Misplaced Pages

Tus

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Tus , also known as terminus utilization substance , is a protein that binds to terminator sequences and acts as a counter- helicase when it comes in contact with an advancing helicase. The bound Tus protein effectively halts DNA polymerase movement. Tus helps end DNA replication in prokaryotes .

#478521

51-517: [REDACTED] Look up tus in Wiktionary, the free dictionary. Tus or TUS may refer to: Tus (biology) , a protein that binds to terminator sequences Thales Underwater Systems , an international defence contractor Tuscarora language , an Iroquoian language, ISO 639-3 code The Unicode Standard , a text encoding standard Education [ edit ] Technological University of

102-483: A leucine zipper , which is a type of coiled-coil. These hydrophobic residues pack together in the interior of the helix bundle. In general, the fifth and seventh residues (the e and g positions) have opposing charges and form a salt bridge stabilized by electrostatic interactions. Fibrous proteins such as keratin or the "stalks" of myosin or kinesin often adopt coiled-coil structures, as do several dimerizing proteins. A pair of coiled-coils –

153-476: A 3 10 helix is roughly −75°, whereas that for the π-helix is roughly −130°. The general formula for the rotation angle Ω per residue of any polypeptide helix with trans isomers is given by the equation The α-helix is tightly packed; there is almost no free space within the helix. The amino-acid side-chains are on the outside of the helix, and point roughly "downward" (i.e., toward the N-terminus), like

204-400: A four- helix bundle  – is a very common structural motif in proteins. For example, it occurs in human growth hormone and several varieties of cytochrome . The Rop protein , which promotes plasmid replication in bacteria, is an interesting case in which a single polypeptide forms a coiled-coil and two monomers assemble to form a four-helix bundle. The amino acids that make up

255-452: A helix and the propensity to extend a helix. At least five artists have made explicit reference to the α-helix in their work: Julie Newdoll in painting and Julian Voss-Andreae , Bathsheba Grossman , Byron Rubin, and Mike Tyka in sculpture. San Francisco area artist Julie Newdoll, who holds a degree in microbiology with a minor in art, has specialized in paintings inspired by microscopic images and molecules since 1990. Her painting "Rise of

306-532: A helix, both because it cannot donate an amide hydrogen bond (having no amide hydrogen), and also because its sidechain interferes sterically with the backbone of the preceding turn – inside a helix, this forces a bend of about 30° in the helix's axis. However, proline is often seen as the first residue of a helix, it is presumed due to its structural rigidity. At the other extreme, glycine also tends to disrupt helices because its high conformational flexibility makes it entropically expensive to adopt

357-425: A highly characteristic sequence motif known as a heptad repeat , in which the motif repeats itself every seven residues along the sequence ( amino acid residues, not DNA base-pairs). The first and especially the fourth residues (known as the a and d positions) are almost always hydrophobic ; the fourth residue is typically leucine  – this gives rise to the name of the structural motif called

408-432: A particular helix can be plotted on a helical wheel , a representation that illustrates the orientations of the constituent amino acids (see the article for leucine zipper for such a diagram). Often in globular proteins , as well as in specialized structures such as coiled-coils and leucine zippers , an α-helix will exhibit two "faces" – one containing predominantly hydrophobic amino acids oriented toward

459-406: A polypeptide chain of roughly correct dimensions on a strip of paper and folded it into a helix, being careful to maintain the planar peptide bonds. After a few attempts, he produced a model with physically plausible hydrogen bonds. Pauling then worked with Corey and Branson to confirm his model before publication. In 1954, Pauling was awarded his first Nobel Prize "for his research into the nature of

510-625: A pronounced double minimum at around 208 and 222 nm. Infrared spectroscopy is rarely used, since the α-helical spectrum resembles that of a random coil (although these might be discerned by, e.g., hydrogen-deuterium exchange ). Finally, cryo electron microscopy is now capable of discerning individual α-helices within a protein, although their assignment to residues is still an active area of research. Long homopolymers of amino acids often form helices if soluble. Such long, isolated helices can also be detected by other methods, such as dielectric relaxation , flow birefringence , and measurements of

561-508: A small number of diagrams, Heliquest can be used for helical wheels, and NetWheels can be used for helical wheels and helical nets. To programmatically generate a large number of diagrams, helixvis can be used to draw helical wheels and wenxiang diagrams in the R and Python programming languages. Since the α-helix is defined by its hydrogen bonds and backbone conformation, the most detailed experimental evidence for α-helical structure comes from atomic-resolution X-ray crystallography such as

SECTION 10

#1732773005479

612-635: A village in Razavi Khorasan Province, Iran Tus Rural District , in Razavi Khorasan Province, Iran Tus citadel , a Sassanid-era citadel in Tus, Iran Río Tus , a river of Spain Tucson International Airport , Arizona, U.S. Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Tus . If an internal link led you here, you may wish to change

663-517: Is a former protein crystallographer now professional sculptor in metal of proteins, nucleic acids, and drug molecules – many of which featuring α-helices, such as subtilisin , human growth hormone , and phospholipase A2 . Mike Tyka is a computational biochemist at the University of Washington working with David Baker . Tyka has been making sculptures of protein molecules since 2010 from copper and steel, including ubiquitin and

714-462: Is also commonly called a: In the early 1930s, William Astbury showed that there were drastic changes in the X-ray fiber diffraction of moist wool or hair fibers upon significant stretching. The data suggested that the unstretched fibers had a coiled molecular structure with a characteristic repeat of ≈5.1 ångströms (0.51 nanometres ). Astbury initially proposed a linked-chain structure for

765-495: Is because of the convenient structural fact that the diameter of an α-helix is about 12 Å (1.2 nm) including an average set of sidechains, about the same as the width of the major groove in B-form DNA , and also because coiled-coil (or leucine zipper) dimers of helices can readily position a pair of interaction surfaces to contact the sort of symmetrical repeat common in double-helical DNA. An example of both aspects

816-435: Is composed of an alpha helices , beta sheet, and three loops. The C-terminal domain is made of two alpha helices and one beta sheet . This protein -related article is a stub . You can help Misplaced Pages by expanding it . Alpha helix An alpha helix (or α-helix ) is a sequence of amino acids in a protein that are twisted into a coil (a helix ). The alpha helix is the most common structural arrangement in

867-479: Is misleading and it is more realistic to say that the hydrogen bond potential of the free NH groups at the N-terminus of an α-helix can be satisfied by hydrogen bonding; this can also be regarded as set of interactions between local microdipoles such as C=O···H−N . Coiled-coil α helices are highly stable forms in which two or more helices wrap around each other in a "supercoil" structure. Coiled coils contain

918-451: Is that the hydrophobic face of the antimicrobial peptide forms pores in the plasma membrane after associating with the fatty chains at the membrane core. Myoglobin and hemoglobin , the first two proteins whose structures were solved by X-ray crystallography , have very similar folds made up of about 70% α-helix, with the rest being non-repetitive regions, or "loops" that connect the helices. In classifying proteins by their dominant fold,

969-507: Is the transcription factor Max (see image at left), which uses a helical coiled coil to dimerize, positioning another pair of helices for interaction in two successive turns of the DNA major groove. α-Helices are also the most common protein structure element that crosses biological membranes ( transmembrane protein ), it is presumed because the helical structure can satisfy all backbone hydrogen-bonds internally, leaving no polar groups exposed to

1020-405: The chromosome . Each site is 23 base pairs. The 10 sites are called Ter sites , and are designated TerA , TerB , ..., TerJ . These binding sites are asymmetric, such that when a Tus-Ter complex (Tus protein bound to a Ter site) is encountered by a replication fork from one direction, the complex is dissociated and replication continues (permissive). But when encountered from the other direction,

1071-546: The diffusion constant . In stricter terms, these methods detect only the characteristic prolate (long cigar-like) hydrodynamic shape of a helix, or its large dipole moment . Different amino-acid sequences have different propensities for forming α-helical structure. Methionine , alanine , leucine , glutamate , and lysine uncharged ("MALEK" in the amino-acid 1-letter codes) all have especially high helix-forming propensities, whereas proline and glycine have poor helix-forming propensities. Proline either breaks or kinks

SECTION 20

#1732773005479

1122-401: The entropic cost associated with the folding of the polypeptide chain is not compensated for by a sufficient amount of stabilizing interactions. In general, the backbone hydrogen bonds of α-helices are considered slightly weaker than those found in β-sheets , and are readily attacked by the ambient water molecules. However, in more hydrophobic environments such as the plasma membrane , or in

1173-475: The i  + 4 spacing adds three more atoms to the H-bonded loop compared to the tighter 3 10 helix, and on average, 3.6 amino acids are involved in one ring of α-helix. The subscripts refer to the number of atoms (including the hydrogen) in the closed loop formed by the hydrogen bond. Residues in α-helices typically adopt backbone ( φ ,  ψ ) dihedral angles around (−60°, −45°), as shown in

1224-421: The secondary structure of proteins . It is also the most extreme type of local structure, and it is the local structure that is most easily predicted from a sequence of amino acids. The alpha helix has a right-handed helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid that is four residues earlier in the protein sequence. The alpha helix

1275-462: The Alpha Helix" (2003) features human figures arranged in an α helical arrangement. According to the artist, "the flowers reflect the various types of sidechains that each amino acid holds out to the world". This same metaphor is also echoed from the scientist's side: "β sheets do not show a stiff repetitious regularity but flow in graceful, twisting curves, and even the α-helix is regular more in

1326-523: The Glycine-xxx-Glycine (or small-xxx-small) motif. α-Helices under axial tensile deformation, a characteristic loading condition that appears in many alpha-helix-rich filaments and tissues, results in a characteristic three-phase behavior of stiff-soft-stiff tangent modulus. Phase I corresponds to the small-deformation regime during which the helix is stretched homogeneously, followed by phase II, in which alpha-helical turns break mediated by

1377-610: The Shannon , Ireland Tokyo University of Science , Japan People [ edit ] Anton Tus (born 1931), retired Croatian general Christos Tusis (born 1986), Greek rapper Places [ edit ] Tampa Union Station , a train station in Florida, United States Tus, Iran , an ancient city in Razavi Khorasan Tus-e Olya , a village in Razavi Khorasan Province, Iran Tus-e Sofla ,

1428-539: The Structural Classification of Proteins database maintains a large category specifically for all-α proteins. Hemoglobin then has an even larger-scale quaternary structure , in which the functional oxygen-binding molecule is made up of four subunits. α-Helices have particular significance in DNA binding motifs, including helix-turn-helix motifs, leucine zipper motifs and zinc finger motifs. This

1479-465: The Tus-Ter complex provides a much larger kinetic barrier and halts replication (non-permissive). The multiple Ter sites in the chromosome are oriented such that the two oppositely moving replication forks are both stalled in the desired termination region. Bacillus subtilis utilize replication terminator protein (RTP) instead of Tus. The Ter protein contains two domains. The N-terminal domain

1530-548: The aggregate effect of the individual microdipoles from the carbonyl groups of the peptide bond pointing along the helix axis. The effects of this macrodipole are a matter of some controversy. α-helices often occur with the N-terminal end bound by a negatively charged group, sometimes an amino acid side chain such as glutamate or aspartate , or sometimes a phosphate ion. Some regard the helix macrodipole as interacting electrostatically with such groups. Others feel that this

1581-448: The branches of an evergreen tree ( Christmas tree effect). This directionality is sometimes used in preliminary, low-resolution electron-density maps to determine the direction of the protein backbone. Helices observed in proteins can range from four to over forty residues long, but a typical helix contains about ten amino acids (about three turns). In general, short polypeptides do not exhibit much α-helical structure in solution, since

Tus - Misplaced Pages Continue

1632-420: The chemical bond and its application to the elucidation of the structure of complex substances" (such as proteins), prominently including the structure of the α-helix. The amino acids in an α-helix are arranged in a right-handed helical structure where each amino acid residue corresponds to a 100° turn in the helix (i.e., the helix has 3.6 residues per turn), and a translation of 1.5 Å (0.15 nm) along

1683-416: The combined pattern of pitch and hydrogen bonding. The α-helices can be identified in protein structure using several computational methods, such as DSSP (Define  Secondary Structure of Protein). Similar structures include the 3 10 helix ( i  + 3 → i hydrogen bonding) and the π-helix ( i  + 5 → i hydrogen bonding). The α-helix can be described as a 3.6 13 helix, since

1734-431: The crystal structure of myoglobin showed that the right-handed form is the common one. Hans Neurath was the first to show that Astbury's models could not be correct in detail, because they involved clashes of atoms. Neurath's paper and Astbury's data inspired H. S. Taylor , Maurice Huggins and Bragg and collaborators to propose models of keratin that somewhat resemble the modern α-helix. Two key developments in

1785-409: The ends. Homopolymers of amino acids (such as polylysine ) can adopt α-helical structure at low temperature that is "melted out" at high temperatures. This helix–coil transition was once thought to be analogous to protein denaturation . The statistical mechanics of this transition can be modeled using an elegant transfer matrix method, characterized by two parameters: the propensity to initiate

1836-521: The example shown at right. It is clear that all the backbone carbonyl oxygens point downward (toward the C-terminus) but splay out slightly, and the H-bonds are approximately parallel to the helix axis. Protein structures from NMR spectroscopy also show helices well, with characteristic observations of nuclear Overhauser effect (NOE) couplings between atoms on adjacent helical turns. In some cases,

1887-560: The fibers. He later joined other researchers (notably the American chemist Maurice Huggins ) in proposing that: Although incorrect in their details, Astbury's models of these forms were correct in essence and correspond to modern elements of secondary structure , the α-helix and the β-strand (Astbury's nomenclature was kept), which were developed by Linus Pauling , Robert Corey and Herman Branson in 1951 (see below); that paper showed both right- and left-handed helices, although in 1960

1938-466: The fully helical state. It has been shown that α-helices are more stable, robust to mutations and designable than β-strands in natural proteins, and also in artificially designed proteins. The 3 most popular ways of visualizing the alpha-helical secondary structure of oligopeptide sequences are (1) a helical wheel , (2) a wenxiang diagram, and (3) a helical net. Each of these can be visualized with various software packages and web servers. To generate

1989-407: The helical axis. Dunitz describes how Pauling's first article on the theme in fact shows a left-handed helix, the enantiomer of the true structure. Short pieces of left-handed helix sometimes occur with a large content of achiral glycine amino acids, but are unfavorable for the other normal, biological L -amino acids . The pitch of the alpha-helix (the vertical distance between consecutive turns of

2040-607: The helix) is 5.4 Å (0.54 nm), which is the product of 1.5 and 3.6. The most important thing is that the N-H group of one amino acid forms a hydrogen bond with the C=O group of the amino acid four residues earlier; this repeated i  + 4 → i hydrogen bonding is the most prominent characteristic of an α-helix. Official international nomenclature specifies two ways of defining α-helices, rule 6.2 in terms of repeating φ , ψ torsion angles (see below) and rule 6.3 in terms of

2091-480: The image at right. In more general terms, they adopt dihedral angles such that the ψ dihedral angle of one residue and the φ dihedral angle of the next residue sum to roughly −105°. As a consequence, α-helical dihedral angles, in general, fall on a diagonal stripe on the Ramachandran diagram (of slope −1), ranging from (−90°, −15°) to (−70°, −35°). For comparison, the sum of the dihedral angles for

Tus - Misplaced Pages Continue

2142-463: The individual hydrogen bonds can be observed directly as a small scalar coupling in NMR. There are several lower-resolution methods for assigning general helical structure. The NMR chemical shifts (in particular of the C , C and C′) and residual dipolar couplings are often characteristic of helices. The far-UV (170–250 nm) circular dichroism spectrum of helices is also idiosyncratic, exhibiting

2193-420: The interior of the protein, in the hydrophobic core , and one containing predominantly polar amino acids oriented toward the solvent -exposed surface of the protein. Changes in binding orientation also occur for facially-organized oligopeptides. This pattern is especially common in antimicrobial peptides , and many models have been devised to describe how this relates to their function. Common to many of them

2244-512: The link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Tus&oldid=1220210704 " Categories : Disambiguation pages Place name disambiguation pages Disambiguation pages with surname-holder lists Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages Tus (biology) In E. coli , Tus binds to 10 closely related sites encoded in

2295-569: The manner of a flower stem, whose branching nodes show the influence of environment, developmental history, and the evolution of each part to match its own idiosyncratic function." Julian Voss-Andreae is a German-born sculptor with degrees in experimental physics and sculpture. Since 2001 Voss-Andreae creates "protein sculptures" based on protein structure with the α-helix being one of his preferred objects. Voss-Andreae has made α-helix sculptures from diverse materials including bamboo and whole trees. A monument Voss-Andreae created in 2004 to celebrate

2346-485: The membrane if the sidechains are hydrophobic. Proteins are sometimes anchored by a single membrane-spanning helix, sometimes by a pair, and sometimes by a helix bundle, most classically consisting of seven helices arranged up-and-down in a ring such as for rhodopsins (see image at right) and other G protein–coupled receptors (GPCRs). The structural stability between pairs of α-Helical transmembrane domains rely on conserved membrane interhelical packing motifs, for example,

2397-549: The memory of Linus Pauling , the discoverer of the α-helix, is fashioned from a large steel beam rearranged in the structure of the α-helix. The 10-foot-tall (3 m), bright-red sculpture stands in front of Pauling's childhood home in Portland, Oregon . Ribbon diagrams of α-helices are a prominent element in the laser-etched crystal sculptures of protein structures created by artist Bathsheba Grossman , such as those of insulin , hemoglobin , and DNA polymerase . Byron Rubin

2448-417: The modeling of the modern α-helix were: the correct bond geometry, thanks to the crystal structure determinations of amino acids and peptides and Pauling's prediction of planar peptide bonds ; and his relinquishing of the assumption of an integral number of residues per turn of the helix. The pivotal moment came in the early spring of 1948, when Pauling caught a cold and went to bed. Being bored, he drew

2499-427: The presence of co-solvents such as trifluoroethanol (TFE), or isolated from solvent in the gas phase, oligopeptides readily adopt stable α-helical structure. Furthermore, crosslinks can be incorporated into peptides to conformationally stabilize helical folds. Crosslinks stabilize the helical state by entropically destabilizing the unfolded state and by removing enthalpically stabilized "decoy" folds that compete with

2550-459: The relatively constrained α-helical structure. Estimated differences in free energy change , Δ(Δ G ), estimated in kcal/mol per residue in an α-helical configuration, relative to alanine arbitrarily set as zero. Higher numbers (more positive free energy changes) are less favoured. Significant deviations from these average numbers are possible, depending on the identities of the neighbouring residues. A helix has an overall dipole moment due to

2601-453: The rupture of groups of H-bonds. Phase III is typically associated with large-deformation covalent bond stretching. Alpha-helices in proteins may have low-frequency accordion-like motion as observed by the Raman spectroscopy and analyzed via the quasi-continuum model. Helices not stabilized by tertiary interactions show dynamic behavior, which can be mainly attributed to helix fraying from

SECTION 50

#1732773005479
#478521