Misplaced Pages

Worcester Basin

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Subsidence is a general term for downward vertical movement of the Earth's surface, which can be caused by both natural processes and human activities. Subsidence involves little or no horizontal movement, which distinguishes it from slope movement .

#267732

63-603: The Worcester Basin or Worcester Graben is a sedimentary basin in central England, filled with mainly Permian and Triassic rocks. It trends roughly north-south and lies between the East Malverns Fault in the west and the Inkberrow Fault in the east. It forms part of a series of Permo-Triassic basins that stretch north-south across England, including the Cheshire Basin , Stafford Basin and

126-630: A comparative analysis of various land subsidence monitoring techniques. The results indicated that InSAR offered the highest coverage, lowest annual cost per point of information and the highest point density. Additionally, they found that, aside from continuous acquisition systems typically installed in areas with rapid subsidence, InSAR had the highest measurement frequencies. In contrast, leveling, non-permanent GNSS, and non-permanent extensometers generally provided only one or two measurements per year. These methods project future land subsidence trends by extrapolating from existing data, treating subsidence as

189-422: A convergent plate tectonic boundary in the gap between an active volcanic arc and the associated trench , thus above the subducting oceanic plate. The formation of a forearc basin is often created by the vertical growth of an accretionary wedge that acts as a linear dam, parallel to the volcanic arc, creating a depression in which sediments can accumulate. Trench basins are deep linear depressions formed where

252-542: A dip of about 45° to the east, with a maximum estimated throw of about 2.5 kilometres (1.6 mi). There is evidence from seismic reflection data that this fault was active as a thrust during the Variscan orogeny . The fault was then reactivated in extension during the early part of the development of the Worcester Graben, which initially had a half graben geometry. It shows some further reactivation during

315-771: A fluvial environment. The succession continues with the Early Triassic Wildmoor Sandstone Formation , followed by the Anisian (Middle Triassic) Bromsgrove Sandstone Formation, completing the Sherwood Sandstone Group (SSG) sequence in this basin. The overlying Mercia Mudstone Group (MMG) has the Tarporley Siltstone Formation locally at its base, but elsewhere it passes straight from the SSG into

378-459: A function solely of time. The extrapolation can be performed either visually or by fitting appropriate curves. Common functions used for fitting include linear, bilinear, quadratic, and/or exponential models. For example, this method has been successfully applied for predicting mining-induced subsidence. These approaches evaluate land subsidence based on its relationship with one or more influencing factors, such as changes in groundwater levels,

441-514: A high probability of preservation. In contrast, sedimentary basins formed on oceanic crust are likely to be destroyed by subduction . Continental margins formed when new ocean basins like the Atlantic are created as continents rift apart are likely to have lifespans of hundreds of millions of years, but may be only partially preserved when those ocean basins close as continents collide. Sedimentary basins are of great economic importance. Almost all

504-445: A load is placed on the lithosphere, it will tend to flex in the manner of an elastic plate. The magnitude of the lithospheric flexure is a function of the imposed load and the flexural rigidity of the lithosphere, and the wavelength of flexure is a function of flexural rigidity of the lithospheric plate. Flexural rigidity is in itself, a function of the lithospheric mineral composition, thermal regime, and effective elastic thickness of

567-606: A million, and their sedimentary fills range from one to almost twenty kilometers in thickness. A dozen or so common types of sedimentary basins are widely recognized and several classification schemes are proposed, however no single classification scheme is recognized as the standard. Most sedimentary basin classification schemes are based on one or more of these interrelated criteria: Although no one basin classification scheme has been widely adopted, several common types of sedimentary basins are widely accepted and well understood as distinct types. Over its complete lifespan

630-431: A number of years, a cumulative drying occurs as the tree grows. That can lead to the opposite of subsidence, known as heave or swelling of the soil, when the tree declines or is felled. As the cumulative moisture deficit is reversed, which can last up to 25 years, the surface level around the tree will rise and expand laterally. That often damages buildings unless the foundations have been strengthened or designed to cope with

693-665: A result of isostasy . The long-term preserved geologic record of a sedimentary basin is a large scale contiguous three-dimensional package of sedimentary rocks created during a particular period of geologic time, a 'stratigraphic succession', that geologists continue to refer to as a sedimentary basin even if it is no longer a bathymetric or topographic depression. The Williston Basin , Molasse basin and Magallanes Basin are examples of sedimentary basins that are no longer depressions. Basins formed in different tectonic regimes vary in their preservation potential . Intracratonic basins, which form on highly-stable continental interiors, have

SECTION 10

#1732772562268

756-489: A result of increased effective stress . In this way, land subsidence has the potential of becoming self-perpetuating, having rates up to 5 cm/yr. Water management used to be tuned primarily to factors such as crop optimization but, to varying extents, avoiding subsidence has come to be taken into account as well. When differential stresses exist in the Earth, these can be accommodated either by geological faulting in

819-658: A result of the closing of a major ocean through continental collision resulting from plate tectonics. As a result the sedimentary record of inactive passive margins often are found as thick sedimentary sequences in mountain belts. For example the passive margins of the ancient Tethys Ocean are found in the mountain belts of the Alps and Himalayas that formed when the Tethys closed. Many authors recognize two subtypes of foreland basins: Peripheral foreland basins Retroarc foreland basins A sedimentary basin formed in association with

882-575: A single sedimentary basin can go through multiple phases and evolve from one of these types to another, such as a rift process going to completion to form a passive margin. In this case the sedimentary rocks of the rift basin phase are overlain by those rocks deposited during the passive margin phase. Hybrid basins where a single regional basin results from the processes that are characteristic of multiple of these types are also possible. Terrestrial rift valleys Proto-oceanic rift troughs Passive margins are long-lived and generally become inactive only as

945-555: A solidified crust of rock; mining; pumping of subsurface fluids, such as groundwater or petroleum ; or warping of the Earth's crust by tectonic forces. Subsidence resulting from tectonic deformation of the crust is known as tectonic subsidence and can create accommodation for sediments to accumulate and eventually lithify into sedimentary rock . Ground subsidence is of global concern to geologists , geotechnical engineers , surveyors , engineers , urban planners , landowners, and

1008-404: A subducting oceanic plate descends into the mantle, beneath the overriding continental (Andean type) or oceanic plate (Mariana type). Trenches form in the deep ocean but, particularly where the overriding plate is continental crust they can accumulate thick sequences of sediments from eroding coastal mountains. Smaller 'trench slope basins' can form in association with a trench can form directly atop

1071-525: Is a piece of rubber, which thins in the middle when stretched.) An example of a basin caused by lithospheric stretching is the North Sea – also an important location for significant hydrocarbon reserves. Another such feature is the Basin and Range Province which covers most of Nevada, forming a series of horst and graben structures. Tectonic extension at divergent boundaries where continental rifting

1134-591: Is large enough and long-lived enough to create a sedimentary basin often called a pull-apart basin or strike-slip basin. These basins are often roughly rhombohedral in shape and may be called a rhombochasm . A classic rhombochasm is illustrated by the Dead Sea rift, where northward movement of the Arabian Plate relative to the Anatolian Plate has created a strike slip basin. The opposite effect

1197-553: Is occurring can create a nascent ocean basin leading to either an ocean or the failure of the rift zone . Another expression of lithospheric stretching results in the formation of ocean basins with central ridges. The Red Sea is in fact an incipient ocean, in a plate tectonic context. The mouth of the Red Sea is also a tectonic triple junction where the Indian Ocean Ridge, Red Sea Rift and East African Rift meet. This

1260-458: Is particularly measurable and observable with oceanic crust, as there is a well-established correlation between the age of the underlying crust and depth of the ocean . As newly-formed oceanic crust cools over a period of tens of millions of years. This is an important contribution to subsidence in rift basins, backarc basins and passive margins where they are underlain by newly-formed oceanic crust. In strike-slip tectonic settings, deformation of

1323-451: Is relatively predictable in its magnitude, manifestation and extent, except where a sudden pillar or near-surface tunnel collapse occurs (usually very old workings ). Mining-induced subsidence is nearly always very localized to the surface above the mined area, plus a margin around the outside. The vertical magnitude of the subsidence itself typically does not cause problems, except in the case of drainage (including natural drainage)–rather, it

SECTION 20

#1732772562268

1386-553: Is that of transpression , where converging movement of a curved fault plane causes collision of the opposing sides of the fault. An example is the San Bernardino Mountains north of Los Angeles, which result from convergence along a curve in the San Andreas Fault system. The Northridge earthquake was caused by vertical movement along local thrust and reverse faults "bunching up" against the bend in

1449-415: Is the associated surface compressive and tensile strains, curvature, tilts and horizontal displacement that are the cause of the worst damage to the natural environment, buildings and infrastructure. Where mining activity is planned, mining-induced subsidence can be successfully managed if there is co-operation from all of the stakeholders. This is accomplished through a combination of careful mine planning,

1512-416: Is the only place on the planet where such a triple junction in oceanic crust is exposed subaerially . This is due to a high thermal buoyancy ( thermal subsidence ) of the junction, and also to a local crumpled zone of seafloor crust acting as a dam against the Red Sea. Lithospheric flexure is another geodynamic mechanism that can cause regional subsidence resulting in the creation of a sedimentary basin. If

1575-466: Is thus an important area of study for purely scientific and academic reasons. There are however important economic incentives as well for understanding the processes of sedimentary basin formation and evolution because almost all of the world's fossil fuel reserves were formed in sedimentary basins. All of these perspectives on the history of a particular region are based on the study of a large three-dimensional body of sedimentary rocks that resulted from

1638-473: The Earth's crust where subsidence has occurred and a thick sequence of sediments have accumulated to form a large three-dimensional body of sedimentary rock . They form when long-term subsidence creates a regional depression that provides accommodation space for accumulation of sediments. Over millions or tens or hundreds of millions of years the deposition of sediment , primarily gravity-driven transportation of water-borne eroded material, acts to fill

1701-759: The East Irish Sea Basin . These basins resulted from a regional rifting event that affected parts of North-West Europe, eastern North America and East Greenland. The oldest part of the sedimentary fill in the Worcester Basin is the Cisuralian (Early Permian) Bridgnorth Sandstone Formation , deposited in an aeolian environment . Unconformably above this is the Early Triassic Kidderminster Formation of pebble conglomerates and sandstones, deposited in

1764-944: The Sidmouth Mudstone Formation . This unit locally contains a thick development of halite known as the Droitwich Halite Member. A thin sandstone is then developed, the Arden Sandstone Formation before passing upwards into the Branscombe Mudstone Formation . The final part of the MMG is the dolomitic mudstones of the Blue Anchor Formation . The Triassic succession is completed by a thinly developed Rhaetian age Penarth Group sequence of marine mudstones. The youngest preserved sequence in

1827-624: The Jurassic. This major north-south trending fault, combined with the sub-parallel Weethley Fault, forms the eastern margin of the northern part of the Worcester Basin. Both faults throw down to the west and show evidence for activity during deposition of both the Triassic and Jurassic. The thickest part of the preserved Jurassic is found west of the Inkberrow Fault. Sedimentary basin Sedimentary basins are region-scale depressions of

1890-409: The area. The subsidence was brought to a halt when secondary recovery wells pumped enough water into the oil reservoir to stabilize it. Land subsidence can occur in various ways during an earthquake. Large areas of land can subside drastically during an earthquake because of offset along fault lines. Land subsidence can also occur as a result of settling and compacting of unconsolidated sediment from

1953-482: The associated accretionary prism as it grows and changes shape creating ponded basins. Pull-apart basins is are created along major strike-slip faults where a bend in the fault geometry or the splitting of the fault into two or more faults creates tensional forces that cause crustal thinning or stretching due to extension, creating a regional depression. Frequently, the basins are rhombic, S-like or Z-like in shape. A broad comparatively shallow basin formed far from

Worcester Basin - Misplaced Pages Continue

2016-422: The asthenosphere. If mass is added to a local area of the crust (e.g., through deposition ), the crust subsides to compensate and maintain isostatic balance . The opposite of isostatic subsidence is known as isostatic rebound —the action of the crust returning (sometimes over periods of thousands of years) to a state of isostacy, such as after the melting of large ice sheets or the drying-up of large lakes after

2079-917: The basin is the fully marine Lias Group , consisting of the Blue Lias Formation , the Charmouth Mudstone Formation , the Dyrham Formation , the Marlstone Rock Formation , the Whitby Mudstone Formation and the Bridport Sand Formation . This fault runs along the east side of the Malvern Hills , which are themselves formed of Neoproterozoic and Lower Paleozoic rocks. It is a normal fault with

2142-401: The brittle crust , or by ductile flow in the hotter and more fluid mantle . Where faults occur, absolute subsidence may occur in the hanging wall of normal faults. In reverse, or thrust, faults, relative subsidence may be measured in the footwall. The crust floats buoyantly in the asthenosphere , with a ratio of mass below the "surface" in proportion to its own density and the density of

2205-443: The depression. As the sediments are buried, they are subject to increasing pressure and begin the processes of compaction and lithification that transform them into sedimentary rock . Sedimentary basins are created by deformation of Earth's lithosphere in diverse geological settings, usually as a result of plate tectonic activity. Mechanisms of crustal deformation that lead to subsidence and sedimentary basin formation include

2268-401: The earth's surface over time. Regional study of these rocks can be used as the primary record for different kinds of scientific investigation aimed at understanding and reconstructing the earth's past plate tectonics (paleotectonics), geography ( paleogeography , climate ( paleoclimatology ), oceans ( paleoceanography ), habitats ( paleoecology and paleobiogeography ). Sedimentary basin analysis

2331-425: The edge of a continental craton as a result of prolonged, broadly distributed but slow subsidence of the continental lithosphere relative to the surrounding area. They are sometimes referred to as intracratonic sag basins. They tend to be subcircular in shape and are commonly filled with shallow water marine or terrestrial sedimentary rocks that remain flat-lying and relatively undeformed over long periods of time due to

2394-439: The effect is believed to be twofold. The lower, hotter part of the lithosphere will "flow" slowly away from the main area being stretched, whilst the upper, cooler and more brittle crust will tend to fault (crack) and fracture. The combined effect of these two mechanisms is for Earth's surface in the area of extension to subside, creating a geographical depression which is then often infilled with water and/or sediments. (An analogy

2457-507: The effect. High buildings can create land subsidence by pressing the soil beneath with their weight. The problem is already felt in New York City , San Francisco Bay Area , Lagos . Land subsidence leads to the lowering of the ground surface, altering the topography. This elevation reduction increases the risk of flooding , particularly in river flood plains and delta areas. Earth fissures are linear fractures that appear on

2520-673: The excessive extraction of groundwater, making it a growing problem throughout the world. Groundwater fluctuations can also indirectly affect the decay of organic material. The habitation of lowlands , such as coastal or delta plains, requires drainage . The resulting aeration of the soil leads to the oxidation of its organic components, such as peat , and this decomposition process may cause significant land subsidence. This applies especially when groundwater levels are periodically adapted to subsidence, in order to maintain desired unsaturated zone depths, exposing more and more peat to oxygen. In addition to this, drained soils consolidate as

2583-405: The fill of one or more sedimentary basins over time. The scientific studies of stratigraphy and in recent decades sequence stratigraphy are focused on understanding the three-dimensional architecture, packaging and layering of this body of sedimentary rocks as a record resulting from sedimentary processes acting over time, influenced by global sea level change and regional plate tectonics. Where

Worcester Basin - Misplaced Pages Continue

2646-521: The ground level. Since exploitation of the Slochteren ( Netherlands ) gas field started in the late 1960s the ground level over a 250 km area has dropped by a current maximum of 30 cm. Extraction of petroleum likewise can cause significant subsidence. The city of Long Beach, California , has experienced 9 meters (30 ft) over the course of 34 years of petroleum extraction, resulting in damage of over $ 100 million to infrastructure in

2709-402: The land surface, characterized by openings or offsets. These fissures can be several meters deep, several meters wide, and extend for several kilometers. They form when the deformation of an aquifer, caused by pumping, concentrates stress in the sediment. This inhomogeneous deformation results in the differential compaction of the sediments. Ground fissures develop when this tensile stress exceeds

2772-443: The last ice age. Lake Bonneville is a famous example of isostatic rebound. Due to the weight of the water once held in the lake, the earth's crust subsided nearly 200 feet (61 m) to maintain equilibrium. When the lake dried up, the crust rebounded. Today at Lake Bonneville , the center of the former lake is about 200 feet (61 m) higher than the former lake edges. Many soils contain significant proportions of clay. Because of

2835-425: The lithosphere occurs primarily in the plane of Earth as a result of near horizontal maximum and minimum principal stresses . Faults associated with these plate boundaries are primarily vertical. Wherever these vertical fault planes encounter bends, movement along the fault can create local areas of compression or tension. When the curve in the fault plane moves apart, a region of transtension occurs and sometimes

2898-405: The lithosphere. Plate tectonic processes that can create sufficient loads on the lithosphere to induce basin-forming processes include: After any kind of sedimentary basin has begun to form, the load created by the water and sediments filling the basin creates additional load, thus causing additional lithospheric flexure and amplifying the original subsidence that created the basin, regardless of

2961-478: The long-lived tectonic stability of the underlying craton. The geodynamic forces that create them remain poorly understood. Sedimentary basins form as a result of regional subsidence of the lithosphere, mostly as a result of a few geodynamic processes. If the lithosphere is caused to stretch horizontally, by mechanisms such as rifting (which is associated with divergent plate boundaries) or ridge-push or trench-pull (associated with convergent boundaries),

3024-471: The original cause of basin inception. Cooling of a lithospheric plate, particularly young oceanic crust or recently stretched continental crust, causes thermal subsidence . As the plate cools it shrinks and becomes denser through thermal contraction . Analogous to a solid floating in a liquid, as the lithospheric plate gets denser it sinks because it displaces more of the underlying mantle through an equilibrium process known as isostasy . Thermal subsidence

3087-413: The otherwise strike-slip fault environment. The study of sedimentary basins as entities unto themselves is often referred to as sedimentary basin analysis . Study involving quantitative modeling of the dynamic geologic processes by which they evolved is called basin modelling . The sedimentary rocks comprising the fill of sedimentary basins hold the most complete historical record of the evolution of

3150-556: The public in general. Pumping of groundwater or petroleum has led to subsidence of as much as 9 meters (30 ft) in many locations around the world and incurring costs measured in hundreds of millions of US dollars. Land subsidence caused by groundwater withdrawal will likely increase in occurrence and related damages, primarily due to global population and economic growth, which will continue to drive higher groundwater demand. Subsidence frequently causes major problems in karst terrains, where dissolution of limestone by fluid flow in

3213-429: The rocks directly and also very importantly allow paleontologists to study the microfossils they contain ( micropaleontology ). At the time they are being drilled, boreholes are also surveyed by pulling electronic instruments along the length of the borehole in a process known as well logging . Well logging, which is sometimes appropriately called borehole geophysics , uses electromagnetic and radioactive properties of

SECTION 50

#1732772562268

3276-630: The rocks surrounding the borehole, as well as their interaction with the fluids used in the process of drilling the borehole, to create a continuous record of the rocks along the length of the borehole, displayed as of a family of curves. Comparison of well log curves between multiple boreholes can be used to understand the stratigraphy of a sedimentary basin, particularly if used in conjunction with seismic stratigraphy. Subsidence Processes that lead to subsidence include dissolution of underlying carbonate rock by groundwater ; gradual compaction of sediments ; withdrawal of fluid lava from beneath

3339-486: The sedimentary rocks comprising a sedimentary basin's fill are exposed at the earth's surface, traditional field geology and aerial photography techniques as well as satellite imagery can be used in the study of sedimentary basins. Much of a sedimentary basin's fill often remains buried below the surface, often submerged in the ocean, and thus cannot be studied directly. Acoustic imaging using seismic reflection acquired through seismic data acquisition and studied through

3402-525: The shaking of an earthquake. The Geospatial Information Authority of Japan reported immediate subsidence caused by the 2011 Tōhoku earthquake . In Northern Japan, subsidence of 0.50 m (1.64 ft) was observed on the coast of the Pacific Ocean in Miyako , Tōhoku , while Rikuzentakata, Iwate measured 0.84 m (2.75 ft). In the south at Sōma, Fukushima , 0.29 m (0.95 ft)

3465-400: The specific sub-discipline of seismic stratigraphy is the primary means of understanding the three-dimensional architecture of the basin's fill through remote sensing . Direct sampling of the rocks themselves is accomplished via the drilling of boreholes and the retrieval of rock samples in the form of both core samples and drill cuttings . These allow geologists to study small samples of

3528-620: The subsurface creates voids (i.e., caves ). If the roof of a void becomes too weak, it can collapse and the overlying rock and earth will fall into the space, causing subsidence at the surface. This type of subsidence can cause sinkholes which can be many hundreds of meters deep. Several types of sub-surface mining , and specifically methods which intentionally cause the extracted void to collapse (such as pillar extraction, longwall mining and any metalliferous mining method which uses "caving" such as "block caving" or "sub-level caving") will result in surface subsidence. Mining-induced subsidence

3591-405: The taking of preventive measures, and the carrying out of repairs post-mining. If natural gas is extracted from a natural gas field the initial pressure (up to 60 MPa (600 bar )) in the field will drop over the years. The pressure helps support the soil layers above the field. If the gas is extracted, the overburden pressure sediment compacts and may lead to earthquakes and subsidence at

3654-595: The tensile strength of the sediment. Land subsidence can lead to differential settlements in buildings and other infrastructures , causing angular distortions. When these angular distortions exceed certain values, the structures can become damaged, resulting in issues such as tilting or cracking. Land subsidence causes vertical displacements (subsidence or uplift). Although horizontal displacements also occur, they are generally less significant. The following are field methods used to measure vertical and horizontal displacements in subsiding areas: Tomás et al. conducted

3717-402: The thinning of underlying crust; depression of the crust by sedimentary, tectonic or volcanic loading; or changes in the thickness or density of underlying or adjacent lithosphere . Once the process of basin formation has begun, the weight of the sediments being deposited in the basin adds a further load on the underlying crust that accentuates subsidence and thus amplifies basin development as

3780-441: The very small particle size, they are affected by changes in soil moisture content. Seasonal drying of the soil results in a lowering of both the volume and the surface of the soil. If building foundations are above the level reached by seasonal drying, they move, possibly resulting in damage to the building in the form of tapering cracks. Trees and other vegetation can have a significant local effect on seasonal drying of soils. Over

3843-665: The volume of groundwater extraction , and clay content. This model assumes that changes in piezometric levels affecting aquifers and aquitards occur only in the vertical direction. It allows for subsidence calculations at a specific point using only vertical soil parameters. Quasi-three-dimensional seepage models apply Terzaghi 's one-dimensional consolidation equation to estimate subsidence, integrating some aspects of three-dimensional effects. The fully coupled three-dimensional model simulates water flow in three dimensions and calculates subsidence using Biot's three-dimensional consolidation theory. Machine learning has become

SECTION 60

#1732772562268

3906-546: The world's natural gas and petroleum and all of its coal are found in sedimentary rock. Many metal ores are found in sedimentary rocks formed in particular sedimentary environments. Sedimentary basins are also important from a purely scientific perspective because their sedimentary fill provides a record of Earth's history during the time in which the basin was actively receiving sediment. More than six hundred sedimentary basins have been identified worldwide. They range in areal size from tens of square kilometers to well over

3969-672: Was observed. The maximum amount of subsidence was 1.2 m (3.93 ft), coupled with horizontal diastrophism of up to 5.3 m (17.3 ft) on the Oshika Peninsula in Miyagi Prefecture . Groundwater-related subsidence is the subsidence (or the sinking) of land resulting from groundwater extraction. It is a growing problem in the developing world as cities increase in population and water use, without adequate pumping regulation and enforcement. One estimate has 80% of serious land subsidence problems associated with

#267732