122-527: The Westinghouse Farm Engine was a small, vertical-boiler steam engine built by the Westinghouse Company that emerged in the late 19th century. In the transition from horses to machinery, small portable engines were hauled by horses from farm to farm to give power where it was needed. It provided power to agricultural machines such as sawmills , threshing machines , and corn shellers . Many small workshops used them as well. The farm engine
244-400: A better way could be found to remove the seed. Eli Whitney responded to the challenge by inventing the inexpensive cotton gin . A man using a cotton gin could remove seed from as much upland cotton in one day as would previously have taken two months to process, working at the rate of one pound of cotton per day. These advances were capitalised on by entrepreneurs , of whom the best known
366-497: A closed space (e.g., combustion chamber , firebox , furnace). In the case of model or toy steam engines and a few full scale cases, the heat source can be an electric heating element . Boilers are pressure vessels that contain water to be boiled, and features that transfer the heat to the water as effectively as possible. The two most common types are: Fire-tube boilers were the main type used for early high-pressure steam (typical steam locomotive practice), but they were to
488-423: A common four-way rotary valve connected directly to a steam boiler. The next major step occurred when James Watt developed (1763–1775) an improved version of Newcomen's engine, with a separate condenser . Boulton and Watt 's early engines used half as much coal as John Smeaton 's improved version of Newcomen's. Newcomen's and Watt's early engines were "atmospheric". They were powered by air pressure pushing
610-520: A cottage industry under the putting-out system . Occasionally, the work was done in the workshop of a master weaver. Under the putting-out system, home-based workers produced under contract to merchant sellers, who often supplied the raw materials. In the off-season, the women, typically farmers' wives, did the spinning and the men did the weaving. Using the spinning wheel , it took anywhere from four to eight spinners to supply one handloom weaver. The flying shuttle , patented in 1733 by John Kay —with
732-415: A few other uses recorded in the 16th century. In 1606 Jerónimo de Ayanz y Beaumont patented his invention of the first steam-powered water pump for draining mines. Thomas Savery is considered the inventor of the first commercially used steam powered device, a steam pump that used steam pressure operating directly on the water. The first commercially successful engine that could transmit continuous power to
854-438: A flywheel and crankshaft to provide rotative motion from an improved Newcomen engine. In 1720, Jacob Leupold described a two-cylinder high-pressure steam engine. The invention was published in his major work "Theatri Machinarum Hydraulicarum". The engine used two heavy pistons to provide motion to a water pump. Each piston was raised by the steam pressure and returned to its original position by gravity. The two pistons shared
976-423: A given cylinder size than previous engines and could be made small enough for transport applications. Thereafter, technological developments and improvements in manufacturing techniques (partly brought about by the adoption of the steam engine as a power source) resulted in the design of more efficient engines that could be smaller, faster, or more powerful, depending on the intended application. The Cornish engine
1098-670: A groundswell of enterprise and productivity transformed the economy in the 17th century, laying the foundations for the world's first industrial economy. Britain was already a nation of makers by the year 1700" and "the history of Britain needs to be rewritten". Eric Hobsbawm held that the Industrial Revolution began in Britain in the 1780s and was not fully felt until the 1830s or 1840s, while T. S. Ashton held that it occurred roughly between 1760 and 1830. Rapid adoption of mechanized textiles spinning occurred in Britain in
1220-416: A large extent displaced by more economical water tube boilers in the late 19th century for marine propulsion and large stationary applications. Many boilers raise the temperature of the steam after it has left that part of the boiler where it is in contact with the water. Known as superheating it turns ' wet steam ' into ' superheated steam '. It avoids the steam condensing in the engine cylinders, and gives
1342-508: A machine was developed in 1712 by Thomas Newcomen . James Watt made a critical improvement in 1764, by removing spent steam to a separate vessel for condensation, greatly improving the amount of work obtained per unit of fuel consumed. By the 19th century, stationary steam engines powered the factories of the Industrial Revolution . Steam engines replaced sails for ships on paddle steamers , and steam locomotives operated on
SECTION 10
#17327797833251464-425: A major turning point in history, comparable only to humanity's adoption of agriculture with respect to material advancement. The Industrial Revolution influenced in some way almost every aspect of daily life. In particular, average income and population began to exhibit unprecedented sustained growth. Some economists have said the most important effect of the Industrial Revolution was that the standard of living for
1586-421: A mechanised industry. Other inventors increased the efficiency of the individual steps of spinning (carding, twisting and spinning, and rolling) so that the supply of yarn increased greatly. Steam power was then applied to drive textile machinery. Manchester acquired the nickname Cottonopolis during the early 19th century owing to its sprawl of textile factories. Although mechanisation dramatically decreased
1708-726: A more even thickness. The technology was developed with the help of John Wyatt of Birmingham . Paul and Wyatt opened a mill in Birmingham which used their rolling machine powered by a donkey. In 1743, a factory opened in Northampton with 50 spindles on each of five of Paul and Wyatt's machines. This operated until about 1764. A similar mill was built by Daniel Bourn in Leominster , but this burnt down. Both Lewis Paul and Daniel Bourn patented carding machines in 1748. Based on two sets of rollers that travelled at different speeds, it
1830-609: A new group of innovations in what has been called the Second Industrial Revolution . These included new steel-making processes , mass production , assembly lines , electrical grid systems, the large-scale manufacture of machine tools, and the use of increasingly advanced machinery in steam-powered factories. The earliest recorded use of the term "Industrial Revolution" was in July 1799 by French envoy Louis-Guillaume Otto , announcing that France had entered
1952-406: A number of subsequent improvements including an important one in 1747—doubled the output of a weaver, worsening the imbalance between spinning and weaving. It became widely used around Lancashire after 1760 when John's son, Robert , invented the dropbox, which facilitated changing thread colors. Lewis Paul patented the roller spinning frame and the flyer-and- bobbin system for drawing wool to
2074-409: A partial vacuum by condensing steam under a piston within a cylinder. It was employed for draining mine workings at depths originally impractical using traditional means, and for providing reusable water for driving waterwheels at factories sited away from a suitable "head". Water that passed over the wheel was pumped up into a storage reservoir above the wheel. In 1780 James Pickard patented the use of
2196-405: A piston into the partial vacuum generated by condensing steam, instead of the pressure of expanding steam. The engine cylinders had to be large because the only usable force acting on them was atmospheric pressure . Watt developed his engine further, modifying it to provide a rotary motion suitable for driving machinery. This enabled factories to be sited away from rivers, and accelerated
2318-410: A reverberatory furnace, coal or coke could be used as fuel. The puddling process continued to be used until the late 19th century when iron was being displaced by mild steel. Because puddling required human skill in sensing the iron globs, it was never successfully mechanised. Rolling was an important part of the puddling process because the grooved rollers expelled most of the molten slag and consolidated
2440-433: A set speed, because it would assume a new constant speed in response to load changes. The governor was able to handle smaller variations such as those caused by fluctuating heat load to the boiler. Also, there was a tendency for oscillation whenever there was a speed change. As a consequence, engines equipped only with this governor were not suitable for operations requiring constant speed, such as cotton spinning. The governor
2562-522: A significantly higher efficiency . In a steam engine, a piston or steam turbine or any other similar device for doing mechanical work takes a supply of steam at high pressure and temperature and gives out a supply of steam at lower pressure and temperature, using as much of the difference in steam energy as possible to do mechanical work. These "motor units" are often called 'steam engines' in their own right. Engines using compressed air or other gases differ from steam engines only in details that depend on
SECTION 20
#17327797833252684-438: A simple, wooden framed machine that only cost about £6 for a 40-spindle model in 1792 and was used mainly by home spinners. The jenny produced a lightly twisted yarn only suitable for weft, not warp. The spinning frame or water frame was developed by Richard Arkwright who, along with two partners, patented it in 1769. The design was partly based on a spinning machine built by Kay, who was hired by Arkwright. For each spindle
2806-414: A steam jet usually supplied from the boiler. Injectors became popular in the 1850s but are no longer widely used, except in applications such as steam locomotives. It is the pressurization of the water that circulates through the steam boiler that allows the water to be raised to temperatures well above 100 °C (212 °F) boiling point of water at one atmospheric pressure, and by that means to increase
2928-628: A steam rail locomotive was designed and constructed by steamboat pioneer John Fitch in the United States probably during the 1780s or 1790s. His steam locomotive used interior bladed wheels guided by rails or tracks. The first full-scale working railway steam locomotive was built by Richard Trevithick in the United Kingdom and, on 21 February 1804, the world's first railway journey took place as Trevithick's steam locomotive hauled 10 tones of iron, 70 passengers and five wagons along
3050-612: A trio of locomotives, concluding with the Catch Me Who Can in 1808. Only four years later, the successful twin-cylinder locomotive Salamanca by Matthew Murray was used by the edge railed rack and pinion Middleton Railway . In 1825 George Stephenson built the Locomotion for the Stockton and Darlington Railway . This was the first public steam railway in the world and then in 1829, he built The Rocket which
3172-625: A variety of cotton cloth, some of exceptionally fine quality. Cotton was a difficult raw material for Europe to obtain before it was grown on colonial plantations in the Americas. The early Spanish explorers found Native Americans growing unknown species of excellent quality cotton: sea island cotton ( Gossypium barbadense ) and upland green seeded cotton Gossypium hirsutum . Sea island cotton grew in tropical areas and on barrier islands of Georgia and South Carolina but did poorly inland. Sea island cotton began being exported from Barbados in
3294-561: A very limited lift height and were prone to boiler explosions . Savery's engine was used in mines, pumping stations and supplying water to water wheels powering textile machinery. One advantage of Savery's engine was its low cost. Bento de Moura Portugal introduced an improvement of Savery's construction "to render it capable of working itself", as described by John Smeaton in the Philosophical Transactions published in 1751. It continued to be manufactured until
3416-473: A water pump for draining inundated mines. Frenchman Denis Papin did some useful work on the steam digester in 1679, and first used a piston to raise weights in 1690. The first commercial steam-powered device was a water pump, developed in 1698 by Thomas Savery . It used condensing steam to create a vacuum which raised water from below and then used steam pressure to raise it higher. Small engines were effective though larger models were problematic. They had
3538-493: A weight. The weights kept the twist from backing up before the rollers. The bottom rollers were wood and metal, with fluting along the length. The water frame was able to produce a hard, medium-count thread suitable for warp, finally allowing 100% cotton cloth to be made in Britain. Arkwright and his partners used water power at a factory in Cromford , Derbyshire in 1771, giving the invention its name. Samuel Crompton invented
3660-430: Is Arkwright. He is credited with a list of inventions, but these were actually developed by such people as Kay and Thomas Highs ; Arkwright nurtured the inventors, patented the ideas, financed the initiatives, and protected the machines. He created the cotton mill which brought the production processes together in a factory, and he developed the use of power—first horsepower and then water power—which made cotton manufacture
3782-428: Is a stub . You can help Misplaced Pages by expanding it . Steam engine A steam engine is a heat engine that performs mechanical work using steam as its working fluid . The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder . This pushing force can be transformed by a connecting rod and crank into rotational force for work. The term "steam engine"
Westinghouse Farm Engine - Misplaced Pages Continue
3904-474: Is called the Rankine cycle . In general usage, the term steam engine can refer to either complete steam plants (including boilers etc.), such as railway steam locomotives and portable engines , or may refer to the piston or turbine machinery alone, as in the beam engine and stationary steam engine . As noted, steam-driven devices such as the aeolipile were known in the first century AD, and there were
4026-431: Is cylinder condensation and re-evaporation. The steam cylinder and adjacent metal parts/ports operate at a temperature about halfway between the steam admission saturation temperature and the saturation temperature corresponding to the exhaust pressure. As high-pressure steam is admitted into the working cylinder, much of the high-temperature steam is condensed as water droplets onto the metal surfaces, significantly reducing
4148-413: Is most commonly applied to reciprocating engines as just described, although some authorities have also referred to the steam turbine and devices such as Hero's aeolipile as "steam engines". The essential feature of steam engines is that they are external combustion engines , where the working fluid is separated from the combustion products. The ideal thermodynamic cycle used to analyze this process
4270-399: Is then pumped back up to pressure and sent back to the boiler. A dry-type cooling tower is similar to an automobile radiator and is used in locations where water is costly. Waste heat can also be ejected by evaporative (wet) cooling towers, which use a secondary external water circuit that evaporates some of flow to the air. River boats initially used a jet condenser in which cold water from
4392-542: Is vented up the chimney so as to increase the draw on the fire, which greatly increases engine power, but reduces efficiency. Sometimes the waste heat from the engine is useful itself, and in those cases, very high overall efficiency can be obtained. Steam engines in stationary power plants use surface condensers as a cold sink. The condensers are cooled by water flow from oceans, rivers, lakes, and often by cooling towers which evaporate water to provide cooling energy removal. The resulting condensed hot water ( condensate ),
4514-593: The British Agricultural Revolution , to provide excess manpower and food; a pool of managerial and entrepreneurial skills; available ports, rivers, canals, and roads to cheaply move raw materials and outputs; natural resources such as coal, iron, and waterfalls; political stability and a legal system that supported business; and financial capital available to invest. Once industrialisation began in Great Britain, new factors can be added:
4636-576: The East India Company . The development of trade and the rise of business were among the major causes of the Industrial Revolution. Developments in law also facilitated the revolution, such as courts ruling in favour of property rights . An entrepreneurial spirit and consumer revolution helped drive industrialisation in Britain, which after 1800, was emulated in Belgium, the United States, and France. The Industrial Revolution marked
4758-468: The Rumford Medal , the committee said that "no one invention since Watt's time has so enhanced the efficiency of the steam engine". In addition to using 30% less steam, it provided more uniform speed due to variable steam cut off, making it well suited to manufacturing, especially cotton spinning. The first experimental road-going steam-powered vehicles were built in the late 18th century, but it
4880-488: The spinning mule in 1779, so called because it is a hybrid of Arkwright's water frame and James Hargreaves 's spinning jenny in the same way that a mule is the product of crossbreeding a female horse with a male donkey . Crompton's mule was able to produce finer thread than hand spinning and at a lower cost. Mule-spun thread was of suitable strength to be used as a warp and finally allowed Britain to produce highly competitive yarn in large quantities. Realising that
5002-582: The technological and architectural innovations were of British origin. By the mid-18th century, Britain was the world's leading commercial nation, controlling a global trading empire with colonies in North America and the Caribbean. Britain had major military and political hegemony on the Indian subcontinent ; particularly with the proto-industrialised Mughal Bengal , through the activities of
Westinghouse Farm Engine - Misplaced Pages Continue
5124-626: The tramway from the Pen-y-darren ironworks, near Merthyr Tydfil to Abercynon in south Wales . The design incorporated a number of important innovations that included using high-pressure steam which reduced the weight of the engine and increased its efficiency. Trevithick visited the Newcastle area later in 1804 and the colliery railways in north-east England became the leading centre for experimentation and development of steam locomotives. Trevithick continued his own experiments using
5246-441: The 1650s. Upland green seeded cotton grew well on inland areas of the southern U.S. but was not economical because of the difficulty of removing seed, a problem solved by the cotton gin . A strain of cotton seed brought from Mexico to Natchez, Mississippi , in 1806 became the parent genetic material for over 90% of world cotton production today; it produced bolls that were three to four times faster to pick. The Age of Discovery
5368-453: The 1780s, and high rates of growth in steam power and iron production occurred after 1800. Mechanised textile production spread from Great Britain to continental Europe and the United States in the early 19th century, with important centres of textiles, iron and coal emerging in Belgium and the United States and later textiles in France. An economic recession occurred from the late 1830s to
5490-514: The 1860s to the 1920s. Steam road vehicles were used for many applications. In the 20th century, the rapid development of internal combustion engine technology led to the demise of the steam engine as a source of propulsion of vehicles on a commercial basis, with relatively few remaining in use beyond the Second World War . Many of these vehicles were acquired by enthusiasts for preservation, and numerous examples are still in existence. In
5612-562: The 1960s, the air pollution problems in California gave rise to a brief period of interest in developing and studying steam-powered vehicles as a possible means of reducing the pollution. Apart from interest by steam enthusiasts, the occasional replica vehicle, and experimental technology, no steam vehicles are in production at present. Near the end of the 19th century, compound engines came into widespread use. Compound engines exhausted steam into successively larger cylinders to accommodate
5734-408: The 20th century, where their efficiency, higher speed appropriate to generator service, and smooth rotation were advantages. Today most electric power is provided by steam turbines. In the United States, 90% of the electric power is produced in this way using a variety of heat sources. Steam turbines were extensively applied for propulsion of large ships throughout most of the 20th century. Although
5856-496: The Indian industry. Bar iron was the commodity form of iron used as the raw material for making hardware goods such as nails, wire, hinges, horseshoes, wagon tires, chains, etc., as well as structural shapes. A small amount of bar iron was converted into steel. Cast iron was used for pots, stoves, and other items where its brittleness was tolerable. Most cast iron was refined and converted to bar iron, with substantial losses. Bar iron
5978-480: The Industrial Revolution, thus causing the Great Divergence . Some historians, such as John Clapham and Nicholas Crafts , have argued that the economic and social changes occurred gradually and that the term revolution is a misnomer. This is still a subject of debate among some historians. Six factors facilitated industrialisation: high levels of agricultural productivity, such as that reflected in
6100-577: The Scottish inventor James Beaumont Neilson in 1828, was the most important development of the 19th century for saving energy in making pig iron. By using preheated combustion air, the amount of fuel to make a unit of pig iron was reduced at first by between one-third using coke or two-thirds using coal; the efficiency gains continued as the technology improved. Hot blast also raised the operating temperature of furnaces, increasing their capacity. Using less coal or coke meant introducing fewer impurities into
6222-556: The Western European models in the late 19th century. The commencement of the Industrial Revolution is closely linked to a small number of innovations, beginning in the second half of the 18th century. By the 1830s, the following gains had been made in important technologies: In 1750, Britain imported 2.5 million pounds of raw cotton, most of which was spun and woven by the cottage industry in Lancashire . The work
SECTION 50
#17327797833256344-475: The atmosphere or into a condenser. As steam expands in passing through a high-pressure engine, its temperature drops because no heat is being added to the system; this is known as adiabatic expansion and results in steam entering the cylinder at high temperature and leaving at lower temperature. This causes a cycle of heating and cooling of the cylinder with every stroke, which is a source of inefficiency. The dominant efficiency loss in reciprocating steam engines
6466-404: The boiler and engine in separate buildings some distance apart. For portable or mobile use, such as steam locomotives , the two are mounted together. The widely used reciprocating engine typically consisted of a cast-iron cylinder, piston, connecting rod and beam or a crank and flywheel, and miscellaneous linkages. Steam was alternately supplied and exhausted by one or more valves. Speed control
6588-471: The coal do not migrate into the metal. This technology was applied to lead from 1678 and to copper from 1687. It was also applied to iron foundry work in the 1690s, but in this case the reverberatory furnace was known as an air furnace. (The foundry cupola is a different, and later, innovation.) Coke pig iron was hardly used to produce wrought iron until 1755–56, when Darby's son Abraham Darby II built furnaces at Horsehay and Ketley where low sulfur coal
6710-409: The coke pig iron he made was not suitable for making wrought iron and was used mostly for the production of cast iron goods, such as pots and kettles. He had the advantage over his rivals in that his pots, cast by his patented process, were thinner and cheaper than theirs. In 1750, coke had generally replaced charcoal in the smelting of copper and lead and was in widespread use in glass production. In
6832-467: The column of materials (iron ore, fuel, slag) flowing down the blast furnace more porous and did not crush in the much taller furnaces of the late 19th century. As cast iron became cheaper and widely available, it began being a structural material for bridges and buildings. A famous early example is the Iron Bridge built in 1778 with cast iron produced by Abraham Darby III. However, most cast iron
6954-495: The cost of cotton cloth, by the mid-19th century machine-woven cloth still could not equal the quality of hand-woven Indian cloth, in part because of the fineness of thread made possible by the type of cotton used in India, which allowed high thread counts. However, the high productivity of British textile manufacturing allowed coarser grades of British cloth to undersell hand-spun and woven fabric in low-wage India, eventually destroying
7076-542: The cotton textile industry in Britain was 2.6% in 1760, 17% in 1801, and 22.4% in 1831. Value added by the British woollen industry was 14.1% in 1801. Cotton factories in Britain numbered approximately 900 in 1797. In 1760, approximately one-third of cotton cloth manufactured in Britain was exported, rising to two-thirds by 1800. In 1781, cotton spun amounted to 5.1 million pounds, which increased to 56 million pounds by 1800. In 1800, less than 0.1% of world cotton cloth
7198-427: The country. Steam engines made the use of higher-pressure and volume blast practical; however, the leather used in bellows was expensive to replace. In 1757, ironmaster John Wilkinson patented a hydraulic powered blowing engine for blast furnaces. The blowing cylinder for blast furnaces was introduced in 1760 and the first blowing cylinder made of cast iron is believed to be the one used at Carrington in 1768 that
7320-456: The eagerness of British entrepreneurs to export industrial expertise and the willingness to import the process. Britain met the criteria and industrialized starting in the 18th century, and then it exported the process to western Europe (especially Belgium, France, and the German states) in the early 19th century. The United States copied the British model in the early 19th century, and Japan copied
7442-607: The early 1840s when the adoption of the Industrial Revolution's early innovations, such as mechanised spinning and weaving, slowed as their markets matured; and despite the increasing adoption of locomotives, steamboats and steamships, and hot blast iron smelting . New technologies such as the electrical telegraph , widely introduced in the 1840s and 1850s in the United Kingdom and the United States, were not powerful enough to drive high rates of economic growth. Rapid economic growth began to reoccur after 1870, springing from
SECTION 60
#17327797833257564-401: The efficiency of the steam cycle. For safety reasons, nearly all steam engines are equipped with mechanisms to monitor the boiler, such as a pressure gauge and a sight glass to monitor the water level. Many engines, stationary and mobile, are also fitted with a governor to regulate the speed of the engine without the need for human interference. The most useful instrument for analyzing
7686-465: The expiration of the Arkwright patent would greatly increase the supply of spun cotton and lead to a shortage of weavers, Edmund Cartwright developed a vertical power loom which he patented in 1785. In 1776, he patented a two-man operated loom. Cartwright's loom design had several flaws, the most serious being thread breakage. Samuel Horrocks patented a fairly successful loom in 1813. Horock's loom
7808-528: The first highly mechanised factory was John Lombe 's water-powered silk mill at Derby , operational by 1721. Lombe learned silk thread manufacturing by taking a job in Italy and acting as an industrial spy; however, because the Italian silk industry guarded its secrets closely, the state of the industry at that time is unknown. Although Lombe's factory was technically successful, the supply of raw silk from Italy
7930-400: The first successful cylinder for a Boulton and Watt steam engine in 1776, he was given an exclusive contract for providing cylinders. After Watt developed a rotary steam engine in 1782, they were widely applied to blowing, hammering, rolling and slitting. The solutions to the sulfur problem were the addition of sufficient limestone to the furnace to force sulfur into the slag as well as
8052-534: The general population in the Western world began to increase consistently for the first time in history, although others have said that it did not begin to improve meaningfully until the late 19th and 20th centuries. GDP per capita was broadly stable before the Industrial Revolution and the emergence of the modern capitalist economy, while the Industrial Revolution began an era of per-capita economic growth in capitalist economies. Economic historians agree that
8174-485: The gradual replacement of steam engines in commercial usage. Steam turbines replaced reciprocating engines in power generation, due to lower cost, higher operating speed, and higher efficiency. Note that small scale steam turbines are much less efficient than large ones. As of 2023 , large reciprocating piston steam engines are still being manufactured in Germany. As noted, one recorded rudimentary steam-powered engine
8296-463: The higher volumes at reduced pressures, giving improved efficiency. These stages were called expansions, with double- and triple-expansion engines being common, especially in shipping where efficiency was important to reduce the weight of coal carried. Steam engines remained the dominant source of power until the early 20th century, when advances in the design of the steam turbine , electric motors , and internal combustion engines gradually resulted in
8418-451: The increasing use of water power and steam power ; the development of machine tools ; and the rise of the mechanised factory system . Output greatly increased, and the result was an unprecedented rise in population and the rate of population growth . The textile industry was the first to use modern production methods, and textiles became the dominant industry in terms of employment, value of output, and capital invested. Many of
8540-517: The iron industries during the Industrial Revolution was the replacement of wood and other bio-fuels with coal ; for a given amount of heat, mining coal required much less labour than cutting wood and converting it to charcoal , and coal was much more abundant than wood, supplies of which were becoming scarce before the enormous increase in iron production that took place in the late 18th century. In 1709, Abraham Darby made progress using coke to fuel his blast furnaces at Coalbrookdale . However,
8662-429: The late 18th century. At least one engine was still known to be operating in 1820. The first commercially successful engine that could transmit continuous power to a machine was the atmospheric engine , invented by Thomas Newcomen around 1712. It improved on Savery's steam pump, using a piston as proposed by Papin. Newcomen's engine was relatively inefficient, and mostly used for pumping water. It worked by creating
8784-496: The late 19th century, and his expression did not enter everyday language until then. Credit for popularising the term may be given to Arnold Toynbee , whose 1881 lectures gave a detailed account of the term. Economic historians and authors such as Mendels, Pomeranz , and Kridte argue that proto-industrialisation in parts of Europe, the Muslim world , Mughal India , and China created the social and economic conditions that led to
8906-467: The mass of hot wrought iron. Rolling was 15 times faster at this than a trip hammer . A different use of rolling, which was done at lower temperatures than that for expelling slag, was in the production of iron sheets, and later structural shapes such as beams, angles, and rails. The puddling process was improved in 1818 by Baldwyn Rogers, who replaced some of the sand lining on the reverberatory furnace bottom with iron oxide . In 1838 John Hall patented
9028-399: The nature of the gas although compressed air has been used in steam engines without change. As with all heat engines, the majority of primary energy must be emitted as waste heat at relatively low temperature. The simplest cold sink is to vent the steam to the environment. This is often used on steam locomotives to avoid the weight and bulk of condensers. Some of the released steam
9150-599: The number of cotton goods consumed in Western Europe was minor until the early 19th century. By 1600, Flemish refugees began weaving cotton cloth in English towns where cottage spinning and weaving of wool and linen was well established. They were left alone by the guilds who did not consider cotton a threat. Earlier European attempts at cotton spinning and weaving were in 12th-century Italy and 15th-century southern Germany, but these industries eventually ended when
9272-418: The onset of the Industrial Revolution is the most important event in human history since the domestication of animals and plants. The precise start and end of the Industrial Revolution is still debated among historians, as is the pace of economic and social changes . According to Cambridge historian Leigh Shaw-Taylor, Britain was already industrialising in the 17th century, and "Our database shows that
9394-445: The pace of the Industrial Revolution. The meaning of high pressure, together with an actual value above ambient, depends on the era in which the term was used. For early use of the term Van Reimsdijk refers to steam being at a sufficiently high pressure that it could be exhausted to atmosphere without reliance on a vacuum to enable it to perform useful work. Ewing 1894 , p. 22 states that Watt's condensing engines were known, at
9516-456: The performance of steam engines is the steam engine indicator. Early versions were in use by 1851, but the most successful indicator was developed for the high speed engine inventor and manufacturer Charles Porter by Charles Richard and exhibited at London Exhibition in 1862. The steam engine indicator traces on paper the pressure in the cylinder throughout the cycle, which can be used to spot various problems and calculate developed horsepower. It
9638-456: The piston axis in vertical position. In time the horizontal arrangement became more popular, allowing compact, but powerful engines to be fitted in smaller spaces. The acme of the horizontal engine was the Corliss steam engine , patented in 1849, which was a four-valve counter flow engine with separate steam admission and exhaust valves and automatic variable steam cutoff. When Corliss was given
9760-501: The race to industrialise. In his 1976 book Keywords: A Vocabulary of Culture and Society , Raymond Williams states in the entry for "Industry": "The idea of a new social order based on major industrial change was clear in Southey and Owen , between 1811 and 1818, and was implicit as early as Blake in the early 1790s and Wordsworth at the turn of the [19th] century." The term Industrial Revolution applied to technological change
9882-428: The railways. Reciprocating piston type steam engines were the dominant source of power until the early 20th century. The efficiency of stationary steam engine increased dramatically until about 1922. The highest Rankine Cycle Efficiency of 91% and combined thermal efficiency of 31% was demonstrated and published in 1921 and 1928. Advances in the design of electric motors and internal combustion engines resulted in
10004-406: The reciprocating steam engine is no longer in widespread commercial use, various companies are exploring or exploiting the potential of the engine as an alternative to internal combustion engines. There are two fundamental components of a steam plant: the boiler or steam generator , and the "motor unit", referred to itself as a "steam engine". Stationary steam engines in fixed buildings may have
10126-417: The replacement of reciprocating (piston) steam engines, with merchant shipping relying increasingly upon diesel engines , and warships on the steam turbine. As the development of steam engines progressed through the 18th century, various attempts were made to apply them to road and railway use. In 1784, William Murdoch , a Scottish inventor, built a model steam road locomotive. An early working model of
10248-578: The river is injected into the exhaust steam from the engine. Cooling water and condensate mix. While this was also applied for sea-going vessels, generally after only a few days of operation the boiler would become coated with deposited salt, reducing performance and increasing the risk of a boiler explosion. Starting about 1834, the use of surface condensers on ships eliminated fouling of the boilers, and improved engine efficiency. Evaporated water cannot be used for subsequent purposes (other than rain somewhere), whereas river water can be re-used. In all cases,
10370-418: The slag from almost 50% to around 8%. Puddling became widely used after 1800. Up to that time, British iron manufacturers had used considerable amounts of iron imported from Sweden and Russia to supplement domestic supplies. Because of the increased British production, imports began to decline in 1785, and by the 1790s Britain eliminated imports and became a net exporter of bar iron. Hot blast , patented by
10492-457: The smelting and refining of iron, coal and coke produced inferior iron to that made with charcoal because of the coal's sulfur content. Low sulfur coals were known, but they still contained harmful amounts. Conversion of coal to coke only slightly reduces the sulfur content. A minority of coals are coking. Another factor limiting the iron industry before the Industrial Revolution was the scarcity of water power to power blast bellows. This limitation
10614-538: The steam available for expansive work. When the expanding steam reaches low pressure (especially during the exhaust stroke), the previously deposited water droplets that had just been formed within the cylinder/ports now boil away (re-evaporation) and this steam does no further work in the cylinder. Industrial Revolution The Industrial Revolution , sometimes divided into the First Industrial Revolution and Second Industrial Revolution ,
10736-412: The steam plant boiler feed water, which must be kept pure, is kept separate from the cooling water or air. Most steam boilers have a means to supply water whilst at pressure, so that they may be run continuously. Utility and industrial boilers commonly use multi-stage centrifugal pumps ; however, other types are used. Another means of supplying lower-pressure boiler feed water is an injector , which uses
10858-528: The supply of cotton was cut off. The Moors in Spain grew, spun, and wove cotton beginning around the 10th century. British cloth could not compete with Indian cloth because India's labour cost was approximately one-fifth to one-sixth that of Britain's. In 1700 and 1721, the British government passed Calico Acts to protect the domestic woollen and linen industries from the increasing amounts of cotton fabric imported from India. The demand for heavier fabric
10980-489: The temperature of the steam above its saturated vapour point, and various mechanisms to increase the draft for fireboxes. When coal is used, a chain or screw stoking mechanism and its drive engine or motor may be included to move the fuel from a supply bin (bunker) to the firebox. The heat required for boiling the water and raising the temperature of the steam can be derived from various sources, most commonly from burning combustible materials with an appropriate supply of air in
11102-482: The time, as low pressure compared to high pressure, non-condensing engines of the same period. Watt's patent prevented others from making high pressure and compound engines. Shortly after Watt's patent expired in 1800, Richard Trevithick and, separately, Oliver Evans in 1801 introduced engines using high-pressure steam; Trevithick obtained his high-pressure engine patent in 1802, and Evans had made several working models before then. These were much more powerful for
11224-415: The use of low sulfur coal. The use of lime or limestone required higher furnace temperatures to form a free-flowing slag. The increased furnace temperature made possible by improved blowing also increased the capacity of blast furnaces and allowed for increased furnace height. In addition to lower cost and greater availability, coke had other important advantages over charcoal in that it was harder and made
11346-406: The use of roasted tap cinder ( iron silicate ) for the furnace bottom, greatly reducing the loss of iron through increased slag caused by a sand lined bottom. The tap cinder also tied up some phosphorus, but this was not understood at the time. Hall's process also used iron scale or rust which reacted with carbon in the molten iron. Hall's process, called wet puddling , reduced losses of iron with
11468-410: The water frame used a series of four pairs of rollers, each operating at a successively higher rotating speed, to draw out the fibre which was then twisted by the spindle. The roller spacing was slightly longer than the fibre length. Too close a spacing caused the fibres to break while too distant a spacing caused uneven thread. The top rollers were leather-covered and loading on the rollers was applied by
11590-505: Was 7,800 tons and coke cast iron was 250,000 tons. In 1750, the UK imported 31,200 tons of bar iron and either refined from cast iron or directly produced 18,800 tons of bar iron using charcoal and 100 tons using coke. In 1796, the UK was making 125,000 tons of bar iron with coke and 6,400 tons with charcoal; imports were 38,000 tons and exports were 24,600 tons. In 1806 the UK did not import bar iron but exported 31,500 tons. A major change in
11712-407: Was a means of decarburizing molten pig iron by slow oxidation in a reverberatory furnace by manually stirring it with a long rod. The decarburized iron, having a higher melting point than cast iron, was raked into globs by the puddler. When the glob was large enough, the puddler would remove it. Puddling was backbreaking and extremely hot work. Few puddlers lived to be 40. Because puddling was done in
11834-660: Was a period of global transition of the human economy towards more widespread, efficient and stable manufacturing processes that succeeded the Agricultural Revolution . Beginning in Great Britain , the Industrial Revolution spread to continental Europe and the United States , from around 1760 to about 1820–1840. This transition included going from hand production methods to machines ; new chemical manufacturing and iron production processes;
11956-606: Was available (and not far from Coalbrookdale). These furnaces were equipped with water-powered bellows, the water being pumped by Newcomen steam engines . The Newcomen engines were not attached directly to the blowing cylinders because the engines alone could not produce a steady air blast. Abraham Darby III installed similar steam-pumped, water-powered blowing cylinders at the Dale Company when he took control in 1768. The Dale Company used several Newcomen engines to drain its mines and made parts for engines which it sold throughout
12078-663: Was becoming more common by the late 1830s, as in Jérôme-Adolphe Blanqui 's description in 1837 of la révolution industrielle . Friedrich Engels in The Condition of the Working Class in England in 1844 spoke of "an industrial revolution, a revolution which at the same time changed the whole of civil society". Although Engels wrote his book in the 1840s, it was not translated into English until
12200-414: Was converted to wrought iron. Conversion of cast iron had long been done in a finery forge . An improved refining process known as potting and stamping was developed, but this was superseded by Henry Cort 's puddling process. Cort developed two significant iron manufacturing processes: rolling in 1783 and puddling in 1784. Puddling produced a structural grade iron at a relatively low cost. Puddling
12322-566: Was cut off to eliminate competition. In order to promote manufacturing, the Crown paid for models of Lombe's machinery which were exhibited in the Tower of London . Parts of India, China, Central America, South America, and the Middle East have a long history of hand manufacturing cotton textiles, which became a major industry sometime after 1000 AD. In tropical and subtropical regions where it
12444-403: Was designed by John Smeaton . Cast iron cylinders for use with a piston were difficult to manufacture; the cylinders had to be free of holes and had to be machined smooth and straight to remove any warping. James Watt had great difficulty trying to have a cylinder made for his first steam engine. In 1774 Wilkinson invented a precision boring machine for boring cylinders. After Wilkinson bored
12566-486: Was developed by George Westinghouse Sr., the father of the much more famous George Westinghouse Jr. The cylinder , steam chest, cross-head guide, and the boxes for the crankshaft bearings were all cast in a single piece to assure mechanical exactness and perfect alignment of piston and crank. The engine was made of brass and steel. The machine helped American farms transition from horse to machines. It came in 6, 10, and 15 horsepower sizes. The Westinghouse Farm engine
12688-546: Was developed by Trevithick and others in the 1810s. It was a compound cycle engine that used high-pressure steam expansively, then condensed the low-pressure steam, making it relatively efficient. The Cornish engine had irregular motion and torque through the cycle, limiting it mainly to pumping. Cornish engines were used in mines and for water supply until the late 19th century. Early builders of stationary steam engines considered that horizontal cylinders would be subject to excessive wear. Their engines were therefore arranged with
12810-559: Was done by hand in workers' homes or occasionally in master weavers' shops. Wages in Lancashire were about six times those in India in 1770 when overall productivity in Britain was about three times higher than in India. In 1787, raw cotton consumption was 22 million pounds, most of which was cleaned, carded, and spun on machines. The British textile industry used 52 million pounds of cotton in 1800, which increased to 588 million pounds in 1850. The share of value added by
12932-450: Was either automatic, using a governor, or by a manual valve. The cylinder casting contained steam supply and exhaust ports. Engines equipped with a condenser are a separate type than those that exhaust to the atmosphere. Other components are often present; pumps (such as an injector ) to supply water to the boiler during operation, condensers to recirculate the water and recover the latent heat of vaporisation, and superheaters to raise
13054-531: Was entered in and won the Rainhill Trials . The Liverpool and Manchester Railway opened in 1830 making exclusive use of steam power for both passenger and freight trains. Steam locomotives continued to be manufactured until the late twentieth century in places such as China and the former East Germany (where the DR Class 52.80 was produced). The final major evolution of the steam engine design
13176-544: Was followed by a period of colonialism beginning around the 16th century. Following the discovery of a trade route to India around southern Africa by the Portuguese, the British founded the East India Company , along with smaller companies of different nationalities which established trading posts and employed agents to engage in trade throughout the Indian Ocean region. One of the largest segments of this trade
13298-569: Was grown, most was grown by small farmers alongside their food crops and was spun and woven in households, largely for domestic consumption. In the 15th century, China began to require households to pay part of their taxes in cotton cloth. By the 17th century, almost all Chinese wore cotton clothing. Almost everywhere cotton cloth could be used as a medium of exchange . In India, a significant amount of cotton textiles were manufactured for distant markets, often produced by professional weavers. Some merchants also owned small weaving workshops. India produced
13420-479: Was improved by Richard Roberts in 1822, and these were produced in large numbers by Roberts, Hill & Co. Roberts was additionally a maker of high-quality machine tools and a pioneer in the use of jigs and gauges for precision workshop measurement. The demand for cotton presented an opportunity to planters in the Southern United States, who thought upland cotton would be a profitable crop if
13542-411: Was improved over time and coupled with variable steam cut off, good speed control in response to changes in load was attainable near the end of the 19th century. In a simple engine, or "single expansion engine" the charge of steam passes through the entire expansion process in an individual cylinder, although a simple engine may have one or more individual cylinders. It is then exhausted directly into
13664-660: Was in cotton textiles, which were purchased in India and sold in Southeast Asia , including the Indonesian archipelago where spices were purchased for sale to Southeast Asia and Europe. By the mid-1760s, cloth was over three-quarters of the East India Company's exports. Indian textiles were in demand in the North Atlantic region of Europe where previously only wool and linen were available; however,
13786-400: Was later used in the first cotton spinning mill . In 1764, in the village of Stanhill, Lancashire, James Hargreaves invented the spinning jenny , which he patented in 1770. It was the first practical spinning frame with multiple spindles. The jenny worked in a similar manner to the spinning wheel, by first clamping down on the fibres, then by drawing them out, followed by twisting. It was
13908-437: Was made by the bloomery process, which was the predominant iron smelting process until the late 18th century. In the UK in 1720, there were 20,500 tons of cast iron produced with charcoal and 400 tons with coke. In 1750 charcoal iron production was 24,500 and coke iron was 2,500 tons. In 1788, the production of charcoal cast iron was 14,000 tons while coke iron production was 54,000 tons. In 1806, charcoal cast iron production
14030-419: Was met by a domestic industry based around Lancashire that produced fustian , a cloth with flax warp and cotton weft . Flax was used for the warp because wheel-spun cotton did not have sufficient strength, but the resulting blend was not as soft as 100% cotton and was more difficult to sew. On the eve of the Industrial Revolution, spinning and weaving were done in households, for domestic consumption, and as
14152-479: Was not until after Richard Trevithick had developed the use of high-pressure steam, around 1800, that mobile steam engines became a practical proposition. The first half of the 19th century saw great progress in steam vehicle design, and by the 1850s it was becoming viable to produce them on a commercial basis. This progress was dampened by legislation which limited or prohibited the use of steam-powered vehicles on roads. Improvements in vehicle technology continued from
14274-413: Was overcome by the steam engine. Use of coal in iron smelting started somewhat before the Industrial Revolution, based on innovations by Clement Clerke and others from 1678, using coal reverberatory furnaces known as cupolas. These were operated by the flames playing on the ore and charcoal or coke mixture, reducing the oxide to metal. This has the advantage that impurities (such as sulphur ash) in
14396-425: Was produced on machinery invented in Britain. In 1788, there were 50,000 spindles in Britain, rising to 7 million over the next 30 years. The earliest European attempts at mechanised spinning were with wool; however, wool spinning proved more difficult to mechanise than cotton. Productivity improvement in wool spinning during the Industrial Revolution was significant but far less than that of cotton. Arguably
14518-496: Was routinely used by engineers, mechanics and insurance inspectors. The engine indicator can also be used on internal combustion engines. See image of indicator diagram below (in Types of motor units section). The centrifugal governor was adopted by James Watt for use on a steam engine in 1788 after Watt's partner Boulton saw one on the equipment of a flour mill Boulton & Watt were building. The governor could not actually hold
14640-534: Was said to have a short, quick stroke to make it lighter. This design helped to make sure that the engine did not rollover. The engines were equipped with adjustable governor, pop safety valve , steam gauge, feedwater heater , direct-acting pump, whistle , blower , brake , and a full supply of wrenches and fire tools. This helped keep the engine efficient, durable, and convenient. The engines were produced from 1886 to 1917 when they were superseded by larger, standard farm engines. This technology-related article
14762-711: Was the aeolipile described by Hero of Alexandria , a Hellenistic mathematician and engineer in Roman Egypt during the first century AD. In the following centuries, the few steam-powered engines known were, like the aeolipile, essentially experimental devices used by inventors to demonstrate the properties of steam. A rudimentary steam turbine device was described by Taqi al-Din in Ottoman Egypt in 1551 and by Giovanni Branca in Italy in 1629. The Spanish inventor Jerónimo de Ayanz y Beaumont received patents in 1606 for 50 steam-powered inventions, including
14884-438: Was the use of steam turbines starting in the late part of the 19th century. Steam turbines are generally more efficient than reciprocating piston type steam engines (for outputs above several hundred horsepower), have fewer moving parts, and provide rotary power directly instead of through a connecting rod system or similar means. Steam turbines virtually replaced reciprocating engines in electricity generating stations early in
#324675