The TI-59 is an early programmable calculator , that was manufactured by Texas Instruments from 1977. It is the successor to the TI SR-52 , quadrupling the number of "program steps" of storage, and adding "ROM Program Modules" (an insertable ROM chip, capable of holding 5000 program steps). Just like the SR-52, it has a magnetic card reader for external storage. One quarter of the memory is stored on each side of one card.
58-647: The TI-58 (May 1977), and later TI-58C (1979), are cut-down versions of the TI-59, lacking the magnetic card reader and having half the memory, but otherwise identical. Although the TI-58C uses a different chip than the TI-58, the technical data remain identical. The "C" in a TI (or Hewlett-Packard) model name indicates that the calculator has a constant memory (or continuous memory , respectively) allowing retention of programs and data when turned off. These calculators use
116-577: A type-in program . Here is a sample program that computes the factorial of an integer number from 2 to 69. For 5!, if "5 A" is pressed, it gives the result, 120. Unlike the SR-52 , the TI-58 and TI-59 do not have the factorial function built-in, but do support it through the software module which was delivered with the calculator. Here is the same program written for TI Compiler : In comparison to its contemporary main competitor, Hewlett-Packard HP-67 ,
174-632: A PC for firmware updates; for example, a digital audio player might be updated to support a new file format . Some hobbyists have taken advantage of this flexibility to reprogram consumer products for new purposes; for example, the iPodLinux and OpenWrt projects have enabled users to run full-featured Linux distributions on their MP3 players and wireless routers, respectively. ROM is also useful for binary storage of cryptographic data, as it makes them difficult to replace, which may be desirable in order to enhance information security . Since ROM (at least in hard-wired mask form) cannot be modified, it
232-512: A bit line to a word line. Consequently, ROM could be implemented at a lower cost-per- bit than RAM for many years. Most home computers of the 1980s stored a BASIC interpreter or operating system in ROM as other forms of non-volatile storage such as magnetic disk drives were too costly. For example, the Commodore 64 included 64 KB of RAM and 20 KB of ROM containing a BASIC interpreter and
290-524: A company can simply order a large batch of fresh PROM chips and program them with the desired contents at its designers' convenience. The advent of the metal–oxide–semiconductor field-effect transistor (MOSFET), invented at Bell Labs in 1959, enabled the practical use of metal–oxide–semiconductor (MOS) transistors as memory cell storage elements in semiconductor memory , a function previously served by magnetic cores in computer memory . In 1967, Dawon Kahng and Simon Sze of Bell Labs proposed that
348-405: A hard copy of the calculator's program including the alphanumeric mnemonics instead of just the numeric codes normally visible on the display, as well as a dump of the data registers, a trace of the program's execution and other information about the program. In the early model PC-100A, a switch inside the battery charger compartment allows use with the earlier SR-52 and SR-56 calculators as well as
406-422: A magnetic card reader. The TI-59 and TI-58 were the first hand-held calculators to utilize removable ROM program modules . The Master Library Module ROM was included with the TI-59 and TI-58, and contains several useful pre-programmed routines and even a game. Additional modules - for such applications as real estate , investment , statistics , surveying and aviation - were sold separately. The programs in
464-411: A new role as a medium for mass storage or secondary storage of files. Mask ROM is a read-only memory whose contents are programmed by the integrated circuit manufacturer (rather than by the user). The desired memory contents are furnished by the customer to the device manufacturer. The desired data is converted into a custom photomask /mask layer for the final metallization of interconnections on
522-407: A parenthesized infix calculation system called " Algebraic Operating System " (AOS), where, compared to the postfix RPN system used by other scientific calculators (such as HP), the operator enters calculations just as they are written on paper, using up to nine levels of parentheses. The calculator can be powered from an external adapter or from internal NiCd rechargeable battery pack (although
580-511: A specific part of the device, instead of the entire device. This can be done at high speed, hence the name "flash". All of these technologies improved the flexibility of ROM, but at a significant cost-per-chip, so that in large quantities mask ROM would remain an economical choice for many years. (Decreasing cost of reprogrammable devices had almost eliminated the market for mask ROM by the year 2000.) Rewriteable technologies were envisioned as replacements for mask ROM. The most recent development
638-416: A technical level the gains have been achieved by increasing parallelism both in controller design and of storage, the use of large DRAM read/write caches and the implementation of memory cells which can store more than one bit (DLC, TLC and MLC). The latter approach is more failure prone but this has been largely mitigated by overprovisioning (the inclusion of spare capacity in a product which is visible only to
SECTION 10
#1732798078847696-406: A variety of other devices. In particular, many microprocessors have mask ROM to store their microcode . Some microcontrollers have mask ROM to store the bootloader or all of their firmware . Classic mask-programmed ROM chips are integrated circuits that physically encode the data to be stored, and thus it is impossible to change their contents after fabrication. It is also possible to write
754-436: Is NAND flash , also invented at Toshiba. Its designers explicitly broke from past practice, stating plainly that "the aim of NAND flash is to replace hard disks ," rather than the traditional use of ROM as a form of non-volatile primary storage . As of 2021 , NAND has nearly completely achieved this goal by offering throughput higher than hard disks, lower latency, higher tolerance of physical shock, extreme miniaturization (in
812-411: Is also possible to activate any of the programs in the pre-programmed memory module, and run one like any user-written program. Programs written by the user can also use programs in the module as subroutines. The module's programs run directly from ROM , so they leave the calculator's memory free for the user. However, exploiting the computer-like capabilities of the TI-59 is a different matter. Although
870-407: Is common practice to use rewritable non-volatile memory – such as UV- EPROM or EEPROM – for the development phase of a project, and to switch to mask ROM when the code has been finalized. For example, Atmel microcontrollers come in both EEPROM and mask ROM formats. The main advantage of mask ROM is its cost. Per bit, mask ROM was more compact than any other kind of semiconductor memory . Since
928-418: Is efficient for some frequently used instructions but also limits the number of possible instructions. The TI-59 can store programs and data on small magnetic cards when the calculator is turned off and quickly reloaded when needed. Click below for a video of the card reader in action. The video also shows the dual use of the magnetic card as a program documentation menu. Notes can be printed or handwritten by
986-676: Is only about twice as large as in the SR-52 , but more flexible, and thus the possible number of program steps was four times as high. Contents of this memory are lost when the calculator is turned off. The TI-58 has half the memory of the TI-59 and supports up to 480 program steps or 60 memories. It competed with the HP-34C . The TI-58 and TI-59 calculators have variable-length instructions. Some keypresses are merged into one programming step, so that instructions from one to eleven keypresses are stored in one to six programming steps. The HP-67 always stores one instruction in one programming step, which
1044-413: Is only suitable for storing data which is not expected to need modification for the life of the device. To that end, ROM has been used in many computers to store look-up tables for the evaluation of mathematical and logical functions (for example, a floating-point unit might tabulate the sine function in order to facilitate faster computation). This was especially effective when CPUs were slow and ROM
1102-415: Is still applied to images of newer games distributed on CD-ROMs or other optical media. ROM images of commercial games, firmware, etc. usually contain copyrighted software. The unauthorized copying and distribution of copyrighted software is a violation of copyright laws in many jurisdictions, although duplication for backup purposes may be considered fair use depending on location. In any case, there
1160-452: Is stored, usually Flash memory ) and RAM. ROM and RAM are essential components of a computer, each serving distinct roles. RAM, or Random Access Memory, is a temporary, volatile storage medium that loses data when the system powers down. In contrast, ROM, being non-volatile, preserves its data even after the computer is switched off. IBM used capacitor read-only storage (CROS) and transformer read-only storage (TROS) to store microcode for
1218-541: Is typically only possible a certain number of times. The term "ROM" is sometimes used to refer to a ROM device containing specific software or a file with software to be stored in a writable ROM device. For example, users modifying or replacing the Android operating system describe files containing a modified or replacement operating system as " custom ROMs " after the type of storage the file used to be written to, and they may distinguish between ROM (where software and data
SECTION 20
#17327980788471276-511: Is used to store the basic bootstrapping firmware for the processor, as well as the various firmware needed to internally control self-contained devices such as graphic cards , hard disk drives , solid-state drives , optical disc drives , TFT screens , etc., in the system. Today, many of these "read-only" memories – especially the BIOS / UEFI – are often replaced with EEPROM or Flash memory (see below), to permit in-place reprogramming should
1334-651: The Electrotechnical Laboratory in 1972, went a long way to solving problem 4, since an EEPROM can be programmed in-place if the containing device provides a means to receive the program contents from an external source (for example, a personal computer via a serial cable ). Flash memory , invented by Fujio Masuoka at Toshiba in the early 1980s and commercialized in the late 1980s, is a form of EEPROM that makes very efficient use of chip area and can be erased and reprogrammed thousands of times without damage. It permits erasure and programming of only
1392-632: The KERNAL operating system. Later home or office computers such as the IBM PC XT often included magnetic disk drives, and larger amounts of RAM, allowing them to load their operating systems from disk into RAM, with only a minimal hardware initialization core and bootloader remaining in ROM (known as the BIOS in IBM-compatible computers). This arrangement allowed for a more complex and easily upgradeable operating system. In modern PCs, "ROM"
1450-512: The floating gate of a MOS semiconductor device could be used for the cell of a reprogrammable ROM, which led to Dov Frohman of Intel inventing erasable programmable read-only memory (EPROM) in 1971. The 1971 invention of EPROM essentially solved problem 3, since EPROM (unlike PROM) can be repeatedly reset to its unprogrammed state by exposure to strong ultraviolet light. Electrically erasable programmable read-only memory (EEPROM), developed by Yasuo Tarui, Yutaka Hayashi and Kiyoko Naga at
1508-418: The 1960s, both ROM and its mutable counterpart static RAM were implemented as arrays of transistors in silicon chips; however, a ROM memory cell could be implemented using fewer transistors than an SRAM memory cell, since the latter needs a latch (comprising 5-20 transistors) to retain its contents, while a ROM cell might consist of the absence (logical 0) or presence (logical 1) of one transistor connecting
1566-466: The ROM chips, and the presence or absence of these features will represent either a 1 or a 0 bit, depending on the ROM design. Thus by design, any attempts to electronically change the data will fail, since the data is defined by the presence or absence of physical features or structures that cannot be electronically changed. For every software program, even for revisions of the same program, the entire mask must be changed, which can be costly. In mask ROM,
1624-575: The TI-58/59 series. In addition, it also works with non-programmable TI machines of the era such as the SR-50A . (Remove the battery pack of a TI calculator and look for the row of printer interface pads on the circuit board below the battery terminals.) HP Continuous memory The term continuous memory was coined by Hewlett-Packard (HP) to describe a unique feature of certain HP calculators whereby
1682-446: The TI-59 has about twice the memory . The partition between program steps and memories is adjustable in increments of 80 program steps/10 memories, and as many as 960 program steps (with zero memories) or as many as 100 memories (with 160 program steps) can be configured. The TI-59 was the first programmable pocket calculator where the manufacturer provided a system for sharing memory between data registers and program storage. The memory
1740-445: The TI-59 is Turing-complete , supporting straight-line programming, conditions, loops, and indirect access to memory registers, and although it supports limited alphanumeric output on the printer only, writing sophisticated routines is essentially a matter of planning machine language and using a coding pad. A large degree of sharing occurred in the TI-59 and TI-58 community. At least one game , Darth Vader's Force Battle , appeared as
1798-546: The addition of bodge wires and the removal or replacement of components, ICs cannot. Correction of errors, or updates to the software, require new devices to be manufactured and to replace the installed device. Floating-gate ROM semiconductor memory in the form of erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM) and flash memory can be erased and re-programmed. But usually, this can only be done at relatively slow speeds, may require special equipment to achieve, and
TI-59 / TI-58 - Misplaced Pages Continue
1856-408: The battery has to remain present when using the external AC adapter to avoid damage to the calculator circuitry). [REDACTED] The red LED display shows 10 decimal digits of precision. Programming simple problems with the TI-59 or TI-58 is a very straightforward process. In programming mode, the TI-59 simply records key presses. Alphabetical keys provide easy access to up to ten entry points. It
1914-499: The bottom margin of their faceplates. The " C " in the model designations was to distinguish those models within HP's calculator product line. HP did not print this phrase on subsequent, featured models because the novelty of continuous memory had by then faded and also because it could no longer claim it as a feature unique to HP calculators (Texas Instruments would later call their identical feature " Constant Memory "). At introduction over
1972-454: The calculator could internally sustain most, or in later models - all, of the contents of user memory (via battery-backed CMOS memory). Since its introduction on the HP-25C , this feature slowly evolved by model to eventually mean maintaining the contents of nearly all calculator memory, including system and scratch RAM, options, settings, flags, and other calculator state information. Before
2030-423: The contents of a Laser ROM by using a laser to alter the electrical properties of only some diodes on the ROM, or by using a laser to cut only some polysilicon links, instead of using a mask. By applying write protection , some types of reprogrammable ROMs may temporarily become read-only memory. There are other types of non-volatile memory which are not based on solid-state IC technology, including: Although
2088-660: The cost of an integrated circuit strongly depends on its size, mask ROM is significantly cheaper than any other kind of semiconductor memory. However, the one-time masking cost is high and there is a long turn-around time from design to product phase. Design errors are costly: if an error in the data or code is found, the mask ROM is useless and must be replaced in order to change the code or data. As of 2003 , four companies produce most such mask ROM chips: Samsung Electronics , NEC Corporation , Oki Electric Industry , and Macronix . Some integrated circuits contain only mask ROM. Other integrated circuits contain mask ROM as well as
2146-463: The data is physically encoded in the circuit, so it can only be programmed during fabrication. This leads to a number of serious disadvantages: Subsequent developments have addressed these shortcomings. Programmable read-only memory (PROM), invented by Wen Tsing Chow in 1956, allowed users to program its contents exactly once by physically altering its structure with the application of high-voltage pulses. This addressed problems 1 and 2 above, since
2204-453: The drive controller) and by increasingly sophisticated read/write algorithms in drive firmware. Because they are written by forcing electrons through a layer of electrical insulation onto a floating transistor gate , rewriteable ROMs can withstand only a limited number of write and erase cycles before the insulation is permanently damaged. In the earliest EPROMs, this might occur after as few as 1,000 write cycles, while in modern Flash EEPROM
2262-418: The endurance may exceed 1,000,000. The limited endurance, as well as the higher cost per bit, means that Flash-based storage is unlikely to completely supplant magnetic disk drives in the near future. The timespan over which a ROM remains accurately readable is not limited by write cycling. The data retention of EPROM, EAROM, EEPROM, and Flash may be time-limited by charge leaking from the floating gates of
2320-721: The form of USB flash drives and tiny microSD memory cards , for example), and much lower power consumption. Many stored-program computers use a form of non-volatile storage (that is, storage that retains its data when power is removed) to store the initial program that runs when the computer is powered on or otherwise begins execution (a process known as bootstrapping , often abbreviated to " booting " or "booting up"). Likewise, every non-trivial computer needs some form of mutable memory to record changes in its state as it executes. Forms of read-only memory were employed as non-volatile storage for programs in most early stored-program computers, such as ENIAC after 1948 . (Until then it
2378-442: The integrated circuit, although fuse re-growth was once a problem in some systems. The contents of ROM chips can be extracted with special hardware devices and relevant controlling software. This practice is common for, as a main example, reading the contents of older video game console cartridges . Another example is making backups of firmware/OS ROMs from older computers or other devices - for archival purposes, as in many cases,
TI-59 / TI-58 - Misplaced Pages Continue
2436-461: The introduction of the HP-25C in 1976, all calculator random-access memory (RAM) was volatile, i.e. its contents (esp. user data in storage registers and any user programs) were cleared when the calculator was turned off. Three early models with this improved, continuous memory - the HP-25C, HP-29C , and HP-19C - actually had the words " Continuous Memory " printed in conspicuous, white script on
2494-499: The invention of the integrated circuit came mask ROM . Mask ROM consists of a grid of word lines (the address input) and bit lines (the data output), selectively joined with transistor switches, and can represent an arbitrary look-up table with a regular physical layout and predictable propagation delay . Mask ROM is programmed with photomasks in photolithography during semiconductor manufacturing . The mask defines physical features or structures that will be removed, or added in
2552-555: The manufacture of the memory device . Read-only memory is useful for storing software that is rarely changed during the life of the system, also known as firmware . Software applications, such as video games , for programmable devices can be distributed as plug-in cartridges containing ROM . Strictly speaking, read-only memory refers to hard-wired memory, such as diode matrix or a mask ROM integrated circuit (IC), that cannot be electronically changed after manufacture. Although discrete circuits can be altered in principle, through
2610-475: The memory cell transistors. Early generation EEPROM's, in the mid-1980s generally cited 5 or 6 year data retention. A review of EEPROM's offered in the year 2020 shows manufacturers citing 100 year data retention. Adverse environments will reduce the retention time (leakage is accelerated by high temperatures or radiation ). Masked ROM and fuse/antifuse PROM do not suffer from this effect, as their data retention depends on physical rather than electrical permanence of
2668-548: The memory chip (hence the name). Mask ROM can be made in several ways, all of which aim to change the electrical response of a transistor when it is addressed on a grid, such as: Mask ROM transistors can be arranged in either NOR or NAND configurations and can achieve one of the smallest cell sizes possible as each bit is represented by only one transistor. NAND offers higher storage density than NOR. OR configurations are also possible, but compared to NOR it only connects transistors to V cc instead of V ss . Mask ROMs used to be
2726-474: The modules used the user-defined keys heavily. To make the programs easier to use, plastic cards with the same size as the magnetic cards, but just printed to label the user-defined keys, can be inserted in the slot between the display and the keyboard to label the user-defined keys. Also available for the TI-59 and TI-58 was a thermal printer (the PC-100A, B, and C models); the calculator was mounted on top of
2784-417: The most inexpensive, and are the simplest semiconductor memory devices, with only one metal layer and one polysilicon layer, making it the type of semiconductor memory with the highest manufacturing yield (the highest number of working devices per manufacturing run). ROM can be made using one of several semiconductor device fabrication technologies such as CMOS , nMOS , pMOS , and bipolar transistors . It
2842-405: The movement of jumper plugs to apply write-enable signals, and special lock/unlock command codes. Modern NAND Flash can be used to achieve the highest write speeds of any rewritable ROM technology, with speeds as high as 10 GB / s in an SSD. This has been enabled by the increased investment in both consumer and enterprise solid-state drives and flash memory products for higher end mobile devices. On
2900-858: The need for a firmware upgrade arise. However, simple and mature sub-systems (such as the keyboard or some communication controllers in the integrated circuits on the main board, for example) may employ mask ROM or OTP (one-time programmable). ROM and successor technologies such as flash are prevalent in embedded systems . These are in everything from industrial robots to home appliances and consumer electronics ( MP3 players , set-top boxes , etc.) all of which are designed for specific functions, but are based on general-purpose microprocessors . With software usually tightly coupled to hardware, program changes are rarely needed in such devices (which typically lack hard disks for reasons of cost, size, or power consumption). As of 2008, most products use Flash rather than mask ROM, and many provide some means for connecting to
2958-498: The next 9 years (approx. 1979–1987), subsequent HP models so featured simply had designations in which the letter " C " followed the model number, e.g. the HP-34C and the Voyager series HP-10C , HP-11C , HP-12C , HP-15C and HP-16C . Read-only memory Read-only memory ( ROM ) is a type of non-volatile memory used in computers and other electronic devices . Data stored in ROM cannot be electronically modified after
SECTION 50
#17327980788473016-459: The original chips are PROMs and thus at risk of exceeding their usable data lifetime. The resultant memory dump files are known as ROM images or abbreviated ROMs , and can be used to produce duplicate ROMs - for example to produce new cartridges or as digital files for playing in console emulators . The term ROM image originated when most console games were distributed on cartridges containing ROM chips, but achieved such widespread usage that it
3074-428: The printer and locked in place with a key. The calculator can be programmed to request input from the user, and output results of calculations to the printer. Alphanumeric text (64 characters total, including space, 0-9, A-Z and 25 punctuation and mathematical symbols) can be output as well as numbers. A limited ability to plot graphs is provided. The printer is also valuable for program development because it can produce
3132-405: The programmer on the top side of the magnetic card. Once read by the cardreader, the card can then be stored, as shown, in a slot between the top of the keyboard and the display, thus providing a notation indicating both the name of the program currently loaded and the purpose of each of the five label buttons A-E and their secondary functions A'-E' within the loaded program. The TI-58 does not have
3190-443: The relative speed of RAM vs. ROM has varied over time, as of 2007 large RAM chips can be read faster than most ROMs. For this reason (and to allow uniform access), ROM content is sometimes copied to RAM or shadowed before its first use, and subsequently read from RAM. For those types of ROM that can be electrically modified, writing speed has traditionally been much slower than reading speed, and it may need unusually high voltage,
3248-583: The smaller System/360 models, the 360/85 , and the initial two System/370 models ( 370/155 and 370/165 ). On some models there was also a writeable control store (WCS) for additional diagnostics and emulation support. The Apollo Guidance Computer used core rope memory , programmed by threading wires through magnetic cores. The simplest type of solid-state ROM is as old as the semiconductor technology itself. Combinational logic gates can be joined manually to map n -bit address input onto arbitrary values of m -bit data output (a look-up table ). With
3306-575: Was cheap compared to RAM. Notably, the display adapters of early personal computers stored tables of bitmapped font characters in ROM. This usually meant that the text display font could not be changed interactively. This was the case for both the CGA and MDA adapters available with the IBM PC XT. The use of ROM to store such small amounts of data has disappeared almost completely in modern general-purpose computers. However, NAND Flash has taken over
3364-408: Was not a stored-program computer as every program had to be manually wired into the machine, which could take days to weeks.) Read-only memory was simpler to implement since it needed only a mechanism to read stored values, and not to change them in-place, and thus could be implemented with very crude electromechanical devices (see historical examples below). With the advent of integrated circuits in
#846153