A taxiway is a path for aircraft at an airport connecting runways with aprons , hangars , terminals and other facilities. They mostly have a hard surface such as asphalt or concrete , although smaller general aviation airports sometimes use gravel or grass .
61-397: Most airports do not have a specific speed limit for taxiing (though some do). There is a general rule on safe speed based on obstacles. Operators and aircraft manufacturers might have limits. Typical taxi speeds are 20–30 knots (37–56 km/h; 23–35 mph). Busy airports typically construct high-speed or rapid-exit taxiways to allow aircraft to leave the runway at higher speeds. This allows
122-501: A ski-jump on take-off is subjected to loads of 0.5g which also last for much longer than a landing impact. Helicopters may have a deck-lock harpoon to anchor them to the deck. Some aircraft have a requirement to use the landing-gear as a speed brake. Flexible mounting of the stowed main landing-gear bogies on the Tupolev Tu-22 R raised the aircraft flutter speed to 550 kn (1,020 km/h). The bogies oscillated within
183-428: A tripod effect. Some unusual landing gear have been evaluated experimentally. These include: no landing gear (to save weight), made possible by operating from a catapult cradle and flexible landing deck: air cushion (to enable operation over a wide range of ground obstacles and water/snow/ice); tracked (to reduce runway loading). For launch vehicles and spacecraft landers , the landing gear usually only supports
244-414: A "boat" hull/floats and retractable wheels, which allow it to operate from land or water. Beaching gear is detachable wheeled landing gear that allows a non-amphibious floatplane or flying boat to be maneuvered on land. It is used for aircraft maintenance and storage and is either carried in the aircraft or kept at a slipway. Beaching gear may consist of individual detachable wheels or a cradle that supports
305-442: A 10 in (25 cm) thick flexible asphalt pavement . The 210,000 lb (95 t) Boeing 727 -200 with four tires on two legs main landing gears required a 20 in (51 cm) thick pavement. The thickness rose to 25 in (64 cm) for a McDonnell Douglas DC-10 -10 with 443,000 lb (201 t) supported on eight wheels on two legs. The heavier, 558,000 lb (253 t), DC-10-30/40 were able to operate from
366-474: A 90° angle during the rearwards-retraction sequence to allow the main wheel to rest "flat" above the lower end of the main gear strut, or flush within the wing or engine nacelles, when fully retracted. Examples are the Curtiss P-40 , Vought F4U Corsair , Grumman F6F Hellcat , Messerschmitt Me 210 and Junkers Ju 88 . The Aero Commander family of twin-engined business aircraft also shares this feature on
427-476: A forward and aft position. The forward position was used for take-off to give a longer lever-arm for pitch control and greater nose-up attitude. The aft position was used to reduce landing bounce and reduce risk of tip-back during ground handling. The tandem or bicycle layout is used on the Hawker Siddeley Harrier, which has two main-wheels behind a single nose-wheel under the fuselage and
488-585: A higher sink-rate requirement because the aircraft are flown onto the deck with no landing flare . Other features are related to catapult take-off requirements for specific aircraft. For example, the Blackburn Buccaneer was pulled down onto its tail-skid to set the required nose-up attitude. The naval McDonnell Douglas F-4 Phantom II in UK service needed an extending nosewheel leg to set the wing attitude at launch. The landing gear for an aircraft using
549-474: A higher sink-rate requirement if a carrier-type, no-flare landing technique has to be adopted to reduce touchdown scatter. For example, the Saab 37 Viggen , with landing gear designed for a 5m/sec impact, could use a carrier-type landing and HUD to reduce its scatter from 300 m to 100m. The de Havilland Canada DHC-4 Caribou used long-stroke legs to land from a steep approach with no float. A flying boat has
610-489: A light aircraft, an emergency extension system is always available. This may be a manually operated crank or pump, or a mechanical free-fall mechanism which disengages the uplocks and allows the landing gear to fall under gravity. Aircraft landing gear includes wheels equipped with solid shock absorbers on light planes, and air/oil oleo struts on larger aircraft. As aircraft weights have increased more wheels have been added and runway thickness has increased to keep within
671-403: A lower fuselage with the shape of a boat hull giving it buoyancy. Wing-mounted floats or stubby wing-like sponsons are added for stability. Sponsons are attached to the lower sides of the fuselage. A floatplane has two or three streamlined floats. Amphibious floats have retractable wheels for land operation. An amphibious aircraft or amphibian usually has two distinct landing gears, namely
SECTION 10
#1732790467716732-537: A nosewheel) chassis. Landing is done on skids or similar simple devices (fixed or retractable). The SNCASE Baroudeur used this arrangement. Historical examples include the "dolly"-using Messerschmitt Me 163 Komet rocket fighter, the Messerschmitt Me 321 Gigant troop glider, and the first eight "trolley"-using prototypes of the Arado Ar 234 jet reconnaissance bomber. The main disadvantage to using
793-498: A rare procedure known as powerback . Most aircraft, however, are not designed to back up on their own and must be pushed back either by hand or by using an aircraft tug . At low power settings, combustion aircraft engines operate at lower efficiency than at cruise power settings. A typical A320 spends an average of 3.5 hours a day taxiing, using 600 liters (160 U.S. gal) of fuel. Hybrid electrically driven nose gear are under development to allow high use aircraft to shut down
854-457: A similar arrangement, except that the fore and aft gears each have two twin-wheel units side by side. Quadricycle gear is similar to bicycle but with two sets of wheels displaced laterally in the fore and aft positions. Raymer classifies the B-52 gear as quadricycle. The experimental Fairchild XC-120 Packplane had quadricycle gear located in the engine nacelles to allow unrestricted access beneath
915-520: A smaller wheel near the tip of each wing. On second generation Harriers, the wing is extended past the outrigger wheels to allow greater wing-mounted munition loads to be carried, or to permit wing-tip extensions to be bolted on for ferry flights. A tandem layout was evaluated by Martin using a specially-modified Martin B-26 Marauder (the XB-26H) to evaluate its use on Martin's first jet bomber,
976-557: A tricycle undercarriage to prevent damage to the underside of the fuselage if over-rotation occurs on take-off leading to a tail strike . Aircraft with tail-strike protection include the B-29 Superfortress , Boeing 727 trijet and Concorde . Some aircraft with retractable conventional landing gear have a fixed tailwheel. Hoerner estimated the drag of the Bf 109 fixed tailwheel and compared it with that of other protrusions such as
1037-412: Is also unique in that all four pairs of main wheels can be steered. This allows the landing gear to line up with the runway and thus makes crosswind landings easier (using a technique called crab landing ). Since tandem aircraft cannot rotate for takeoff, the forward gear must be long enough to give the wings the correct angle of attack during takeoff. During landing, the forward gear must not touch
1098-440: Is hover taxied in a manner typical for skid-equipped aircraft of that size: This sequence is initiated from a stabilized 5 ft hover. Move the aircraft forward over the ground at a brisk walking pace. Maintain a constant height above ground, constant forward speed and ensure that the skids remain parallel to the direction of movement. Anticipate stopping so that large rearward cyclic applications are not required as this may result in
1159-465: Is required to reduce the impact with the surface of the water. A vee bottom parts the water and chines deflect the spray to prevent it damaging vulnerable parts of the aircraft. Additional spray control may be needed using spray strips or inverted gutters. A step is added to the hull, just behind the center of gravity, to stop water clinging to the afterbody so the aircraft can accelerate to flying speed. The step allows air, known as ventilation air, to break
1220-545: Is solely by means of differential braking (all Van's aircraft for instance) or solely by means of the rudder (including all floatplanes ). Skid-equipped helicopters and other VTOL (Vertical Take-Off and Landing) aircraft conduct hover taxiing to move in ground effect in the same manner that wheel-equipped aircraft ground taxi. In general hover taxis are conducted at speeds up to 20 kn (37 km/h; 23 mph), or below translational lift . The Bell CH-135 Twin Huey
1281-405: Is the most common, with skis or floats needed to operate from snow/ice/water and skids for vertical operation on land. Retractable undercarriages fold away during flight, which reduces drag , allowing for faster airspeeds . Landing gear must be strong enough to support the aircraft and its design affects the weight, balance and performance. It often comprises three wheels, or wheel-sets, giving
SECTION 20
#17327904677161342-578: Is used for taxiing , takeoff or landing . For aircraft, it is generally needed for all three of these. It was also formerly called alighting gear by some manufacturers, such as the Glenn L. Martin Company . For aircraft, Stinton makes the terminology distinction undercarriage (British) = landing gear (US) . For aircraft, the landing gear supports the craft when it is not flying, allowing it to take off, land, and taxi without damage. Wheeled landing gear
1403-705: The Beriev A-40 Hydro flaps were used on the Martin Marlin and Martin SeaMaster . Hydroflaps, submerged at the rear of the afterbody, act as a speed brake or differentially as a rudder. A fixed fin, known as a skeg , has been used for directional stability. A skeg, was added to the second step on the Kawanishi H8K flying boat hull. High speed impacts in rough water between the hull and wave flanks may be reduced using hydro-skis which hold
1464-561: The Martin Marlin , the Martin M-270, was tested with a new hull with a greater length/beam ratio of 15 obtained by adding 6 feet to both the nose and tail. Rough-sea capability can be improved with lower take-off and landing speeds because impacts with waves are reduced. The Shin Meiwa US-1A is a STOL amphibian with blown flaps and all control surfaces. The ability to land and take-off at relatively low speeds of about 45 knots and
1525-702: The Martin XB-48 . This configuration proved so manoeuvrable that it was also selected for the B-47 Stratojet . It was also used on the U-2, Myasishchev M-4 , Yakovlev Yak-25 , Yak-28 and Sud Aviation Vautour . A variation of the multi tandem layout is also used on the B-52 Stratofortress which has four main wheel bogies (two forward and two aft) underneath the fuselage and a small outrigger wheel supporting each wing-tip. The B-52's landing gear
1586-416: The aircraft can be landed in a satisfactory manner in a range of failure scenarios. The Boeing 747 was given four separate and independent hydraulic systems (when previous airliners had two) and four main landing gear posts (when previous airliners had two). Safe landing would be possible if two main gear legs were torn off provided they were on opposite sides of the fuselage. In the case of power failure in
1647-414: The aircraft cost, but 20% of the airframe direct maintenance cost. A suitably-designed wheel can support 30 t (66,000 lb), tolerate a ground speed of 300 km/h and roll a distance of 500,000 km (310,000 mi) ; it has a 20,000 hours time between overhaul and a 60,000 hours or 20 year life time. Wheeled undercarriages normally come in two types: The taildragger arrangement
1708-454: The aircraft is moved by a tug. The aircraft usually moves on wheels, but the term also includes aircraft with skis or floats (for water-based travel). An airplane uses taxiways to taxi from one place on an airport to another; for example, when moving from a hangar to the runway . The term "taxiing" is not used for the accelerating run along a runway prior to takeoff , or the decelerating run immediately after landing , which are called
1769-443: The aircraft to vacate the runway quicker, permitting another to land or take off in a shorter interval of time. This is accomplished by reducing the angle the exiting taxiway intercepts the runway at to 30 degrees, instead of 90 degrees, thus increasing the speed at which the aircraft can exit the runway onto the taxiway. The taxiways are given alphanumeric identification. These taxiway IDs are shown on black and yellow signboards along
1830-470: The airstream, it is called a semi-retractable gear. Most retractable gear is hydraulically operated, though some is electrically operated or even manually operated on very light aircraft. The landing gear is stowed in a compartment called a wheel well. Pilots confirming that their landing gear is down and locked refer to "three greens" or "three in the green.", a reference to the electrical indicator lights (or painted panels of mechanical indicator units) from
1891-446: The control tower gives clearance to proceed. For night operations, taxiways at major airports are equipped with lights, although many small airports are not equipped with taxiway lighting. https://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5340-30J.pdf Taxiing Taxiing (rarely spelled taxying ) is the movement of an aircraft on the ground, under its own power, in contrast to towing or pushback where
Taxiway - Misplaced Pages Continue
1952-449: The engines during taxi operations. Steering is achieved by turning a nose wheel or tail wheel/ rudder ; the pilot controls the direction travelled with their feet. Larger jet aircraft have a tiller wheel on the left side of the cockpit that acts as a steering wheel allowing the nosewheel to be turned hydraulically. Braking is controlled by differential toe or heel brakes. Not all aircraft have steerable wheels, and in some cases steering
2013-410: The entire aircraft. In the former case, the beaching gear is manually attached or detached with the aircraft in the water; in the latter case, the aircraft is maneuvered onto the cradle. Helicopters are able to land on water using floats or a hull and floats. For take-off a step and planing bottom are required to lift from the floating position to planing on the surface. For landing a cleaving action
2074-418: The fuselage for attaching a large freight container. Helicopters use skids, pontoons or wheels depending on their size and role. To decrease drag in flight, undercarriages retract into the wings and/or fuselage with wheels flush with the surrounding surface, or concealed behind flush-mounted doors; this is called retractable gear. If the wheels do not retract completely but protrude partially exposed to
2135-424: The fuselage lower sides as retractable main gear units on modern designs—were first seen during World War II, on the experimental German Arado Ar 232 cargo aircraft, which used a row of eleven "twinned" fixed wheel sets directly under the fuselage centerline to handle heavier loads while on the ground. Many of today's large cargo aircraft use this arrangement for their retractable main gear setups, usually mounted on
2196-438: The fuselage. The 640 t (1,410,000 lb) Antonov An-225 , the largest cargo aircraft, had 4 wheels on the twin-strut nose gear units like the smaller Antonov An-124 , and 28 main gear wheels. The 97 t (214,000 lb) A321neo has a twin-wheel main gear inflated to 15.7 bar (228 psi), while the 280 t (620,000 lb) A350 -900 has a four-wheel main gear inflated to 17.1 bar (248 psi). STOL aircraft have
2257-603: The hull out of the water at higher speeds. Hydro skis replace the need for a boat hull and only require a plain fuselage which planes at the rear. Alternatively skis with wheels can be used for land-based aircraft which start and end their flight from a beach or floating barge. Hydro-skis with wheels were demonstrated as an all-purpose landing gear conversion of the Fairchild C-123 , known as the Panto-base Stroukoff YC-134 . A seaplane designed from
2318-471: The hydrodynamic features of the hull, long length/beam ratio and inverted spray gutter for example, allow operation in wave heights of 15 feet. The inverted gutters channel spray to the rear of the propeller discs. Low speed maneuvring is necessary between slipways and buoys and take-off and landing areas. Water rudders are used on seaplanes ranging in size from the Republic RC-3 Seabee to
2379-402: The landing gear usually consists of skis or a combination of wheels and skis. Some aircraft use wheels for takeoff and jettison them when airborne for improved streamlining without the complexity, weight and space requirements of a retraction mechanism. The wheels are sometimes mounted onto axles that are part of a separate "dolly" (for main wheels only) or "trolley" (for a three-wheel set with
2440-417: The lower corners of the central fuselage structure. The prototype Convair XB-36 had most of its weight on two main wheels, which needed runways at least 22 in (56 cm) thick. Production aircraft used two four-wheel bogies, allowing the aircraft to use any airfield suitable for a B-29. A relatively light Lockheed JetStar business jet, with four wheels supporting 44,000 lb (20 t), needed
2501-504: The main gear struts lengthened as they were extended to give sufficient ground clearance for their large four-bladed propellers. One exception to the need for this complexity in many WW II fighter aircraft was Japan's famous Zero fighter, whose main gear stayed at a perpendicular angle to the centerline of the aircraft when extended, as seen from the side. The main wheels on the Vought F7U Cutlass could move 20 inches between
Taxiway - Misplaced Pages Continue
2562-489: The main gears, which retract aft into the ends of the engine nacelles . The rearward-retracting nosewheel strut on the Heinkel He 219 and the forward-retracting nose gear strut on the later Cessna Skymaster similarly rotated 90 degrees as they retracted. On most World War II single-engined fighter aircraft (and even one German heavy bomber design ) with sideways retracting main gear, the main gear that retracted into
2623-611: The nacelle under the control of dampers and springs as an anti-flutter device. Some experimental aircraft have used gear from existing aircraft to reduce program costs. The Martin-Marietta X-24 lifting body used the nose/main gear from the North American T-39 / Northrop T-38 and the Grumman X-29 from the Northrop F-5 / General Dynamics F-16 . When an airplane needs to land on surfaces covered by snow,
2684-444: The nosewheel/tailwheel and the two main gears. Blinking green lights or red lights indicate the gear is in transit and neither up and locked or down and locked. When the gear is fully stowed up with the up-locks secure, the lights often extinguish to follow the dark cockpit philosophy; some airplanes have gear up indicator lights. Redundant systems are used to operate the landing gear and redundant main gear legs may also be provided so
2745-722: The outset with hydro-skis was the Convair F2Y Sea Dart prototype fighter. The skis incorporated small wheels, with a third wheel on the fuselage, for ground handling. In the 1950s hydro-skis were envisaged as a ditching aid for large piston-engined aircraft. Water-tank tests done using models of the Lockheed Constellation , Douglas DC-4 and Lockheed Neptune concluded that chances of survival and rescue would be greatly enhanced by preventing critical damage associated with ditching. The landing gear on fixed-wing aircraft that land on aircraft carriers have
2806-428: The paved surface. Taxi speeds are typically 16 to 19 kn (30 to 35 km/h; 18 to 22 mph). Rotor downwash limits helicopter hover-taxiing near parked light aircraft. The use of engine thrust near terminals is restricted due to the possibility of structural damage or injury to personnel caused by jet blast . Nose gear Landing gear is the undercarriage of an aircraft or spacecraft that
2867-556: The pilot's canopy. A third arrangement (known as tandem or bicycle) has the main and nose gear located fore and aft of the center of gravity (CG) under the fuselage with outriggers on the wings. This is used when there is no convenient location on either side of the fuselage to attach the main undercarriage or to store it when retracted. Examples include the Lockheed U-2 spy plane and the Harrier jump jet . The Boeing B-52 uses
2928-513: The runway loading limit . The Zeppelin-Staaken R.VI , a large German World War I long-range bomber of 1916, used eighteen wheels for its undercarriage, split between two wheels on its nose gear struts, and sixteen wheels on its main gear units—split into four side-by-side quartets each, two quartets of wheels per side—under each tandem engine nacelle, to support its loaded weight of almost 12 t (26,000 lb). Multiple "tandem wheels" on an aircraft—particularly for cargo aircraft , mounted to
2989-538: The same thickness pavements with a third main leg for ten wheels, like the first Boeing 747 -100, weighing 700,000 lb (320 t) on four legs and 16 wheels. The similar-weight Lockheed C-5 , with 24 wheels, needs an 18 in (46 cm) pavement. The twin-wheel unit on the fuselage centerline of the McDonnell Douglas DC-10 -30/40 was retained on the MD-11 airliner and the same configuration
3050-460: The tail skids striking the ground. You are often required to taxi out of wind; be aware that when taxiing downwind in strong wind conditions there may be insufficient rearward cyclic to ensure adequate control and that the tail will be nearer the ground. Taxiing downwind is limited to 30 kts . When taxiing, aircraft travel slowly. This ensures that they can be stopped quickly and do not risk wheel damage on larger aircraft if they accidentally turn off
3111-508: The takeoff dolly/trolley and landing skid(s) system on German World War II aircraft—intended for a sizable number of late-war German jet and rocket-powered military aircraft designs—was that aircraft would likely be scattered all over a military airfield after they had landed from a mission, and would be unable to taxi on their own to an appropriately hidden "dispersal" location, which could easily leave them vulnerable to being shot up by attacking Allied fighters. A related contemporary example are
SECTION 50
#17327904677163172-406: The takeoff roll and landing rollout, respectively; however, aircraft are considered to be taxiing when they leave the runway after landing to travel to a gate or remote stand for disembarkment. As early as 1909 aviation journalists envisioned aeroplanes to replace the taxicab in traffic-congested cities. Some aviators and some linguists report that around the year 1911 the slang word "taxi"
3233-446: The taxiways. Airport guidance signs provide direction and information to taxiing aircraft and airport vehicles. Smaller airports may have few or no signs, relying instead on airport diagrams and charts. There are two classes of signage at airports, with several types of each: Mandatory instruction signs are white on red. They show entrances to runways or critical areas. Vehicles and aircraft are required to stop at these signs until
3294-422: The vehicle on landing and during subsequent surface movement, and is not used for takeoff. Given their varied designs and applications, there exist dozens of specialized landing gear manufacturers. The three largest are Safran Landing Systems , Collins Aerospace (part of Raytheon Technologies ) and Héroux-Devtek . The landing gear represents 2.5 to 5% of the maximum takeoff weight (MTOW) and 1.5 to 1.75% of
3355-685: The water suction on the afterbody. Two steps were used on the Kawanishi H8K . A step increases the drag in flight. The drag contribution from the step can be reduced with a fairing. A faired step was introduced on the Short Sunderland III. One goal of seaplane designers was the development of an open ocean seaplane capable of routine operation from very rough water. This led to changes in seaplane hull configuration. High length/beam ratio hulls and extended afterbodies improved rough water capabilities. A hull much longer than its width also reduced drag in flight. An experimental development of
3416-499: The wings was raked forward in the "down" position for better ground handling, with a retracted position that placed the main wheels at some distance aft of their position when downairframe—this led to a complex angular geometry for setting up the "pintle" angles at the top ends of the struts for the retraction mechanism's axis of rotation. with some aircraft, like the P-47 Thunderbolt and Grumman Bearcat , even mandating that
3477-424: The wingtip support wheels ("pogos") on the Lockheed U-2 reconnaissance aircraft, which fall away after take-off and drop to earth; the aircraft then relies on titanium skids on the wingtips for landing. Some main landing gear struts on World War II aircraft, in order to allow a single-leg main gear to more efficiently store the wheel within either the wing or an engine nacelle, rotated the single gear strut through
3538-567: The word for an airplane quickly disappeared again, but the verb "to taxi" stuck, and words like the " taxiway " were derived from it. The thrust to propel the aircraft forward comes from its propellers or jet engines . Reverse thrust for backing up can be generated by thrust reversers such as on the Boeing C-17 Globemaster III , or reversible pitch propellers such as on the Lockheed C-130 Hercules ,
3599-445: Was common during the early propeller era, as it allows more room for propeller clearance. Most modern aircraft have tricycle undercarriages. Taildraggers are considered harder to land and take off (because the arrangement is usually unstable , that is, a small deviation from straight-line travel will tend to increase rather than correct itself), and usually require special pilot training. A small tail wheel or skid/bumper may be added to
3660-433: Was in use for an "airplane". They suggest that the way aircraft move under power before they take off or after they land reminded someone of the way taxicabs slowly drove around the block when looking for passengers. Also by 1909, French aviation pioneers like Blériot , Farman and Voisin used the term "taxi" for a trainer aircraft , that was so constructed that a pupil would not accidentally get airborne. Usage of
3721-467: Was used on the initial 275 t (606,000 lb) Airbus A340 -200/300, which evolved in a complete four-wheel undercarriage bogie for the heavier 380 t (840,000 lb) Airbus A340-500/-600. The up to 775,000 lb (352 t) Boeing 777 has twelve main wheels on two three-axles bogies, like the later Airbus A350 . The 575 t (1,268,000 lb) Airbus A380 has a four-wheel bogie under each wing with two sets of six-wheel bogies under
SECTION 60
#1732790467716#715284