Turkey red is a dyeing method that was widely used to give cotton a distinctive bright red colour in the 18th and 19th centuries. It was made using the root of the rubia (madder) plant, through a long and laborious process which originated in the historical Levant region, namely being developed in India and China . Turkey red was brought to Europe in the 1740s and in France was known as rouge d'Andrinople .
116-566: As the Industrial Revolution spread across Europe, chemists and manufacturers sought new red dyes that could be used for large-scale manufacture of textiles. One colour imported into Europe from Asia in the 18th and early 19th century was Turkey red, known in France as rouge d'Andrinople . Turkey red used the root of the rubia (madder) plant as the colorant, but the process was long and complicated, involving multiple soaking of
232-502: A (near-) synonym both by Harris and in later language derives ultimately (via Old French ) from Latin ingenium 'ingenuity, an invention'. The hand axe , made by chipping flint to form a wedge , in the hands of a human transforms force and movement of the tool into a transverse splitting forces and movement of the workpiece. The hand axe is the first example of a wedge , the oldest of the six classic simple machines , from which most machines are based. The second oldest simple machine
348-400: A better way could be found to remove the seed. Eli Whitney responded to the challenge by inventing the inexpensive cotton gin . A man using a cotton gin could remove seed from as much upland cotton in one day as would previously have taken two months to process, working at the rate of one pound of cotton per day. These advances were capitalised on by entrepreneurs , of whom the best known
464-520: A cottage industry under the putting-out system . Occasionally, the work was done in the workshop of a master weaver. Under the putting-out system, home-based workers produced under contract to merchant sellers, who often supplied the raw materials. In the off-season, the women, typically farmers' wives, did the spinning and the men did the weaving. Using the spinning wheel , it took anywhere from four to eight spinners to supply one handloom weaver. The flying shuttle , patented in 1733 by John Kay —with
580-670: A groundswell of enterprise and productivity transformed the economy in the 17th century, laying the foundations for the world's first industrial economy. Britain was already a nation of makers by the year 1700" and "the history of Britain needs to be rewritten". Eric Hobsbawm held that the Industrial Revolution began in Britain in the 1780s and was not fully felt until the 1830s or 1840s, while T. S. Ashton held that it occurred roughly between 1760 and 1830. Rapid adoption of mechanized textiles spinning occurred in Britain in
696-401: A lever is modeled as a hinged or revolute joint . Wheel: The wheel is an important early machine, such as the chariot . A wheel uses the law of the lever to reduce the force needed to overcome friction when pulling a load. To see this notice that the friction associated with pulling a load on the ground is approximately the same as the friction in a simple bearing that supports the load on
812-420: A machine is "a device for applying power or changing its direction."McCarthy and Soh describe a machine as a system that "generally consists of a power source and a mechanism for the controlled use of this power." Human and animal effort were the original power sources for early machines. Waterwheel: Waterwheels appeared around the world around 300 BC to use flowing water to generate rotary motion, which
928-470: A machine provides a way to understand the performance of devices ranging from levers and gear trains to automobiles and robotic systems. The German mechanician Franz Reuleaux wrote, "a machine is a combination of resistant bodies so arranged that by their means the mechanical forces of nature can be compelled to do work accompanied by certain determinate motion." Notice that forces and motion combine to define power . More recently, Uicker et al. stated that
1044-425: A major turning point in history, comparable only to humanity's adoption of agriculture with respect to material advancement. The Industrial Revolution influenced in some way almost every aspect of daily life. In particular, average income and population began to exhibit unprecedented sustained growth. Some economists have said the most important effect of the Industrial Revolution was that the standard of living for
1160-838: A mechanical system is assembled from components called machine elements . These elements provide structure for the system and control its movement. The structural components are, generally, the frame members, bearings, splines, springs, seals, fasteners and covers. The shape, texture and color of covers provide a styling and operational interface between the mechanical system and its users. The assemblies that control movement are also called " mechanisms ." Mechanisms are generally classified as gears and gear trains , which includes belt drives and chain drives , cam and follower mechanisms, and linkages , though there are other special mechanisms such as clamping linkages, indexing mechanisms , escapements and friction devices such as brakes and clutches . The number of degrees of freedom of
1276-421: A mechanised industry. Other inventors increased the efficiency of the individual steps of spinning (carding, twisting and spinning, and rolling) so that the supply of yarn increased greatly. Steam power was then applied to drive textile machinery. Manchester acquired the nickname Cottonopolis during the early 19th century owing to its sprawl of textile factories. Although mechanisation dramatically decreased
SECTION 10
#17327877580591392-500: A mechanism, or its mobility, depends on the number of links and joints and the types of joints used to construct the mechanism. The general mobility of a mechanism is the difference between the unconstrained freedom of the links and the number of constraints imposed by the joints. It is described by the Chebychev–Grübler–Kutzbach criterion . The transmission of rotation between contacting toothed wheels can be traced back to
1508-726: A more even thickness. The technology was developed with the help of John Wyatt of Birmingham . Paul and Wyatt opened a mill in Birmingham which used their rolling machine powered by a donkey. In 1743, a factory opened in Northampton with 50 spindles on each of five of Paul and Wyatt's machines. This operated until about 1764. A similar mill was built by Daniel Bourn in Leominster , but this burnt down. Both Lewis Paul and Daniel Bourn patented carding machines in 1748. Based on two sets of rollers that travelled at different speeds, it
1624-609: A new group of innovations in what has been called the Second Industrial Revolution . These included new steel-making processes , mass production , assembly lines , electrical grid systems, the large-scale manufacture of machine tools, and the use of increasingly advanced machinery in steam-powered factories. The earliest recorded use of the term "Industrial Revolution" was in July 1799 by French envoy Louis-Guillaume Otto , announcing that France had entered
1740-406: A number of subsequent improvements including an important one in 1747—doubled the output of a weaver, worsening the imbalance between spinning and weaving. It became widely used around Lancashire after 1760 when John's son, Robert , invented the dropbox, which facilitated changing thread colors. Lewis Paul patented the roller spinning frame and the flyer-and- bobbin system for drawing wool to
1856-412: A point farther from the pivot is greater than the velocity of a point near the pivot, forces applied far from the pivot are amplified near the pivot by the associated decrease in speed. If a is the distance from the pivot to the point where the input force is applied and b is the distance to the point where the output force is applied, then a/b is the mechanical advantage of the lever. The fulcrum of
1972-430: A pressure vessel; the expanding steam drives a piston or a turbine. This principle can be seen in the aeolipile of Hero of Alexandria. This is called an external combustion engine . An automobile engine is called an internal combustion engine because it burns fuel (an exothermic chemical reaction) inside a cylinder and uses the expanding gases to drive a piston . A jet engine uses a turbine to compress air which
2088-534: A programmable drum machine , where they could be made to play different rhythms and different drum patterns. During the Renaissance , the dynamics of the Mechanical Powers , as the simple machines were called, began to be studied from the standpoint of how much useful work they could perform, leading eventually to the new concept of mechanical work . In 1586 Flemish engineer Simon Stevin derived
2204-410: A reverberatory furnace, coal or coke could be used as fuel. The puddling process continued to be used until the late 19th century when iron was being displaced by mild steel. Because puddling required human skill in sensing the iron globs, it was never successfully mechanised. Rolling was an important part of the puddling process because the grooved rollers expelled most of the molten slag and consolidated
2320-438: A simple, wooden framed machine that only cost about £6 for a 40-spindle model in 1792 and was used mainly by home spinners. The jenny produced a lightly twisted yarn only suitable for weft, not warp. The spinning frame or water frame was developed by Richard Arkwright who, along with two partners, patented it in 1769. The design was partly based on a spinning machine built by Kay, who was hired by Arkwright. For each spindle
2436-459: A specific application of output forces and movement, (iii) a controller with sensors that compare the output to a performance goal and then directs the actuator input, and (iv) an interface to an operator consisting of levers, switches, and displays. This can be seen in Watt's steam engine in which the power is provided by steam expanding to drive the piston. The walking beam, coupler and crank transform
SECTION 20
#17327877580592552-646: A system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement. They can also include computers and sensors that monitor performance and plan movement, often called mechanical systems . Renaissance natural philosophers identified six simple machines which were the elementary devices that put a load into motion, and calculated the ratio of output force to input force, known today as mechanical advantage . Modern machines are complex systems that consist of structural elements, mechanisms and control components and include interfaces for convenient use. Examples include:
2668-625: A variety of cotton cloth, some of exceptionally fine quality. Cotton was a difficult raw material for Europe to obtain before it was grown on colonial plantations in the Americas. The early Spanish explorers found Native Americans growing unknown species of excellent quality cotton: sea island cotton ( Gossypium barbadense ) and upland green seeded cotton Gossypium hirsutum . Sea island cotton grew in tropical areas and on barrier islands of Georgia and South Carolina but did poorly inland. Sea island cotton began being exported from Barbados in
2784-493: A weight. The weights kept the twist from backing up before the rollers. The bottom rollers were wood and metal, with fluting along the length. The water frame was able to produce a hard, medium-count thread suitable for warp, finally allowing 100% cotton cloth to be made in Britain. Arkwright and his partners used water power at a factory in Cromford , Derbyshire in 1771, giving the invention its name. Samuel Crompton invented
2900-403: A wide range of vehicles , such as trains , automobiles , boats and airplanes ; appliances in the home and office, including computers, building air handling and water handling systems ; as well as farm machinery , machine tools and factory automation systems and robots . The English word machine comes through Middle French from Latin machina , which in turn derives from
3016-430: Is Arkwright. He is credited with a list of inventions, but these were actually developed by such people as Kay and Thomas Highs ; Arkwright nurtured the inventors, patented the ideas, financed the initiatives, and protected the machines. He created the cotton mill which brought the production processes together in a factory, and he developed the use of power—first horsepower and then water power—which made cotton manufacture
3132-410: Is burned with fuel so that it expands through a nozzle to provide thrust to an aircraft , and so is also an "internal combustion engine." Power plant: The heat from coal and natural gas combustion in a boiler generates steam that drives a steam turbine to rotate an electric generator . A nuclear power plant uses heat from a nuclear reactor to generate steam and electric power . This power
3248-423: Is called the cam (also see cam shaft ) and the link that is driven through the direct contact of their surfaces is called the follower. The shape of the contacting surfaces of the cam and follower determines the movement of the mechanism. A linkage is a collection of links connected by joints. Generally, the links are the structural elements and the joints allow movement. Perhaps the single most useful example
3364-603: Is distributed through a network of transmission lines for industrial and individual use. Motors: Electric motors use either AC or DC electric current to generate rotational movement. Electric servomotors are the actuators for mechanical systems ranging from robotic systems to modern aircraft . Fluid Power: Hydraulic and pneumatic systems use electrically driven pumps to drive water or air respectively into cylinders to power linear movement . Electrochemical: Chemicals and materials can also be sources of power. They may chemically deplete or need re-charging, as
3480-401: Is made by chipping stone, generally flint, to form a bifacial edge, or wedge . A wedge is a simple machine that transforms lateral force and movement of the tool into a transverse splitting force and movement of the workpiece. The available power is limited by the effort of the person using the tool, but because power is the product of force and movement, the wedge amplifies the force by reducing
3596-420: Is the case with batteries , or they may produce power without changing their state, which is the case for solar cells and thermoelectric generators . All of these, however, still require their energy to come from elsewhere. With batteries, it is the already existing chemical potential energy inside. In solar cells and thermoelectrics, the energy source is light and heat respectively. The mechanism of
Turkey red - Misplaced Pages Continue
3712-421: Is the planar four-bar linkage . However, there are many more special linkages: A planar mechanism is a mechanical system that is constrained so the trajectories of points in all the bodies of the system lie on planes parallel to a ground plane. The rotational axes of hinged joints that connect the bodies in the system are perpendicular to this ground plane. A spherical mechanism is a mechanical system in which
3828-516: The Antikythera mechanism of Greece and the south-pointing chariot of China . Illustrations by the renaissance scientist Georgius Agricola show gear trains with cylindrical teeth. The implementation of the involute tooth yielded a standard gear design that provides a constant speed ratio. Some important features of gears and gear trains are: A cam and follower is formed by the direct contact of two specially shaped links. The driving link
3944-593: The British Agricultural Revolution , to provide excess manpower and food; a pool of managerial and entrepreneurial skills; available ports, rivers, canals, and roads to cheaply move raw materials and outputs; natural resources such as coal, iron, and waterfalls; political stability and a legal system that supported business; and financial capital available to invest. Once industrialisation began in Great Britain, new factors can be added:
4060-639: The East India Company . The development of trade and the rise of business were among the major causes of the Industrial Revolution. Developments in law also facilitated the revolution, such as courts ruling in favour of property rights . An entrepreneurial spirit and consumer revolution helped drive industrialisation in Britain, which after 1800, was emulated in Belgium, the United States, and France. The Industrial Revolution marked
4176-517: The Greek ( Doric μαχανά makhana , Ionic μηχανή mekhane 'contrivance, machine, engine', a derivation from μῆχος mekhos 'means, expedient, remedy' ). The word mechanical (Greek: μηχανικός ) comes from the same Greek roots. A wider meaning of 'fabric, structure' is found in classical Latin, but not in Greek usage. This meaning is found in late medieval French, and is adopted from
4292-584: The Twelfth Dynasty (1991–1802 BC). The screw , the last of the simple machines to be invented, first appeared in Mesopotamia during the Neo-Assyrian period (911–609) BC. The Egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever. Three of the simple machines were studied and described by Greek philosopher Archimedes around
4408-504: The Vale of Leven , as well as at several sites around Glasgow . At this time, the Vale of Leven, further up the river from Dalmarnock, was already the site of several bleachfields and printworks, and with ready supply of clean water from the river Leven, it was well suited to such production as Turkey red. The Vale of Leven became synonymous with Turkey red, recognised as a centre of production in
4524-497: The lever , pulley and screw as simple machines . By the time of the Renaissance this list increased to include the wheel and axle , wedge and inclined plane . The modern approach to characterizing machines focusses on the components that allow movement, known as joints . Wedge (hand axe): Perhaps the first example of a device designed to manage power is the hand axe , also called biface and Olorgesailie . A hand axe
4640-488: The spinning mule in 1779, so called because it is a hybrid of Arkwright's water frame and James Hargreaves 's spinning jenny in the same way that a mule is the product of crossbreeding a female horse with a male donkey . Crompton's mule was able to produce finer thread than hand spinning and at a lower cost. Mule-spun thread was of suitable strength to be used as a warp and finally allowed Britain to produce highly competitive yarn in large quantities. Realising that
4756-582: The technological and architectural innovations were of British origin. By the mid-18th century, Britain was the world's leading commercial nation, controlling a global trading empire with colonies in North America and the Caribbean. Britain had major military and political hegemony on the Indian subcontinent ; particularly with the proto-industrialised Mughal Bengal , through the activities of
Turkey red - Misplaced Pages Continue
4872-441: The 1650s. Upland green seeded cotton grew well on inland areas of the southern U.S. but was not economical because of the difficulty of removing seed, a problem solved by the cotton gin . A strain of cotton seed brought from Mexico to Natchez, Mississippi , in 1806 became the parent genetic material for over 90% of world cotton production today; it produced bolls that were three to four times faster to pick. The Age of Discovery
4988-671: The 1740s, this bright red colour was used to dye and print cotton textiles in England , Scotland, the Netherlands and France . Turkey red fabric, while retailed in Europe, was widely created for the export market, traded from Europe to India, Africa , the Middle East and America , often to the detriment of the local economy, trade, and artisans. Designs were often appropriated and cheaply retailed. In 19th-century America, Turkey red
5104-400: The 1780s, and high rates of growth in steam power and iron production occurred after 1800. Mechanised textile production spread from Great Britain to continental Europe and the United States in the early 19th century, with important centres of textiles, iron and coal emerging in Belgium and the United States and later textiles in France. An economic recession occurred from the late 1830s to
5220-652: The 1820s. Manchester remained a key British competitor of the Turkey red industry in Scotland, and with expansion of production in India towards the end of the 19th century, the Scottish Turkey red trade was further challenged. However, the profitability of production in Scotland endured. Amalgamation of the industry-leading Archibald Orr Ewing and Co., John Orr Ewing and Co., and William Stirling and Sons established
5336-516: The 3rd century BC: the lever, pulley and screw. Archimedes discovered the principle of mechanical advantage in the lever. Later Greek philosophers defined the classic five simple machines (excluding the inclined plane) and were able to roughly calculate their mechanical advantage. Hero of Alexandria ( c. 10 –75 AD) in his work Mechanics lists five mechanisms that can "set a load in motion"; lever, windlass , pulley, wedge, and screw, and describes their fabrication and uses. However,
5452-551: The French into English in the mid-16th century. In the 17th century, the word machine could also mean a scheme or plot, a meaning now expressed by the derived machination . The modern meaning develops out of specialized application of the term to stage engines used in theater and to military siege engines , both in the late 16th and early 17th centuries. The OED traces the formal, modern meaning to John Harris ' Lexicon Technicum (1704), which has: The word engine used as
5568-622: The Greeks' understanding was limited to statics (the balance of forces) and did not include dynamics (the tradeoff between force and distance) or the concept of work . The earliest practical wind-powered machines, the windmill and wind pump , first appeared in the Muslim world during the Islamic Golden Age , in what are now Iran, Afghanistan, and Pakistan, by the 9th century AD. The earliest practical steam-powered machine
5684-496: The Indian industry. Bar iron was the commodity form of iron used as the raw material for making hardware goods such as nails, wire, hinges, horseshoes, wagon tires, chains, etc., as well as structural shapes. A small amount of bar iron was converted into steel. Cast iron was used for pots, stoves, and other items where its brittleness was tolerable. Most cast iron was refined and converted to bar iron, with substantial losses. Bar iron
5800-480: The Industrial Revolution, thus causing the Great Divergence . Some historians, such as John Clapham and Nicholas Crafts , have argued that the economic and social changes occurred gradually and that the term revolution is a misnomer. This is still a subject of debate among some historians. Six factors facilitated industrialisation: high levels of agricultural productivity, such as that reflected in
5916-533: The Muslim world. A music sequencer , a programmable musical instrument , was the earliest type of programmable machine. The first music sequencer was an automated flute player invented by the Banu Musa brothers, described in their Book of Ingenious Devices , in the 9th century. In 1206, Al-Jazari invented programmable automata / robots . He described four automaton musicians, including drummers operated by
SECTION 50
#17327877580596032-577: The Scottish inventor James Beaumont Neilson in 1828, was the most important development of the 19th century for saving energy in making pig iron. By using preheated combustion air, the amount of fuel to make a unit of pig iron was reduced at first by between one-third using coke or two-thirds using coal; the efficiency gains continued as the technology improved. Hot blast also raised the operating temperature of furnaces, increasing their capacity. Using less coal or coke meant introducing fewer impurities into
6148-628: The United Turkey Red Company Ltd in 1898, which continued to produce and trade until 1961, marking the end of the Turkey red industry in the Vale of Leven. The process of dyeing cotton Turkey red, as it was practiced in Turkey in the 18th century, was described in a text by a Manchester dyer in 1786: Industrial Revolution The Industrial Revolution , sometimes divided into the First Industrial Revolution and Second Industrial Revolution ,
6264-556: The Western European models in the late 19th century. The commencement of the Industrial Revolution is closely linked to a small number of innovations, beginning in the second half of the 18th century. By the 1830s, the following gains had been made in important technologies: In 1750, Britain imported 2.5 million pounds of raw cotton, most of which was spun and woven by the cottage industry in Lancashire . The work
6380-409: The axle of a wheel. However, the wheel forms a lever that magnifies the pulling force so that it overcomes the frictional resistance in the bearing. The classification of simple machines to provide a strategy for the design of new machines was developed by Franz Reuleaux , who collected and studied over 800 elementary machines. He recognized that the classical simple machines can be separated into
6496-411: The bodies move in a way that the trajectories of points in the system lie on concentric spheres. The rotational axes of hinged joints that connect the bodies in the system pass through the center of these circle. A spatial mechanism is a mechanical system that has at least one body that moves in a way that its point trajectories are general space curves. The rotational axes of hinged joints that connect
6612-471: The coal do not migrate into the metal. This technology was applied to lead from 1678 and to copper from 1687. It was also applied to iron foundry work in the 1690s, but in this case the reverberatory furnace was known as an air furnace. (The foundry cupola is a different, and later, innovation.) Coke pig iron was hardly used to produce wrought iron until 1755–56, when Darby's son Abraham Darby II built furnaces at Horsehay and Ketley where low sulfur coal
6728-409: The coke pig iron he made was not suitable for making wrought iron and was used mostly for the production of cast iron goods, such as pots and kettles. He had the advantage over his rivals in that his pots, cast by his patented process, were thinner and cheaper than theirs. In 1750, coke had generally replaced charcoal in the smelting of copper and lead and was in widespread use in glass production. In
6844-467: The column of materials (iron ore, fuel, slag) flowing down the blast furnace more porous and did not crush in the much taller furnaces of the late 19th century. As cast iron became cheaper and widely available, it began being a structural material for bridges and buildings. A famous early example is the Iron Bridge built in 1778 with cast iron produced by Abraham Darby III. However, most cast iron
6960-443: The cost of cotton cloth, by the mid-19th century machine-woven cloth still could not equal the quality of hand-woven Indian cloth, in part because of the fineness of thread made possible by the type of cotton used in India, which allowed high thread counts. However, the high productivity of British textile manufacturing allowed coarser grades of British cloth to undersell hand-spun and woven fabric in low-wage India, eventually destroying
7076-542: The cotton textile industry in Britain was 2.6% in 1760, 17% in 1801, and 22.4% in 1831. Value added by the British woollen industry was 14.1% in 1801. Cotton factories in Britain numbered approximately 900 in 1797. In 1760, approximately one-third of cotton cloth manufactured in Britain was exported, rising to two-thirds by 1800. In 1781, cotton spun amounted to 5.1 million pounds, which increased to 56 million pounds by 1800. In 1800, less than 0.1% of world cotton cloth
SECTION 60
#17327877580597192-427: The country. Steam engines made the use of higher-pressure and volume blast practical; however, the leather used in bellows was expensive to replace. In 1757, ironmaster John Wilkinson patented a hydraulic powered blowing engine for blast furnaces. The blowing cylinder for blast furnaces was introduced in 1760 and the first blowing cylinder made of cast iron is believed to be the one used at Carrington in 1768 that
7308-578: The double acting steam engine practical. The Boulton and Watt steam engine and later designs powered steam locomotives , steam ships , and factories . The Industrial Revolution was a period from 1750 to 1850 where changes in agriculture, manufacturing, mining, transportation, and technology had a profound effect on the social, economic and cultural conditions of the times. It began in the United Kingdom , then subsequently spread throughout Western Europe , North America , Japan , and eventually
7424-456: The eagerness of British entrepreneurs to export industrial expertise and the willingness to import the process. Britain met the criteria and industrialized starting in the 18th century, and then it exported the process to western Europe (especially Belgium, France, and the German states) in the early 19th century. The United States copied the British model in the early 19th century, and Japan copied
7540-607: The early 1840s when the adoption of the Industrial Revolution's early innovations, such as mechanised spinning and weaving, slowed as their markets matured; and despite the increasing adoption of locomotives, steamboats and steamships, and hot blast iron smelting . New technologies such as the electrical telegraph , widely introduced in the 1840s and 1850s in the United Kingdom and the United States, were not powerful enough to drive high rates of economic growth. Rapid economic growth began to reoccur after 1870, springing from
7656-465: The expiration of the Arkwright patent would greatly increase the supply of spun cotton and lead to a shortage of weavers, Edmund Cartwright developed a vertical power loom which he patented in 1785. In 1776, he patented a two-man operated loom. Cartwright's loom design had several flaws, the most serious being thread breakage. Samuel Horrocks patented a fairly successful loom in 1813. Horock's loom
7772-402: The fabrics in lye, olive oil, sheep's dung, and other ingredients. Turkey red fabric was more expensive but resulted in a fine bright and lasting red, similar to carmine , perfectly suited to cotton, a fabric to which it had previously proven difficult to affix dye. Aiding the colouring of Turkey red was the discovery of mordants in India; mordants create a bond between dyestuffs and fibres, and
7888-528: The first highly mechanised factory was John Lombe 's water-powered silk mill at Derby , operational by 1721. Lombe learned silk thread manufacturing by taking a job in Italy and acting as an industrial spy; however, because the Italian silk industry guarded its secrets closely, the state of the industry at that time is unknown. Although Lombe's factory was technically successful, the supply of raw silk from Italy
8004-400: The first successful cylinder for a Boulton and Watt steam engine in 1776, he was given an exclusive contract for providing cylinders. After Watt developed a rotary steam engine in 1782, they were widely applied to blowing, hammering, rolling and slitting. The solutions to the sulfur problem were the addition of sufficient limestone to the furnace to force sulfur into the slag as well as
8120-534: The general population in the Western world began to increase consistently for the first time in history, although others have said that it did not begin to improve meaningfully until the late 19th and 20th centuries. GDP per capita was broadly stable before the Industrial Revolution and the emergence of the modern capitalist economy, while the Industrial Revolution began an era of per-capita economic growth in capitalist economies. Economic historians agree that
8236-451: The increasing use of water power and steam power ; the development of machine tools ; and the rise of the mechanised factory system . Output greatly increased, and the result was an unprecedented rise in population and the rate of population growth . The textile industry was the first to use modern production methods, and textiles became the dominant industry in terms of employment, value of output, and capital invested. Many of
8352-517: The iron industries during the Industrial Revolution was the replacement of wood and other bio-fuels with coal ; for a given amount of heat, mining coal required much less labour than cutting wood and converting it to charcoal , and coal was much more abundant than wood, supplies of which were becoming scarce before the enormous increase in iron production that took place in the late 18th century. In 1709, Abraham Darby made progress using coke to fuel his blast furnaces at Coalbrookdale . However,
8468-444: The late 19th century, and his expression did not enter everyday language until then. Credit for popularising the term may be given to Arnold Toynbee , whose 1881 lectures gave a detailed account of the term. Economic historians and authors such as Mendels, Pomeranz , and Kridte argue that proto-industrialisation in parts of Europe, the Muslim world , Mughal India , and China created the social and economic conditions that led to
8584-417: The lever, pulley and wheel and axle that are formed by a body rotating about a hinge, and the inclined plane, wedge and screw that are similarly a block sliding on a flat surface. Simple machines are elementary examples of kinematic chains or linkages that are used to model mechanical systems ranging from the steam engine to robot manipulators. The bearings that form the fulcrum of a lever and that allow
8700-529: The linear movement of the piston into rotation of the output pulley. Finally, the pulley rotation drives the flyball governor which controls the valve for the steam input to the piston cylinder. The adjective "mechanical" refers to skill in the practical application of an art or science, as well as relating to or caused by movement, physical forces, properties or agents such as is dealt with by mechanics . Similarly Merriam-Webster Dictionary defines "mechanical" as relating to machinery or tools. Power flow through
8816-467: The mass of hot wrought iron. Rolling was 15 times faster at this than a trip hammer . A different use of rolling, which was done at lower temperatures than that for expelling slag, was in the production of iron sheets, and later structural shapes such as beams, angles, and rails. The puddling process was improved in 1818 by Baldwyn Rogers, who replaced some of the sand lining on the reverberatory furnace bottom with iron oxide . In 1838 John Hall patented
8932-758: The mechanical advantage of the inclined plane, and it was included with the other simple machines. The complete dynamic theory of simple machines was worked out by Italian scientist Galileo Galilei in 1600 in Le Meccaniche ("On Mechanics"). He was the first to understand that simple machines do not create energy , they merely transform it. The classic rules of sliding friction in machines were discovered by Leonardo da Vinci (1452–1519), but remained unpublished in his notebooks. They were rediscovered by Guillaume Amontons (1699) and were further developed by Charles-Augustin de Coulomb (1785). James Watt patented his parallel motion linkage in 1782, which made
9048-408: The movement. This amplification, or mechanical advantage is the ratio of the input speed to output speed. For a wedge this is given by 1/tanα, where α is the tip angle. The faces of a wedge are modeled as straight lines to form a sliding or prismatic joint . Lever: The lever is another important and simple device for managing power. This is a body that pivots on a fulcrum. Because the velocity of
9164-599: The number of cotton goods consumed in Western Europe was minor until the early 19th century. By 1600, Flemish refugees began weaving cotton cloth in English towns where cottage spinning and weaving of wool and linen was well established. They were left alone by the guilds who did not consider cotton a threat. Earlier European attempts at cotton spinning and weaving were in 12th-century Italy and 15th-century southern Germany, but these industries eventually ended when
9280-418: The onset of the Industrial Revolution is the most important event in human history since the domestication of animals and plants. The precise start and end of the Industrial Revolution is still debated among historians, as is the pace of economic and social changes . According to Cambridge historian Leigh Shaw-Taylor, Britain was already industrialising in the 17th century, and "Our database shows that
9396-419: The output of one crank to the input of another. Additional links can be attached to form a six-bar linkage or in series to form a robot. A mechanical system manages power to accomplish a task that involves forces and movement. Modern machines are systems consisting of (i) a power source and actuators that generate forces and movement, (ii) a system of mechanisms that shape the actuator input to achieve
9512-677: The pig iron. This meant that lower quality coal could be used in areas where coking coal was unavailable or too expensive; however, by the end of the 19th century transportation costs fell considerably. Machine A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines . Machines can be driven by animals and people , by natural forces such as wind and water , and by chemical , thermal , or electrical power, and include
9628-403: The primary elements of a machine. Starting with four types of joints, the rotary joint, sliding joint, cam joint and gear joint, and related connections such as cables and belts, it is possible to understand a machine as an assembly of solid parts that connect these joints called a mechanism . Two levers, or cranks, are combined into a planar four-bar linkage by attaching a link that connects
9744-501: The race to industrialise. In his 1976 book Keywords: A Vocabulary of Culture and Society , Raymond Williams states in the entry for "Industry": "The idea of a new social order based on major industrial change was clear in Southey and Owen , between 1811 and 1818, and was implicit as early as Blake in the early 1790s and Wordsworth at the turn of the [19th] century." The term Industrial Revolution applied to technological change
9860-467: The rest of the world. Starting in the later part of the 18th century, there began a transition in parts of Great Britain 's previously manual labour and draft-animal-based economy towards machine-based manufacturing. It started with the mechanisation of the textile industries, the development of iron-making techniques and the increased use of refined coal . The idea that a machine can be decomposed into simple movable elements led Archimedes to define
9976-418: The slag from almost 50% to around 8%. Puddling became widely used after 1800. Up to that time, British iron manufacturers had used considerable amounts of iron imported from Sweden and Russia to supplement domestic supplies. Because of the increased British production, imports began to decline in 1785, and by the 1790s Britain eliminated imports and became a net exporter of bar iron. Hot blast , patented by
10092-457: The smelting and refining of iron, coal and coke produced inferior iron to that made with charcoal because of the coal's sulfur content. Low sulfur coals were known, but they still contained harmful amounts. Conversion of coal to coke only slightly reduces the sulfur content. A minority of coals are coking. Another factor limiting the iron industry before the Industrial Revolution was the scarcity of water power to power blast bellows. This limitation
10208-528: The supply of cotton was cut off. The Moors in Spain grew, spun, and wove cotton beginning around the 10th century. British cloth could not compete with Indian cloth because India's labour cost was approximately one-fifth to one-sixth that of Britain's. In 1700 and 1721, the British government passed Calico Acts to protect the domestic woollen and linen industries from the increasing amounts of cotton fabric imported from India. The demand for heavier fabric
10324-415: The use of low sulfur coal. The use of lime or limestone required higher furnace temperatures to form a free-flowing slag. The increased furnace temperature made possible by improved blowing also increased the capacity of blast furnaces and allowed for increased furnace height. In addition to lower cost and greater availability, coke had other important advantages over charcoal in that it was harder and made
10440-406: The use of roasted tap cinder ( iron silicate ) for the furnace bottom, greatly reducing the loss of iron through increased slag caused by a sand lined bottom. The tap cinder also tied up some phosphorus, but this was not understood at the time. Hall's process also used iron scale or rust which reacted with carbon in the molten iron. Hall's process, called wet puddling , reduced losses of iron with
10556-591: The volume of mordant applied to fibres impacts the strength of hue which the fibre or cloth takes on. The Turkey red technique was used to dye and produce plain woven cotton cloths, which could also be used as a base for printing, using wooden blocks, copper plates, and/or cylindrical printing methods. Turkey red achieved its popularity as a natural dye for several reasons, namely that it was colourfast – it did not fade in light or when washed, and did not transfer colour to other fabrics, proving that completed fabrics could be used in both clothing and furnishing. Beginning in
10672-410: The water frame used a series of four pairs of rollers, each operating at a successively higher rotating speed, to draw out the fibre which was then twisted by the spindle. The roller spacing was slightly longer than the fibre length. Too close a spacing caused the fibres to break while too distant a spacing caused uneven thread. The top rollers were leather-covered and loading on the rollers was applied by
10788-399: The wheel and axle and pulleys to rotate are examples of a kinematic pair called a hinged joint. Similarly, the flat surface of an inclined plane and wedge are examples of the kinematic pair called a sliding joint. The screw is usually identified as its own kinematic pair called a helical joint. This realization shows that it is the joints, or the connections that provide movement, that are
10904-505: Was 7,800 tons and coke cast iron was 250,000 tons. In 1750, the UK imported 31,200 tons of bar iron and either refined from cast iron or directly produced 18,800 tons of bar iron using charcoal and 100 tons using coke. In 1796, the UK was making 125,000 tons of bar iron with coke and 6,400 tons with charcoal; imports were 38,000 tons and exports were 24,600 tons. In 1806 the UK did not import bar iron but exported 31,500 tons. A major change in
11020-644: Was a steam jack driven by a steam turbine , described in 1551 by Taqi ad-Din Muhammad ibn Ma'ruf in Ottoman Egypt . The cotton gin was invented in India by the 6th century AD, and the spinning wheel was invented in the Islamic world by the early 11th century, both of which were fundamental to the growth of the cotton industry . The spinning wheel was also a precursor to the spinning jenny . The earliest programmable machines were developed in
11136-407: Was a means of decarburizing molten pig iron by slow oxidation in a reverberatory furnace by manually stirring it with a long rod. The decarburized iron, having a higher melting point than cast iron, was raked into globs by the puddler. When the glob was large enough, the puddler would remove it. Puddling was backbreaking and extremely hot work. Few puddlers lived to be 40. Because puddling was done in
11252-660: Was a period of global transition of the human economy towards more widespread, efficient and stable manufacturing processes that succeeded the Agricultural Revolution . Beginning in Great Britain , the Industrial Revolution spread to continental Europe and the United States , from around 1760 to about 1820–1840. This transition included going from hand production methods to machines ; new chemical manufacturing and iron production processes;
11368-613: Was applied to milling grain, and powering lumber, machining and textile operations . Modern water turbines use water flowing through a dam to drive an electric generator . Windmill: Early windmills captured wind power to generate rotary motion for milling operations. Modern wind turbines also drives a generator. This electricity in turn is used to drive motors forming the actuators of mechanical systems. Engine: The word engine derives from "ingenuity" and originally referred to contrivances that may or may not be physical devices. A steam engine uses heat to boil water contained in
11484-606: Was available (and not far from Coalbrookdale). These furnaces were equipped with water-powered bellows, the water being pumped by Newcomen steam engines . The Newcomen engines were not attached directly to the blowing cylinders because the engines alone could not produce a steady air blast. Abraham Darby III installed similar steam-pumped, water-powered blowing cylinders at the Dale Company when he took control in 1768. The Dale Company used several Newcomen engines to drain its mines and made parts for engines which it sold throughout
11600-663: Was becoming more common by the late 1830s, as in Jérôme-Adolphe Blanqui 's description in 1837 of la révolution industrielle . Friedrich Engels in The Condition of the Working Class in England in 1844 spoke of "an industrial revolution, a revolution which at the same time changed the whole of civil society". Although Engels wrote his book in the 1840s, it was not translated into English until
11716-414: Was converted to wrought iron. Conversion of cast iron had long been done in a finery forge . An improved refining process known as potting and stamping was developed, but this was superseded by Henry Cort 's puddling process. Cort developed two significant iron manufacturing processes: rolling in 1783 and puddling in 1784. Puddling produced a structural grade iron at a relatively low cost. Puddling
11832-566: Was cut off to eliminate competition. In order to promote manufacturing, the Crown paid for models of Lombe's machinery which were exhibited in the Tower of London . Parts of India, China, Central America, South America, and the Middle East have a long history of hand manufacturing cotton textiles, which became a major industry sometime after 1000 AD. In tropical and subtropical regions where it
11948-403: Was designed by John Smeaton . Cast iron cylinders for use with a piston were difficult to manufacture; the cylinders had to be free of holes and had to be machined smooth and straight to remove any warping. James Watt had great difficulty trying to have a cylinder made for his first steam engine. In 1774 Wilkinson invented a precision boring machine for boring cylinders. After Wilkinson bored
12064-559: Was done by hand in workers' homes or occasionally in master weavers' shops. Wages in Lancashire were about six times those in India in 1770 when overall productivity in Britain was about three times higher than in India. In 1787, raw cotton consumption was 22 million pounds, most of which was cleaned, carded, and spun on machines. The British textile industry used 52 million pounds of cotton in 1800, which increased to 588 million pounds in 1850. The share of value added by
12180-544: Was followed by a period of colonialism beginning around the 16th century. Following the discovery of a trade route to India around southern Africa by the Portuguese, the British founded the East India Company , along with smaller companies of different nationalities which established trading posts and employed agents to engage in trade throughout the Indian Ocean region. One of the largest segments of this trade
12296-569: Was grown, most was grown by small farmers alongside their food crops and was spun and woven in households, largely for domestic consumption. In the 15th century, China began to require households to pay part of their taxes in cotton cloth. By the 17th century, almost all Chinese wore cotton clothing. Almost everywhere cotton cloth could be used as a medium of exchange . In India, a significant amount of cotton textiles were manufactured for distant markets, often produced by professional weavers. Some merchants also owned small weaving workshops. India produced
12412-479: Was improved by Richard Roberts in 1822, and these were produced in large numbers by Roberts, Hill & Co. Roberts was additionally a maker of high-quality machine tools and a pioneer in the use of jigs and gauges for precision workshop measurement. The demand for cotton presented an opportunity to planters in the Southern United States, who thought upland cotton would be a profitable crop if
12528-660: Was in cotton textiles, which were purchased in India and sold in Southeast Asia , including the Indonesian archipelago where spices were purchased for sale to Southeast Asia and Europe. By the mid-1760s, cloth was over three-quarters of the East India Company's exports. Indian textiles were in demand in the North Atlantic region of Europe where previously only wool and linen were available; however,
12644-400: Was later used in the first cotton spinning mill . In 1764, in the village of Stanhill, Lancashire, James Hargreaves invented the spinning jenny , which he patented in 1770. It was the first practical spinning frame with multiple spindles. The jenny worked in a similar manner to the spinning wheel, by first clamping down on the fibres, then by drawing them out, followed by twisting. It was
12760-437: Was made by the bloomery process, which was the predominant iron smelting process until the late 18th century. In the UK in 1720, there were 20,500 tons of cast iron produced with charcoal and 400 tons with coke. In 1750 charcoal iron production was 24,500 and coke iron was 2,500 tons. In 1788, the production of charcoal cast iron was 14,000 tons while coke iron production was 54,000 tons. In 1806, charcoal cast iron production
12876-419: Was met by a domestic industry based around Lancashire that produced fustian , a cloth with flax warp and cotton weft . Flax was used for the warp because wheel-spun cotton did not have sufficient strength, but the resulting blend was not as soft as 100% cotton and was more difficult to sew. On the eve of the Industrial Revolution, spinning and weaving were done in households, for domestic consumption, and as
12992-413: Was overcome by the steam engine. Use of coal in iron smelting started somewhat before the Industrial Revolution, based on innovations by Clement Clerke and others from 1678, using coal reverberatory furnaces known as cupolas. These were operated by the flames playing on the ore and charcoal or coke mixture, reducing the oxide to metal. This has the advantage that impurities (such as sulphur ash) in
13108-425: Was produced on machinery invented in Britain. In 1788, there were 50,000 spindles in Britain, rising to 7 million over the next 30 years. The earliest European attempts at mechanised spinning were with wool; however, wool spinning proved more difficult to mechanise than cotton. Productivity improvement in wool spinning during the Industrial Revolution was significant but far less than that of cotton. Arguably
13224-456: Was the inclined plane (ramp), which has been used since prehistoric times to move heavy objects. The other four simple machines were invented in the ancient Near East . The wheel , along with the wheel and axle mechanism, was invented in Mesopotamia (modern Iraq) during the 5th millennium BC. The lever mechanism first appeared around 5,000 years ago in the Near East , where it
13340-491: Was used in a simple balance scale , and to move large objects in ancient Egyptian technology . The lever was also used in the shadoof water-lifting device, the first crane machine, which appeared in Mesopotamia c. 3000 BC , and then in ancient Egyptian technology c. 2000 BC . The earliest evidence of pulleys date back to Mesopotamia in the early 2nd millennium BC, and ancient Egypt during
13456-552: Was widely used in making traditional patchwork quilts . The Turkey red dyeing technique was introduced to Scotland by French chemist Pierre Jacques Papillon. Working with dyer George Macintosh and textile industrialist David Dale, in 1785 Papillon, Macintosh, and Dale founded the first Turkey red dyeworks in Dalmarnock, Scotland . Harnessing the business potential of the growing Turkey red market, numerous manufacturers also established their bleachfields, dyeworks and printworks in
#58941