71-760: The Whin Sill or Great Whin Sill is a tabular layer of the igneous rock dolerite in County Durham , Northumberland and Cumbria in the northeast of England . It lies partly in the North Pennines Area of Outstanding Natural Beauty and partly in Northumberland National Park and stretches from Teesdale northwards towards Berwick . It is one of the key natural features of the North Pennines . A major outcrop
142-409: A body of water or beneath ice. Unconsolidated surficial materials may also be given a lithology. This is defined by grain size and composition and is often attached to an interpretation of how the unit formed. Surficial lithologies can be given to lacustrine , coastal, fluvial , aeolian , glacial , and recent volcanic deposits, among others. Examples of surficial lithology classifications used by
213-486: A change in composition. Solidification into rock occurs either below the surface as intrusive rocks or on the surface as extrusive rocks. Igneous rock may form with crystallization to form granular, crystalline rocks, or without crystallization to form natural glasses . Igneous rocks occur in a wide range of geological settings: shields, platforms, orogens, basins, large igneous provinces, extended crust and oceanic crust. Igneous and metamorphic rocks make up 90–95% of
284-459: A combination of these processes. Other mechanisms, such as melting from a meteorite impact , are less important today, but impacts during the accretion of the Earth led to extensive melting, and the outer several hundred kilometres of our early Earth was probably an ocean of magma. Impacts of large meteorites in the last few hundred million years have been proposed as one mechanism responsible for
355-411: A continually-increasing extent of metamorphism. Metamorphic facies are defined by the pressure-temperature fields in which particular minerals form. Additional metamorphic rock names exist, such as greenschist (metamorphosed basalt and other extrusive igneous rock) or quartzite (metamorphosed quartz sand). In igneous and metamorphic rocks, grain size is a measure of the sizes of the crystals in
426-405: A crystalline basement formed of a great variety of metamorphic and igneous rocks, including granulite and granite. Oceanic crust is composed primarily of basalt and gabbro . Both continental and oceanic crust rest on peridotite of the mantle. Rocks may melt in response to a decrease in pressure, to a change in composition (such as an addition of water), to an increase in temperature, or to
497-408: A hand lens, the visible mineralogy is included as part of the description. In the case of sequences possibly including carbonates , calcite - cemented rocks or those with possible calcite veins, it is normal to test for the presence of calcite (or other forms of calcium carbonate ) using dilute hydrochloric acid and looking for effervescence . The mineralogical composition of a rock is one of
568-527: A huge mass of analytical data—over 230,000 rock analyses can be accessed on the web through a site sponsored by the U. S. National Science Foundation (see the External Link to EarthChem). The single most important component is silica, SiO 2 , whether occurring as quartz or combined with other oxides as feldspars or other minerals. Both intrusive and volcanic rocks are grouped chemically by total silica content into broad categories. This classification
639-653: A microscope for fine-grained volcanic rock, and may be impossible for glassy volcanic rock. The rock must then be classified chemically. Mineralogical classification of an intrusive rock begins by determining if the rock is ultramafic, a carbonatite, or a lamprophyre . An ultramafic rock contains more than 90% of iron- and magnesium-rich minerals such as hornblende, pyroxene, or olivine, and such rocks have their own classification scheme. Likewise, rocks containing more than 50% carbonate minerals are classified as carbonatites, while lamprophyres are rare ultrapotassic rocks. Both are further classified based on detailed mineralogy. In
710-461: A particular depositional environment and may provide information on paleocurrent directions. In metamorphic rocks associated with the deeper levels of fault zones , small scale structures such as asymmetric boudins and microfolds are used to determine the sense of displacement across the zone. In igneous rocks, small-scale structures are mostly observed in lavas such as pahoehoe versus ʻAʻā basaltic flows, and pillows showing eruption within
781-569: A rock describes the relationship between the individual grains or clasts that make up the rock. Sedimentary textures include the degree of sorting , grading , shape and roundness of the clasts. Metamorphic textures include those referring to the timing of growth of large metamorphic minerals relative to a phase of deformation—before deformation porphyroclast —after deformation porphyroblast . Igneous textures include such properties as grain shape, which varies from crystals with ideal crystal shapes ( euhedral ) to irregular crystals (anhedral), whether
SECTION 10
#1732764792347852-636: A sample. The colour of a rock or its component parts is a distinctive characteristic of some rocks and is always recorded, sometimes against standard colour charts, such as that produced by the Rock-Color Chart Committee of the Geological Society of America based on the Munsell color system . The fabric of a rock describes the spatial and geometric configuration of all the elements that make it up. In sedimentary rocks
923-553: A simplified compositional classification, igneous rock types are categorized into felsic or mafic based on the abundance of silicate minerals in the Bowen's Series. Rocks dominated by quartz, plagioclase, alkali feldspar and muscovite are felsic. Mafic rocks are primarily composed of biotite, hornblende, pyroxene and olivine. Generally, felsic rocks are light colored and mafic rocks are darker colored. For textural classification, igneous rocks that have crystals large enough to be seen by
994-657: A suite of tholeiitic dolerite intrusions . These were largely concordant with the strata of the existing country rock . On cooling, these crystallised and solidified to form the Great Whin Sill. It is dated at around 301- 294 million years old, thus spanning the Carboniferous/Permian boundary at 299 Ma. It underlies much of south and east Northumberland and the Durham Coalfield . Its maximum known thickness of around 70 metres occurs in
1065-432: A summary of the gross physical character of a rock. Examples of lithologies in the second sense include sandstone , slate , basalt , or limestone . Lithology is the basis of subdividing rock sequences into individual lithostratigraphic units for the purposes of mapping and correlation between areas. In certain applications, such as site investigations , lithology is described using a standard terminology such as in
1136-462: A viscosity similar to thick, cold molasses or even rubber when erupted. Felsic magma, such as rhyolite , is usually erupted at low temperature and is up to 10,000 times as viscous as basalt. Volcanoes with rhyolitic magma commonly erupt explosively, and rhyolitic lava flows are typically of limited extent and have steep margins because the magma is so viscous. Felsic and intermediate magmas that erupt often do so violently, with explosions driven by
1207-657: Is olivine -bearing and believed to be composed of an early differentiate of the Whin dolerite magma. On the other hand, the Great Whin, non-olivine-bearing and slightly density graded, is a later differentiate of the Whin magma. Two separate periods of Whin dolerite injection are confirmed by studies of vitrinite reflectance over the Alston Block where two periods of Whin contact metamorphism have been recognized. The two periods of Whin dolerite emplacement form part of
1278-411: Is an example of the intimate interaction and dependence of geology and ecology. The resistance to erosion of the dolerite gives rise to a number of striking geomorphological features such as High Force , Low Force , Cauldron Snout , High Cup Nick , Scordale and Holwick Scars. Igneous Igneous rock ( igneous from Latin igneus 'fiery'), or magmatic rock ,
1349-584: Is an example. The molten rock, which typically contains suspended crystals and dissolved gases, is called magma . It rises because it is less dense than the rock from which it was extracted. When magma reaches the surface, it is called lava . Eruptions of volcanoes into air are termed subaerial , whereas those occurring underneath the ocean are termed submarine . Black smokers and mid-ocean ridge basalt are examples of submarine volcanic activity. The volume of extrusive rock erupted annually by volcanoes varies with plate tectonic setting. Extrusive rock
1420-591: Is at the High Force waterfall in Teesdale . Bamburgh Castle , Dunstanburgh Castle , Lindisfarne Castle and stretches of Hadrian's Wall all strategically take advantage of high, rocky cliff lines formed by the sill. The Whin Sill complex is usually divided into three components: Holy Island Sill , Alnwick Sill and the Hadrian's Wall-Pennines Sill , which were created by separate magma flows, but at about
1491-728: Is distinguishable from the other two on the TAS diagram, being higher in total alkali oxides for a given silica content, but the tholeiitic and calc-alkaline series occupy approximately the same part of the TAS diagram. They are distinguished by comparing total alkali with iron and magnesium content. These three magma series occur in a range of plate tectonic settings. Tholeiitic magma series rocks are found, for example, at mid-ocean ridges, back-arc basins , oceanic islands formed by hotspots, island arcs and continental large igneous provinces . All three series are found in relatively close proximity to each other at subduction zones where their distribution
SECTION 20
#17327647923471562-595: Is expressed differently for major and minor elements and for trace elements. Contents of major and minor elements are conventionally expressed as weight percent oxides (e.g., 51% SiO 2 , and 1.50% TiO 2 ). Abundances of trace elements are conventionally expressed as parts per million by weight (e.g., 420 ppm Ni, and 5.1 ppm Sm). The term "trace element" is typically used for elements present in most rocks at abundances less than 100 ppm or so, but some trace elements may be present in some rocks at abundances exceeding 1,000 ppm. The diversity of rock compositions has been defined by
1633-506: Is formed by the cooling of molten magma on the earth's surface. The magma, which is brought to the surface through fissures or volcanic eruptions , rapidly solidifies. Hence such rocks are fine-grained ( aphanitic ) or even glassy. Basalt is the most common extrusive igneous rock and forms lava flows, lava sheets and lava plateaus. Some kinds of basalt solidify to form long polygonal columns . The Giant's Causeway in Antrim, Northern Ireland
1704-540: Is impractical, they may be classified chemically using the TAS classification . This is based on the total content of silica and alkali metal oxides and other chemical criteria. Sedimentary rocks are further classified by whether they are siliciclastic or carbonate . Siliciclastic sedimentary rocks are then subcategorized based on their grain size distribution and the relative proportions of quartz, feldspar, and lithic (rock) fragments. Carbonate rocks are classified with
1775-436: Is most often used to classify plutonic rocks. Chemical classifications are preferred to classify volcanic rocks, with phenocryst species used as a prefix, e.g. "olivine-bearing picrite" or "orthoclase-phyric rhyolite". The IUGS recommends classifying igneous rocks by their mineral composition whenever possible. This is straightforward for coarse-grained intrusive igneous rock, but may require examination of thin sections under
1846-409: Is one of the three main rock types , the others being sedimentary and metamorphic . Igneous rocks are formed through the cooling and solidification of magma or lava . The magma can be derived from partial melts of existing rocks in either a planet 's mantle or crust . Typically, the melting is caused by one or more of three processes: an increase in temperature, a decrease in pressure , or
1917-496: Is produced in the following proportions: The behaviour of lava depends upon its viscosity , which is determined by temperature, composition, and crystal content. High-temperature magma, most of which is basaltic in composition, behaves in a manner similar to thick oil and, as it cools, treacle . Long, thin basalt flows with pahoehoe surfaces are common. Intermediate composition magma, such as andesite , tends to form cinder cones of intermingled ash , tuff and lava, and may have
1988-402: Is related to depth and the age of the subduction zone. The tholeiitic magma series is well represented above young subduction zones formed by magma from relatively shallow depth. The calc-alkaline and alkaline series are seen in mature subduction zones, and are related to magma of greater depths. Andesite and basaltic andesite are the most abundant volcanic rock in island arc which is indicative of
2059-439: Is summarized in the following table: The percentage of alkali metal oxides ( Na 2 O plus K 2 O ) is second only to silica in its importance for chemically classifying volcanic rock. The silica and alkali metal oxide percentages are used to place volcanic rock on the TAS diagram , which is sufficient to immediately classify most volcanic rocks. Rocks in some fields, such as the trachyandesite field, are further classified by
2130-477: Is the diameter of the grains and/or clasts that constitute the rock. These are used to determine which rock naming system to use (e.g., a conglomerate , sandstone , or mudstone ). In the case of sandstones and conglomerates, which cover a wide range of grain sizes, a word describing the grain size range is added to the rock name. Examples are " pebble conglomerate" and "fine quartz arenite ". In rocks in which mineral grains are large enough to be identified using
2201-475: The Dunham or Folk classification schemes according to the constituents of the carbonate rock. Metamorphic rock naming can be based on protolith , mineral composition, texture, or metamorphic facies . Naming based on texture and a pelite (e.g., shale , mudrock ) protolith can be used to define slate and phyllite . Texture-based names are schist and gneiss . These textures, from slate to gneiss, define
Whin Sill - Misplaced Pages Continue
2272-479: The IUGS , this is often impractical, and chemical classification is done instead using the TAS classification . Igneous rocks are classified according to mode of occurrence, texture, mineralogy, chemical composition, and the geometry of the igneous body. The classification of the many types of igneous rocks can provide important information about the conditions under which they formed. Two important variables used for
2343-464: The QAPF classification , which is based on the relative content of quartz , alkali feldspar , plagioclase , and feldspathoid . Special classifications exist for igneous rock of unusual compositions, such as ultramafic rock or carbonatites . Where possible, extrusive igneous rocks are also classified by mineral content using the extrusive QAPF classification, but when determining the mineral composition
2414-453: The convection of solid mantle, it will cool slightly as it expands in an adiabatic process , but the cooling is only about 0.3 °C per kilometre. Experimental studies of appropriate peridotite samples document that the solidus temperatures increase by 3 °C to 4 °C per kilometre. If the rock rises far enough, it will begin to melt. Melt droplets can coalesce into larger volumes and be intruded upwards. This process of melting from
2485-473: The 1640s and is derived either from French granit or Italian granito , meaning simply "granulate rock". The term rhyolite was introduced in 1860 by the German traveler and geologist Ferdinand von Richthofen The naming of new rock types accelerated in the 19th century and peaked in the early 20th century. Much of the early classification of igneous rocks was based on the geological age and occurrence of
2556-434: The 1960s. However, the concept of normative mineralogy has endured, and the work of Cross and his coinvestigators inspired a flurry of new classification schemes. Among these was the classification scheme of M.A. Peacock, which divided igneous rocks into four series: the alkalic, the alkali-calcic, the calc-alkali, and the calcic series. His definition of the alkali series, and the term calc-alkali, continue in use as part of
2627-461: The 19th century, the term ' sill ' was adopted by geologists for concordant, tabular intrusive bodies. Towards the close of Carboniferous Period and in the early Permian , some 295 million years ago (Ma), crustal extension caused by movement of the Earth's tectonic plates during the Variscan orogeny allowed the emplacement of igneous intrusions of magma across much of northern England of
2698-520: The Earth's surface. Intrusive igneous rocks that form at depth within the crust are termed plutonic (or abyssal ) rocks and are usually coarse-grained. Intrusive igneous rocks that form near the surface are termed subvolcanic or hypabyssal rocks and they are usually much finer-grained, often resembling volcanic rock. Hypabyssal rocks are less common than plutonic or volcanic rocks and often form dikes, sills, laccoliths, lopoliths , or phacoliths . Extrusive igneous rock, also known as volcanic rock,
2769-879: The European geotechnical standard Eurocode 7 . The naming of a lithology is based on the rock type . The three major rock types are igneous , sedimentary , and metamorphic . Igneous rocks are formed directly from magma , which is a mixture of molten rock, dissolved gases, and solid crystals. Sedimentary rock is formed from mineral or organic particles that collect at the Earth's surface and become lithified . Metamorphic rock forms by recrystallization of existing solid rock under conditions of great heat or pressure. Igneous rocks are further broken into three broad categories. Igneous rock composed of broken rock fragments created directly by volcanic processes ( tephra ) are classified as pyroclastic rock . Pyroclastic rocks are further classified by average fragment ( clast ) size and whether
2840-680: The North Pennines. Surface and subsurface records of the Great Whin reveal it is not always concordant over wide areas and often rises and falls in the stratigraphical succession in marked leaps and gentle transgressions different levels. Studies of the petrology of the dolerites of the Whin Sill complex have revealed significant differences between the Little Whin Sill and the Great Whin Sill . The Little Whin Sill
2911-450: The basic TAS classification include: In older terminology, silica oversaturated rocks were called silicic or acidic where the SiO 2 was greater than 66% and the family term quartzolite was applied to the most silicic. A normative feldspathoid classifies a rock as silica-undersaturated; an example is nephelinite . Magmas are further divided into three series: The alkaline series
Whin Sill - Misplaced Pages Continue
2982-568: The calc-alkaline magmas. Some island arcs have distributed volcanic series as can be seen in the Japanese island arc system where the volcanic rocks change from tholeiite—calc-alkaline—alkaline with increasing distance from the trench. Some igneous rock names date to before the modern era of geology. For example, basalt as a description of a particular composition of lava-derived rock dates to Georgius Agricola in 1546 in his work De Natura Fossilium . The word granite goes back at least to
3053-429: The chemical composition of an igneous rock was its most fundamental characteristic, it should be elevated to prime position. Geological occurrence, structure, mineralogical constitution—the hitherto accepted criteria for the discrimination of rock species—were relegated to the background. The completed rock analysis is first to be interpreted in terms of the rock-forming minerals which might be expected to be formed when
3124-625: The classification of igneous rocks are particle size, which largely depends on the cooling history, and the mineral composition of the rock. Feldspars , quartz or feldspathoids , olivines , pyroxenes , amphiboles , and micas are all important minerals in the formation of almost all igneous rocks, and they are basic to the classification of these rocks. All other minerals present are regarded as nonessential in almost all igneous rocks and are called accessory minerals . Types of igneous rocks with other essential minerals are very rare, but include carbonatites , which contain essential carbonates . In
3195-405: The crust of a planet. Bodies of intrusive rock are known as intrusions and are surrounded by pre-existing rock (called country rock ). The country rock is an excellent thermal insulator , so the magma cools slowly, and intrusive rocks are coarse-grained ( phaneritic ). The mineral grains in such rocks can generally be identified with the naked eye. Intrusions can be classified according to
3266-402: The different types of extrusive igneous rocks than between different types of intrusive igneous rocks. Generally, the mineral constituents of fine-grained extrusive igneous rocks can only be determined by examination of thin sections of the rock under a microscope , so only an approximate classification can usually be made in the field . Although classification by mineral makeup is preferred by
3337-645: The end-Carboniferous earth movements in northern England. They can be shown to have occurred between a period of compression from a W-SW direction and later gentle doming of the Alston Block near the Westphalian-Stephanian boundary, dated about 300–295 Ma. The lithology is notable in many respects, including well developed pegmatite segregations which can be found in Upper Teesdale. Late stage hydrothermal mineralisation has filled
3408-484: The extensive basalt magmatism of several large igneous provinces. Decompression melting occurs because of a decrease in pressure. The solidus temperatures of most rocks (the temperatures below which they are completely solid) increase with increasing pressure in the absence of water. Peridotite at depth in the Earth's mantle may be hotter than its solidus temperature at some shallower level. If such rock rises during
3479-440: The fragments are mostly individual mineral crystals , particles of volcanic glass , or rock fragments. Further classifications, such as by chemical composition , may also be applied. Igneous rocks that have visible mineral grains ( phaneritic rocks) are classified as intrusive , while those that are glassy or very fine-grained ( aphanitic ) are classified as extrusive rock . Intrusive igneous rocks are usually classified using
3550-436: The great majority of cases, the rock has a more typical mineral composition, with significant quartz, feldspars, or feldspathoids. Classification is based on the percentages of quartz, alkali feldspar, plagioclase, and feldspathoid out of the total fraction of the rock composed of these minerals, ignoring all other minerals present. These percentages place the rock somewhere on the QAPF diagram , which often immediately determines
3621-702: The joints with pectolite . The dolerite has been carbonated as metasomatic selvages into veins and joints and other flaws to produce 'White Whin'. Thermal metamorphism of the country rock in the contact zone produced coarse grained marbles within the contact aureole in a small number of places in Teesdale. Disused roadstone quarries along the course of the sill offer sections for its interpretation. The regolith supports alpine/Arctic flora which includes spring gentian ( Gentiana verna ), bird's-eye primrose ( Primula farinosa ), mountain avens ( Dryas octopetala ) and Teesdale violet ( Viola rupestris ). This
SECTION 50
#17327647923473692-433: The larger crystals, called phenocrysts, grow to considerable size before the main mass of the magma crystallizes as finer-grained, uniform material called groundmass. Grain size in igneous rocks results from cooling time so porphyritic rocks are created when the magma has two distinct phases of cooling. Igneous rocks are classified on the basis of texture and composition. Texture refers to the size, shape, and arrangement of
3763-399: The magma crystallizes, e.g., quartz feldspars, olivine , akermannite, Feldspathoids , magnetite , corundum , and so on, and the rocks are divided into groups strictly according to the relative proportion of these minerals to one another. This new classification scheme created a sensation, but was criticized for its lack of utility in fieldwork, and the classification scheme was abandoned by
3834-454: The main visible fabric is normally bedding , and the scale and degree of development of the bedding is normally recorded as part of the description. Metamorphic rocks (apart from those created by contact metamorphism ), are characterised by well-developed planar and linear fabrics. Igneous rocks may also have fabrics as a result of flow or the settling out of particular mineral phases during crystallisation, forming cumulates . The texture of
3905-487: The major ways in which it is classified. Igneous rocks are classified by their mineral content whenever practical, using the QAPF classification or special ultramafic or carbonatite classifications. Likewise metamorphic facies, which show the degree to which a rock has been exposed to heat and pressure and are therefore important in classifying metamorphic rocks, are determined by observing the mineral phases that are present in
3976-457: The majority of minerals will be visible to the naked eye or at least using a hand lens, magnifying glass or microscope. Plutonic rocks also tend to be less texturally varied and less prone to showing distinctive structural fabrics. Textural terms can be used to differentiate different intrusive phases of large plutons, for instance porphyritic margins to large intrusive bodies, porphyry stocks and subvolcanic dikes . Mineralogical classification
4047-697: The mineral grains or crystals of which the rock is composed. Texture is an important criterion for the naming of volcanic rocks. The texture of volcanic rocks, including the size, shape, orientation, and distribution of mineral grains and the intergrain relationships, will determine whether the rock is termed a tuff , a pyroclastic lava or a simple lava . However, the texture is only a subordinate part of classifying volcanic rocks, as most often there needs to be chemical information gleaned from rocks with extremely fine-grained groundmass or from airfall tuffs, which may be formed from volcanic ash. Textural criteria are less critical in classifying intrusive rocks where
4118-415: The naked eye are called phaneritic ; those with crystals too small to be seen are called aphanitic . Generally speaking, phaneritic implies an intrusive origin or plutonic, indicating slow cooling; aphanitic are extrusive or volcanic, indicating rapid cooling. An igneous rock with larger, clearly discernible crystals embedded in a finer-grained matrix is termed porphyry . Porphyritic texture develops when
4189-441: The ratio of potassium to sodium (so that potassic trachyandesites are latites and sodic trachyandesites are benmoreites). Some of the more mafic fields are further subdivided or defined by normative mineralogy , in which an idealized mineral composition is calculated for the rock based on its chemical composition. For example, basanite is distinguished from tephrite by having a high normative olivine content. Other refinements to
4260-403: The release of dissolved gases—typically water vapour, but also carbon dioxide . Explosively erupted pyroclastic material is called tephra and includes tuff , agglomerate and ignimbrite . Fine volcanic ash is also erupted and forms ash tuff deposits, which can often cover vast areas. Because volcanic rocks are mostly fine-grained or glassy, it is much more difficult to distinguish between
4331-473: The rock must be classified chemically. There are relatively few minerals that are important in the formation of common igneous rocks, because the magma from which the minerals crystallize is rich in only certain elements: silicon , oxygen , aluminium, sodium , potassium , calcium , iron, and magnesium . These are the elements that combine to form the silicate minerals , which account for over ninety percent of all igneous rocks. The chemistry of igneous rocks
SECTION 60
#17327647923474402-401: The rock shows highly nonuniform crystal sizes (is porphyritic ), or whether grains are aligned (which is described as trachytic texture). Rocks often contain small-scale structures (smaller than the scale of an individual outcrop). In sedimentary rocks this may include sole markings , ripple marks , mudcracks and cross-bedding . These are recorded as they are generally characteristic of
4473-424: The rock type. In a few cases, such as the diorite-gabbro-anorthite field, additional mineralogical criteria must be applied to determine the final classification. Where the mineralogy of an volcanic rock can be determined, it is classified using the same procedure, but with a modified QAPF diagram whose fields correspond to volcanic rock types. When it is impractical to classify a volcanic rock by mineralogy,
4544-478: The rock. In igneous rock, this is used to determine the rate at which the material cooled: large crystals typically indicate intrusive igneous rock, while small crystals indicate that the rock was extrusive. Metamorphism of rock composed of mostly a single mineral, such as quartzite or marble , may increase grain size ( grain growth ), while metamorphism of sheared rock may decrease grain size (syntectonic recrystallization ). In clastic sedimentary rocks, grain size
4615-467: The rocks. However, in 1902, the American petrologists Charles Whitman Cross , Joseph P. Iddings , Louis V. Pirsson , and Henry Stephens Washington proposed that all existing classifications of igneous rocks should be discarded and replaced by a "quantitative" classification based on chemical analysis. They showed how vague, and often unscientific, much of the existing terminology was and argued that as
4686-533: The same time. The Little Whin Sill is an associated formation to the south, in Weardale . Much of the early study of geology began in the British Isles, whence much of the terminology is derived. Quarrymen of Northern England used the term 'sill' to describe a more or less horizontal body of rock. 'Whin' was applied to dark, hard rocks. As the intrusive igneous origin of the Whin Sill was determined in
4757-435: The shape and size of the intrusive body and its relation to the bedding of the country rock into which it intrudes. Typical intrusive bodies are batholiths , stocks , laccoliths , sills and dikes . Common intrusive rocks are granite , gabbro , or diorite . The central cores of major mountain ranges consist of intrusive igneous rocks. When exposed by erosion, these cores (called batholiths ) may occupy huge areas of
4828-475: The top 16 kilometres (9.9 mi) of the Earth's crust by volume. Igneous rocks form about 15% of the Earth's current land surface. Most of the Earth's oceanic crust is made of igneous rock. Igneous rocks are also geologically important because: Igneous rocks can be either intrusive ( plutonic and hypabyssal) or extrusive ( volcanic ). Intrusive igneous rocks make up the majority of igneous rocks and are formed from magma that cools and solidifies within
4899-435: The upward movement of solid mantle is critical in the evolution of the Earth. Lithology The lithology of a rock unit is a description of its physical characteristics visible at outcrop , in hand or core samples , or with low magnification microscopy. Physical characteristics include colour, texture, grain size , and composition. Lithology may refer to either a detailed description of these characteristics, or
4970-586: The widely used Irvine-Barager classification, along with W.Q. Kennedy's tholeiitic series. By 1958, there were some 12 separate classification schemes and at least 1637 rock type names in use. In that year, Albert Streckeisen wrote a review article on igneous rock classification that ultimately led to the formation of the IUGG Subcommission of the Systematics of Igneous Rocks. By 1989 a single system of classification had been agreed upon, which
5041-467: Was further revised in 2005. The number of recommended rock names was reduced to 316. These included a number of new names promulgated by the Subcommission. The Earth's crust averages about 35 kilometres (22 mi) thick under the continents , but averages only some 7–10 kilometres (4.3–6.2 mi) beneath the oceans . The continental crust is composed primarily of sedimentary rocks resting on
#346653