC . Included were systems from 14 proponents including Crosby, Halstead, Electrical and Musical Industries, Ltd ( EMI ), Zenith, and General Electric. The individual systems were evaluated for their strengths and weaknesses during field tests in Uniontown, Pennsylvania , using KDKA-FM in Pittsburgh as the originating station. The Crosby system was rejected by the FCC because it was incompatible with existing subsidiary communications authorization (SCA) services which used various subcarrier frequencies including 41 and 67 kHz. Many revenue-starved FM stations used SCAs for "storecasting" and other non-broadcast purposes. The Halstead system
3458-527: The Federal Communications Commission on January 31, 1998. (That AM station changed callsign again in 2007, first to WWFF then to the current WXQW .) In October 1999, control of WDLT-FM was transferred from M&F Associates L.P. to Cumulus Media, Inc. On July 9, 2012, Cumulus Broadcasting announced that WLVM (97.5 FM) had been sold by the Educational Media Foundation to its holding company, Cumulus Licensing, LLC, as part of
3549-582: The ITU and the local regulating agencies like the US Federal Communications Commission (FCC) and voluntary best practices help avoid interference. As a matter of convention, the ITU divides the radio spectrum into 12 bands, each beginning at a wavelength which is a power of ten (10 ) metres, with corresponding frequency of 3×10 hertz , and each covering a decade of frequency or wavelength. Each of these bands has
3640-595: The Light Programme , Third Programme and Home Service . These three networks used the sub-band 88.0–94.6 MHz. The sub-band 94.6–97.6 MHz was later used for BBC and local commercial services. However, only when commercial broadcasting was introduced to the UK in 1973 did the use of FM pick up in Britain. With the gradual clearance of other users (notably Public Services such as police, fire and ambulance) and
3731-543: The VHF and UHF parts of the radio spectrum. Citizens' band radio is allocated in many countries, using channelized radios in the upper HF part of the spectrum (around 27 MHz). It is used for personal, small business and hobby purposes. Other frequency allocations are used for similar services in different jurisdictions, for example UHF CB is allocated in Australia. A wide range of personal radio services exist around
WLVM - Misplaced Pages Continue
3822-440: The baseband . This can be offset, to a limited extent, by boosting the high frequencies before transmission and reducing them by a corresponding amount in the receiver. Reducing the high audio frequencies in the receiver also reduces the high-frequency noise. These processes of boosting and then reducing certain frequencies are known as pre-emphasis and de-emphasis , respectively. The amount of pre-emphasis and de-emphasis used
3913-679: The 85th floor of the Empire State Building in New York City . These FM multiplex transmissions started in November 1934 and consisted of the main channel audio program and three subcarriers : a fax program, a synchronizing signal for the fax program and a telegraph order channel. These original FM multiplex subcarriers were amplitude modulated. Two musical programs, consisting of both the Red and Blue Network program feeds of
4004-665: The FCC announced the reassignment of the FM band to 90 channels from 88–106 MHz (which was soon expanded to 100 channels from 88–108 MHz). This shift, which the AM-broadcaster RCA had pushed for, made all the Armstrong-era FM receivers useless and delayed the expansion of FM. In 1961 WEFM (in the Chicago area) and WGFM (in Schenectady, New York ) were reported as the first stereo stations. By
4095-496: The FCC that the system was compatible with existing two-channel stereo transmission and reception and that it did not interfere with adjacent stations. There were several variations on this system submitted by GE, Zenith, RCA, and Denon for testing and consideration during the National Quadraphonic Radio Committee field trials for the FCC. The original Dorren Quadraplex System outperformed all
4186-520: The FM band.) The medium wave band (known as the AM band because most stations using it employ amplitude modulation) was overcrowded in western Europe, leading to interference problems and, as a result, many MW frequencies are suitable only for speech broadcasting. Belgium , the Netherlands , Denmark and particularly Germany were among the first countries to adopt FM on a widespread scale. Among
4277-979: The FM radio band from 87.5-108.0 MHz to 76.1-108.0 MHz to enable the migration of AM radio stations in Brazilian capitals and large cities. FM broadcasting began in the late 1930s, when it was initiated by a handful of early pioneer experimental stations, including W1XOJ/W43B/WGTR (shut down in 1953) and W1XTG/ WSRS , both transmitting from Paxton, Massachusetts (now listed as Worcester, Massachusetts ); W1XSL/W1XPW/W65H/WDRC-FM/WFMQ/WHCN , Meriden, Connecticut; and W2XMN , KE2XCC , and WFMN , Alpine, New Jersey (owned by Edwin Armstrong himself, closed down upon Armstrong's death in 1954). Also of note were General Electric stations W2XDA Schenectady and W2XOY New Scotland, New York—two experimental FM transmitters on 48.5 MHz—which signed on in 1939. The two began regular programming, as W2XOY, on November 20, 1940. Over
4368-399: The FM transmitter. The terms composite , multiplex and even MPX are used interchangeably to describe this signal. The instantaneous deviation of the transmitter carrier frequency due to the stereo audio and pilot tone (at 10% modulation) is where A and B are the pre-emphasized left and right audio signals and f p {\displaystyle f_{p}} =19 kHz is
4459-456: The ITU has a band plan (or frequency plan ) which dictates how it is to be used and shared, to avoid interference and to set protocol for the compatibility of transmitters and receivers . Each frequency plan defines the frequency range to be included, how channels are to be defined, and what will be carried on those channels. Typical definitions set forth in a frequency plan are: The actual authorized frequency bands are defined by
4550-590: The NBC Radio Network, were simultaneously transmitted using the same system of subcarrier modulation as part of a studio-to-transmitter link system. In April 1935, the AM subcarriers were replaced by FM subcarriers, with much improved results. The first FM subcarrier transmissions emanating from Major Armstrong's experimental station KE2XCC at Alpine, New Jersey occurred in 1948. These transmissions consisted of two-channel audio programs, binaural audio programs and
4641-470: The VHF and UHF parts of the spectrum, are allocated for communication between fixed base stations and land mobile vehicle-mounted or portable transceivers. In the United States these services are informally known as business band radio. See also Professional mobile radio . Police radio and other public safety services such as fire departments and ambulances are generally found in the VHF and UHF parts of
SECTION 50
#17327971909074732-417: The absorption of microwave energy by the atmosphere. As frequency increases above 30 GHz (the beginning of the millimeter wave band), atmospheric gases absorb increasing amounts of power, so the power in a beam of radio waves decreases exponentially with distance from the transmitting antenna. At 30 GHz, useful communication is limited to about 1 km, but as frequency increases the range at which
4823-502: The allocation still dedicated to television, TV-band devices use channels without local broadcasters. The Apex band in the United States was a pre-WWII allocation for VHF audio broadcasting; it was made obsolete after the introduction of FM broadcasting. Airband refers to VHF frequencies 108 to 137 MHz, used for navigation and voice communication with aircraft. Trans-oceanic aircraft also carry HF radio and satellite transceivers. The greatest incentive for development of radio
4914-518: The background noise for listeners, often at the expense of overall perceived sound quality. In such instances, however, this technique is often surprisingly effective in increasing the station's useful range. The first radio station to broadcast in FM in Brazil was Rádio Imprensa, which began broadcasting in Rio de Janeiro in 1955, on the 102.1 MHz frequency, founded by businesswoman Anna Khoury. Due to
5005-431: The country is one of the main advantages over DAB/+ radio . This is still less than the range of AM radio waves, which because of their lower frequencies can travel as ground waves or reflect off the ionosphere , so AM radio stations can be received at hundreds (sometimes thousands) of miles. This is a property of the carrier wave's typical frequency (and power), not its mode of modulation. The range of FM transmission
5096-567: The extension of the FM band to 108.0 MHz between 1980 and 1995, FM expanded rapidly throughout the British Isles and effectively took over from LW and MW as the delivery platform of choice for fixed and portable domestic and vehicle-based receivers. In addition, Ofcom (previously the Radio Authority) in the UK issues on demand Restricted Service Licences on FM and also on AM (MW) for short-term local-coverage broadcasting which
5187-619: The following table". The table originated with a recommendation of the fourth CCIR meeting, held in Bucharest in 1937, and was approved by the International Radio Conference held at Atlantic City, NJ in 1947. The idea to give each band a number, in which the number is the logarithm of the approximate geometric mean of the upper and lower band limits in Hz, originated with B. C. Fleming-Williams, who suggested it in
5278-481: The formula below, is also generated. The pilot is transmitted at 8–10% of overall modulation level and used by the receiver to identify a stereo transmission and to regenerate the 38 kHz sub-carrier with the correct phase. The composite stereo multiplex signal contains the Main Channel (L+R), the pilot tone, and the (L−R) difference signal. This composite signal, along with any other sub-carriers, modulates
5369-482: The frequency of the pilot tone. Slight variations in the peak deviation may occur in the presence of other subcarriers or because of local regulations. Another way to look at the resulting signal is that it alternates between left and right at 38 kHz, with the phase determined by the 19 kHz pilot signal. Most stereo encoders use this switching technique to generate the 38 kHz subcarrier, but practical encoder designs need to incorporate circuitry to deal with
5460-421: The generation and transmission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU). Different parts of the radio spectrum are allocated by the ITU for different radio transmission technologies and applications; some 40 radiocommunication services are defined in the ITU's Radio Regulations (RR). In some cases, parts of
5551-513: The high import costs of FM radio receivers, transmissions were carried out in circuit closed to businesses and stores, which played ambient music offered by radio. Until 1976, Rádio Imprensa was the only station operating in FM in Brazil. From the second half of the 1970s onwards, FM radio stations began to become popular in Brazil, causing AM radio to gradually lose popularity. In 2021, the Brazilian Ministry of Communications expanded
SECTION 60
#17327971909075642-455: The largest use of these bands has been by short-range low-power communications systems, since users do not have to hold a radio operator's license. Cordless telephones , wireless computer networks , Bluetooth devices, and garage door openers all use the ISM bands. ISM devices do not have regulatory protection against interference from other users of the band. Bands of frequencies, especially in
5733-461: The late 1960s, FM had been adopted for broadcast of stereo "A.O.R.—' Album Oriented Rock ' Format", but it was not until 1978 that listenership to FM stations exceeded that of AM stations in North America. In most of the 70s FM was seen as highbrow radio associated with educational programming and classical music, which changed during the 1980s and 1990s when Top 40 music stations and later even country music stations largely abandoned AM for FM. Today AM
5824-501: The late 1970s, Dolby FM was similar to Dolby B but used a modified 25 μs pre-emphasis time constant and a frequency selective companding arrangement to reduce noise. The pre-emphasis change compensates for the excess treble response that otherwise would make listening difficult for those without Dolby decoders. A similar system named High Com FM was tested in Germany between July 1979 and December 1981 by IRT . It
5915-465: The left (L) and right (R) channels are algebraically encoded into sum (L+R) and difference (L−R) signals. A mono receiver will use just the L+R signal so the listener will hear both channels through the single loudspeaker. A stereo receiver will add the difference signal to the sum signal to recover the left channel, and subtract the difference signal from the sum to recover the right channel. The (L+R) signal
6006-480: The maximum permitted carrier deviation is invariably ±75 kHz, although a little higher is permitted in the United States when SCA systems are used. For a monophonic broadcast, again the most common permitted maximum deviation is ±75 kHz. However, some countries specify a lower value for monophonic broadcasts, such as ±50 kHz. The bandwidth of an FM transmission is given by the Carson bandwidth rule which
6097-427: The maximum permitted frequency error of the unmodulated carrier is specified, which typically should be within 2 kHz of the assigned frequency. There are other unusual and obsolete FM broadcasting standards in some countries, with non-standard spacings of 1, 10, 30, 74, 500, and 300 kHz. To minimise inter-channel interference, stations operating from the same or nearby transmitter sites tend to keep to at least
6188-474: The musical styles which prevailed at the birth of FM broadcasting. Pre-emphasizing these high-frequency sounds would cause excessive deviation of the FM carrier . Modulation control (limiter) devices are used to prevent this. Systems more modern than FM broadcasting tend to use either programme-dependent variable pre-emphasis; e.g., dbx in the BTSC TV sound system, or none at all. Pre-emphasis and de-emphasis
6279-453: The need to utilize it more effectively is driving modern telecommunications innovations such as trunked radio systems , spread spectrum , ultra-wideband , frequency reuse , dynamic spectrum management , frequency pooling, and cognitive radio . The frequency boundaries of the radio spectrum are a matter of convention in physics and are somewhat arbitrary. Since radio waves are the lowest frequency category of electromagnetic waves , there
6370-540: The next few years this station operated under the call signs W57A, W87A and WGFM, and moved to 99.5 MHz when the FM band was relocated to the 88–108 MHz portion of the radio spectrum. General Electric sold the station in the 1980s. Today this station is WRVE . Other pioneers included W2XQR/W59NY/WQXQ/WQXR-FM , New York; W47NV/WSM-FM Nashville, Tennessee (signed off in 1951); W1XER/W39B/WMNE , with studios in Boston and later Portland, Maine, but whose transmitter
6461-570: The others and was chosen as the national standard for Quadraphonic FM broadcasting in the United States. The first commercial FM station to broadcast quadraphonic program content was WIQB (now called WWWW-FM ) in Ann Arbor / Saline, Michigan under the guidance of Chief Engineer Brian Jeffrey Brown. Various attempts to add analog noise reduction to FM broadcasting were carried out in the 1970s and 1980s: A commercially unsuccessful noise reduction system used with FM radio in some countries during
6552-466: The radio spectrum are sold or licensed to operators of private radio transmission services (for example, cellular telephone operators or broadcast television stations). Ranges of allocated frequencies are often referred to by their provisioned use (for example, cellular spectrum or television spectrum). Because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and
6643-595: The radio spectrum is becoming increasingly congested, there is no possible way to add additional frequency bandwidth outside of that currently in use. The lowest frequencies used for radio communication are limited by the increasing size of transmitting antennas required. The size of antenna required to radiate radio power efficiently increases in proportion to wavelength or inversely with frequency. Below about 10 kHz (a wavelength of 30 km), elevated wire antennas kilometers in diameter are required, so very few radio systems use frequencies below this. A second limit
6734-507: The rear channels. A breakthrough came in 1970 when KIOI ( K-101 ) in San Francisco successfully transmitted true quadraphonic sound from a single FM station using the Quadraplex system under Special Temporary Authority from the FCC . Following this experiment, a long-term test period was proposed that would permit one FM station in each of the top 25 U.S. radio markets to transmit in Quadraplex. The test results hopefully would prove to
6825-559: The reasons for this were: Public service broadcasters in Ireland and Australia were far slower at adopting FM radio than those in either North America or continental Europe . Hans Idzerda operated a broadcasting station, PCGG , at The Hague from 1919 to 1924, which employed narrow-band FM transmissions. In the United Kingdom the BBC conducted tests during the 1940s, then began FM broadcasting in 1955, with three national networks:
6916-478: The receiver after decoding. In the U.S. around 2010, using single-sideband modulation for the stereo subcarrier was proposed. It was theorized to be more spectrum-efficient and to produce a 4 dB s/n improvement at the receiver, and it was claimed that multipath distortion would be reduced as well. A handful of radio stations around the country broadcast stereo in this way, under FCC experimental authority. It may not be compatible with very old receivers, but it
7007-570: The required area is covered without causing interference to other stations further away. Practical transmitter powers range from a few milliwatts to 80 kW. As transmitter powers increase above a few kilowatts, the operating costs become high and only viable for large stations. The efficiency of larger transmitters is now better than 70% (AC power in to RF power out) for FM-only transmission. This compares to 50% before high efficiency switch-mode power supplies and LDMOS amplifiers were used. Efficiency drops dramatically if any digital HD Radio service
7098-465: The sale of the station. WABD and WDLT-FM are being operated under local marketing agreements until the sales are approved and the transactions consummated. FM broadcasting Throughout the world, the FM broadcast band falls within the VHF part of the radio spectrum . Usually 87.5 to 108.0 MHz is used, or some portion of it, with few exceptions: The frequency of an FM broadcast station (more strictly its assigned nominal center frequency)
7189-595: The spectrum. Trunking systems are often used to make most efficient use of the limited number of frequencies available. The demand for mobile telephone service has led to large blocks of radio spectrum allocated to cellular frequencies . Reliable radio control uses bands dedicated to the purpose. Radio-controlled toys may use portions of unlicensed spectrum in the 27 MHz or 49 MHz bands, but more costly aircraft, boat, or land vehicle models use dedicated radio control frequencies near 72 MHz to avoid interference by unlicensed uses. The 21st century has seen
7280-462: The switching harmonics. Converting the multiplex signal back into left and right audio signals is performed by a decoder, built into stereo receivers. Again, the decoder can use a switching technique to recover the left and right channels. In addition, for a given RF level at the receiver, the signal-to-noise ratio and multipath distortion for the stereo signal will be worse than for the mono receiver. For this reason many stereo FM receivers include
7371-464: The term has not been defined by the ITU. Broadcast frequencies: Designations for television and FM radio broadcast frequencies vary between countries, see Television channel frequencies and FM broadcast band . Since VHF and UHF frequencies are desirable for many uses in urban areas, in North America some parts of the former television broadcasting band have been reassigned to cellular phone and various land mobile communications systems. Even within
7462-465: The transmitted signal. Because transmitted FM signals use significantly more bandwidth than AM signals, this form of modulation is commonly used with the higher ( VHF or UHF ) frequencies used by TV , the FM broadcast band , and land mobile radio systems . The maximum frequency deviation of the carrier is usually specified and regulated by the licensing authorities in each country. For a stereo broadcast,
7553-468: The waves can be received decreases. In the terahertz band above 300 GHz, the radio waves are attenuated to zero within a few meters due to the absorption of electromagnetic radiation by the atmosphere (mainly due to ozone , water vapor and carbon dioxide ), which is so great that it is essentially opaque to electromagnetic emissions, until it becomes transparent again near the near-infrared and optical window frequency ranges. A radio band
7644-422: The world, usually emphasizing short-range communication between individuals or for small businesses, simplified license requirements or in some countries covered by a class license, and usually FM transceivers using around 1 watt or less. The ISM bands were initially reserved for non-communications uses of RF energy, such as microwave ovens , radio-frequency heating, and similar purposes. However, in recent years
7735-616: Was atop the highest mountain in the northeast United States, Mount Washington , New Hampshire (shut down in 1948); and W9XAO/W55M/WTMJ-FM Milwaukee, Wisconsin (went off air in 1950). A commercial FM broadcasting band was formally established in the United States as of January 1, 1941, with the first fifteen construction permits announced on October 31, 1940. These stations primarily simulcast their AM sister stations, in addition to broadcasting lush orchestral music for stores and offices, classical music to an upmarket listenership in urban areas, and educational programming. On June 27, 1945
7826-530: Was based on the Telefunken High ;Com broadband compander system, but was never introduced commercially in FM broadcasting. Yet another system was the CX -based noise reduction system FMX implemented in some radio broadcasting stations in the United States in the 1980s. FM broadcasting has included subsidiary communications authorization (SCA) services capability since its inception, as it
7917-509: Was rejected due to lack of high frequency stereo separation and reduction in the main channel signal-to-noise ratio. The GE and Zenith systems, so similar that they were considered theoretically identical, were formally approved by the FCC in April 1961 as the standard stereo FM broadcasting method in the United States and later adopted by most other countries. It is important that stereo broadcasts be compatible with mono receivers. For this reason,
8008-613: Was seen as another service which licensees could use to create additional income. Use of SCAs was particularly popular in the US, but much less so elsewhere. Uses for such subcarriers include radio reading services for the blind , which became common and remain so, private data transmission services (for example sending stock market information to stockbrokers or stolen credit card number denial lists to stores, ) subscription commercial-free background music services for shops, paging ("beeper") services, alternative-language programming, and providing
8099-620: Was the first application of microwaves. There are several incompatible naming systems for microwave bands, and even within a given system the exact frequency range designated by a letter may vary somewhat between different application areas. One widely used standard is the IEEE radar bands established by the US Institute of Electrical and Electronics Engineers . The band name "tremendously low frequency" (TLF) has been used for frequencies from 1–3 Hz (wavelengths of 300,000–100,000 km), but
8190-478: Was the need to communicate with ships out of visual range of shore. From the very early days of radio, large oceangoing vessels carried powerful long-wave and medium-wave transmitters. High-frequency allocations are still designated for ships, although satellite systems have taken over some of the safety applications previously served by 500 kHz and other frequencies. 2182 kHz is a medium-wave frequency still used for marine emergency communication. Marine VHF radio
8281-446: Was used in the earliest days of FM broadcasting. According to a BBC report from 1946, 100 μs was originally considered in the US, but 75 μs subsequently adopted. Long before FM stereo transmission was considered, FM multiplexing of other types of audio-level information was experimented with. Edwin Armstrong, who invented FM, was the first to experiment with multiplexing, at his experimental 41 MHz station W2XDG located on
#906093