Misplaced Pages

Under2 Coalition

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Under2 Coalition is a coalition of subnational governments that aims to achieve greenhouse gases emissions mitigation . It started as a memorandum of understanding , which was signed by twelve founding jurisdictions on May 19, 2015 in Sacramento, California . Although it was originally called the Under2 MOU , it became known as the Under2 Coalition in 2017. As of June 2024, the coalition represents 178 individual states, regions, provinces and subnational governments along with several other national and subnational entities. The list of signatories has grown to 270 governments, representing over 1.75 billion people and 50% of the world economy . The Under2 MOU was conceived through a partnership between the governments of California and Baden-Wurttemberg , with Climate Group acting as secretariat.

#419580

74-493: The intent of the memorandum signatories is for each to achieve Greenhouse gas "emission reductions consistent with a trajectory of 80 to 95 percent below 1990 levels by 2050 and/or achieving a per capita annual emission goal of less than 2 metric tons by 2050. The signatories believe these actions are consistent with findings of the Intergovernmental Panel on Climate Change (IPCC) of what is necessary to avoid

148-430: A 2 degree Celsius rise in average global temperatures. Organizers are concerned that a rise in global temperature above 2 degrees Celsius would cause widespread environmental harm. Signatories to the memorandum are asked to submit a plan to meet the target reduction of green house gas emissions by 2 metric tons per capita by 2050. Each of the governments also pledges to assist each other with scientific research, sharing of

222-411: A given year to that year's total emissions. The annual airborne fraction for CO 2 had been stable at 0.45 for the past six decades even as the emissions have been increasing. This means that the other 0.55 of emitted CO 2 is absorbed by the land and atmosphere carbon sinks within the first year of an emission. In the high-emission scenarios, the effectiveness of carbon sinks will be lower, increasing

296-400: A greenhouse gas would absorb over a given time frame after it has been added to the atmosphere (or emitted to the atmosphere). The GWP makes different greenhouse gases comparable with regard to their "effectiveness in causing radiative forcing ". It is expressed as a multiple of the radiation that would be absorbed by the same mass of added carbon dioxide (CO 2 ), which is taken as

370-539: A molecule of X remains in the box. τ {\displaystyle \tau } can also be defined as the ratio of the mass m {\displaystyle m} (in kg) of X in the box to its removal rate, which is the sum of the flow of X out of the box ( F out {\displaystyle F_{\text{out}}} ), chemical loss of X ( L {\displaystyle L} ), and deposition of X ( D {\displaystyle D} ) (all in kg/s): If input of this gas into

444-709: A moon of Saturn, and Triton , a moon of Neptune, have atmospheres mainly of nitrogen . When in the part of its orbit closest to the Sun, Pluto has an atmosphere of nitrogen and methane similar to Triton's, but these gases are frozen when it is farther from the Sun. Other bodies within the Solar System have extremely thin atmospheres not in equilibrium. These include the Moon ( sodium gas), Mercury (sodium gas), Europa (oxygen), Io ( sulfur ), and Enceladus ( water vapor ). The first exoplanet whose atmospheric composition

518-414: A much shorter atmospheric lifetime than carbon dioxide, its GWP is much less over longer time periods, with a GWP-100 of 27.9 and a GWP-500 of 7.95. The contribution of each gas to the enhanced greenhouse effect is determined by the characteristics of that gas, its abundance, and any indirect effects it may cause. For example, the direct radiative effect of a mass of methane is about 84 times stronger than

592-508: A planet from atmospheric escape and that for some magnetizations the presence of a magnetic field works to increase the escape rate. Other mechanisms that can cause atmosphere depletion are solar wind -induced sputtering, impact erosion, weathering , and sequestration—sometimes referred to as "freezing out"—into the regolith and polar caps . Atmospheres have dramatic effects on the surfaces of rocky bodies. Objects that have no atmosphere, or that have only an exosphere, have terrain that

666-445: A process known as water vapor feedback. It occurs because Clausius–Clapeyron relation establishes that more water vapor will be present per unit volume at elevated temperatures. Thus, local atmospheric concentration of water vapor varies from less than 0.01% in extremely cold regions and up to 3% by mass in saturated air at about 32 °C. Global warming potential (GWP) is an index to measure how much infrared thermal radiation

740-503: A reference gas. Therefore, the GWP has a value of 1 for CO 2 . For other gases it depends on how strongly the gas absorbs infrared thermal radiation, how quickly the gas leaves the atmosphere, and the time frame being considered. For example, methane has a GWP over 20 years (GWP-20) of 81.2 meaning that, for example, a leak of a tonne of methane is equivalent to emitting 81.2 tonnes of carbon dioxide measured over 20 years. As methane has

814-408: A single number. Scientists instead say that while the first 10% of carbon dioxide's airborne fraction (not counting the ~50% absorbed by land and ocean sinks within the emission's first year) is removed "quickly", the vast majority of the airborne fraction – 80% – lasts for "centuries to millennia". The remaining 10% stays for tens of thousands of years. In some models, this longest-lasting fraction

SECTION 10

#1732791404420

888-451: A variable amount of water vapor is also present, on average about 1% at sea level. The low temperatures and higher gravity of the Solar System's giant planets — Jupiter , Saturn , Uranus and Neptune —allow them more readily to retain gases with low molecular masses . These planets have hydrogen–helium atmospheres, with trace amounts of more complex compounds. Two satellites of the outer planets possess significant atmospheres. Titan ,

962-416: A variety of Atmospheric Chemistry Observational Databases . The table below shows the most influential long-lived, well-mixed greenhouse gases, along with their tropospheric concentrations and direct radiative forcings , as identified by the Intergovernmental Panel on Climate Change (IPCC). Abundances of these trace gases are regularly measured by atmospheric scientists from samples collected throughout

1036-464: A wide range of velocities, there will always be some fast enough to produce a slow leakage of gas into space. Lighter molecules move faster than heavier ones with the same thermal kinetic energy , and so gases of low molecular weight are lost more rapidly than those of high molecular weight. It is thought that Venus and Mars may have lost much of their water when, after being photodissociated into hydrogen and oxygen by solar ultraviolet radiation,

1110-520: Is a CO 2 molecule. The first 30 ppm increase in CO 2 concentrations took place in about 200 years, from the start of the Industrial Revolution to 1958; however the next 90 ppm increase took place within 56 years, from 1958 to 2014. Similarly, the average annual increase in the 1960s was only 37% of what it was in 2000 through 2007. Many observations are available online in

1184-439: Is a layer of gases that envelop an astronomical object , held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosphere is the outer region of a star, which includes the layers above the opaque photosphere ; stars of low temperature might have outer atmospheres containing compound molecules . The atmosphere of Earth

1258-535: Is a level which the Intergovernmental Panel on Climate Change (IPCC) says is "dangerous". Greenhouse gases are infrared active, meaning that they absorb and emit infrared radiation in the same long wavelength range as what is emitted by the Earth's surface, clouds and atmosphere. 99% of the Earth's dry atmosphere (excluding water vapor ) is made up of nitrogen ( N 2 ) (78%) and oxygen ( O 2 ) (21%). Because their molecules contain two atoms of

1332-434: Is also cooling the upper atmosphere, as it is much thinner than the lower layers, and any heat re-emitted from greenhouse gases is more likely to travel further to space than to interact with the fewer gas molecules in the upper layers. The upper atmosphere is also shrinking as the result. Anthropogenic changes to the natural greenhouse effect are sometimes referred to as the enhanced greenhouse effect . This table shows

1406-403: Is an accepted version of this page Greenhouse gases ( GHGs ) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. What distinguishes them from other gases is that they absorb the wavelengths of radiation that a planet emits , resulting in the greenhouse effect . The Earth is warmed by sunlight, causing its surface to radiate heat , which

1480-489: Is an asymmetry in electric charge distribution which allows molecular vibrations to interact with electromagnetic radiation. This makes them infrared active, and so their presence causes greenhouse effect . Earth absorbs some of the radiant energy received from the sun, reflects some of it as light and reflects or radiates the rest back to space as heat . A planet's surface temperature depends on this balance between incoming and outgoing energy. When Earth's energy balance

1554-515: Is as large as 30%. Estimates in 2023 found that the current carbon dioxide concentration in the atmosphere may be the highest it has been in the last 14 million years. However the IPCC Sixth Assessment Report estimated similar levels 3 to 3.3 million years ago in the mid-Pliocene warm period . This period can be a proxy for likely climate outcomes with current levels of CO 2 . Greenhouse gas monitoring involves

SECTION 20

#1732791404420

1628-414: Is composed of nitrogen (78%), oxygen (21%), argon (0.9%), carbon dioxide (0.04%) and trace gases. Most organisms use oxygen for respiration ; lightning and bacteria perform nitrogen fixation which produces ammonia that is used to make nucleotides and amino acids ; plants , algae , and cyanobacteria use carbon dioxide for photosynthesis . The layered composition of the atmosphere minimises

1702-423: Is covered in craters . Without an atmosphere, the planet has no protection from meteoroids , and all of them collide with the surface as meteorites and create craters. For planets with a significant atmosphere, most meteoroids burn up as meteors before hitting a planet's surface. When meteoroids do impact, the effects are often erased by the action of wind. Wind erosion is a significant factor in shaping

1776-403: Is mostly due to the rapid growth and cumulative magnitude of the disturbances to Earth's carbon cycle by the geologic extraction and burning of fossil carbon. As of year 2014, fossil CO 2 emitted as a theoretical 10 to 100 GtC pulse on top of the existing atmospheric concentration was expected to be 50% removed by land vegetation and ocean sinks in less than about a century, as based on

1850-507: Is shifted, its surface becomes warmer or cooler, leading to a variety of changes in global climate. Radiative forcing is a metric calculated in watts per square meter, which characterizes the impact of an external change in a factor that influences climate. It is calculated as the difference in top-of-atmosphere (TOA) energy balance immediately caused by such an external change. A positive forcing, such as from increased concentrations of greenhouse gases, means more energy arriving than leaving at

1924-568: Is that the Under2 MOU is non-binding. In December 2015, California and Baden-Wurttemberg , who spearheaded the Under 2 MOU, announced that Climate Group would take on the role of secretariat for the pact. There have been efforts in the past to organize subnational governments to address climate change most notably through the Cities for Climate Protection Program - an effort associated with

1998-489: Is the level the United Nations' Intergovernmental Panel on Climate Change (IPCC) says is "dangerous". Most greenhouse gases have both natural and human-caused sources. An exception are purely human-produced synthetic halocarbons which have no natural sources. During the pre-industrial Holocene , concentrations of existing gases were roughly constant, because the large natural sources and sinks roughly balanced. In

2072-401: Is the lowest layer of the atmosphere. This extends from the planetary surface to the bottom of the stratosphere . The troposphere contains 75–80% of the mass of the atmosphere, and is the atmospheric layer wherein the weather occurs; the height of the troposphere varies between 17 km at the equator and 7.0 km at the poles. The stratosphere extends from the top of the troposphere to

2146-499: Is the most important greenhouse gas overall, being responsible for 41–67% of the greenhouse effect, but its global concentrations are not directly affected by human activity. While local water vapor concentrations can be affected by developments such as irrigation , it has little impact on the global scale due to its short residence time of about nine days. Indirectly, an increase in global temperatures cause will also increase water vapor concentrations and thus their warming effect, in

2220-644: Is then mostly absorbed by greenhouse gases. Without greenhouse gases in the atmosphere, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F). The five most abundant greenhouse gases in Earth's atmosphere, listed in decreasing order of average global mole fraction , are: water vapor , carbon dioxide , methane , nitrous oxide , ozone . Other greenhouse gases of concern include chlorofluorocarbons (CFCs and HCFCs ), hydrofluorocarbons (HFCs), perfluorocarbons , SF 6 , and NF 3 . Water vapor causes about half of

2294-526: The greenhouse effect is heavily driven by water vapor , human emissions of water vapor are not a significant contributor to warming. The annual "Emissions Gap Report" by UNEP stated in 2022 that it was necessary to almost halve emissions. "To get on track for limiting global warming to 1.5°C, global annual GHG emissions must be reduced by 45 per cent compared with emissions projections under policies currently in place in just eight years, and they must continue to decline rapidly after 2030, to avoid exhausting

Under2 Coalition - Misplaced Pages Continue

2368-611: The International Union of Local Authorities and the United Nations Environment Programme . At its peak in 2010 the program had 700 municipal members who were required to provide among other things inventories and targets for greenhouse emissions. the International Union of Local Authorities provided technical assistance to the municipalities engaged in this planning. Before the Under2 MOU was conceived many subnational governments had taken

2442-526: The Under2 MOU submit their action plans as an appendix to the document this is the first time some cities and states around the world are coming up with plans to reduce greenhouse gas emissions in their jurisdiction. |AUSTRALIA Armenia , Canada , Chile , Costa Rica , Czech Republic , Denmark , Fiji , France , Germany , Italy , Japan , Luxembourg , Marshall Islands , Mexico , The Netherlands , Norway , Panama , Peru , Portugal , Spain , Sweden , United Kingdom Greenhouse gas This

2516-438: The atmosphere can transport thermal energy from the higher temperature interior up to the surface. From the perspective of a planetary geologist , the atmosphere acts to shape a planetary surface. Wind picks up dust and other particles which, when they collide with the terrain, erode the relief and leave deposits ( eolian processes). Frost and precipitations , which depend on the atmospheric composition, also influence

2590-469: The atmosphere into bodies of water (ocean, lakes, etc.), as well as dissolving in precipitation as raindrops fall through the atmosphere. When dissolved in water, carbon dioxide reacts with water molecules and forms carbonic acid , which contributes to ocean acidity . It can then be absorbed by rocks through weathering . It also can acidify other surfaces it touches or be washed into the ocean. The vast majority of carbon dioxide emissions by humans come from

2664-427: The atmosphere, terrestrial ecosystems , the ocean, and sediments . These flows have been fairly balanced over the past 1 million years, although greenhouse gas levels have varied widely in the more distant past . Carbon dioxide levels are now higher than they have been for 3 million years. If current emission rates continue then global warming will surpass 2.0 °C (3.6 °F) sometime between 2040 and 2070. This

2738-459: The atmospheric fraction of CO 2 even though the raw amount of emissions absorbed will be higher than in the present. Major greenhouse gases are well mixed and take many years to leave the atmosphere. The atmospheric lifetime of a greenhouse gas refers to the time required to restore equilibrium following a sudden increase or decrease in its concentration in the atmosphere. Individual atoms or molecules may be lost or deposited to sinks such as

2812-469: The available technologies and best practices in energy efficiency. The memorandum was developed just before the 2015 United Nations Climate Change Conference also known as COP 21 or Paris Agreement . The Under2 MOU allows subnational governments such as cities, counties and states to highlight their work to reduce greenhouse gas emissions . Subnational governments like cities, states and provinces have traditionally relied on national governments to take

2886-423: The balance between sources (emissions of the gas from human activities and natural systems) and sinks (the removal of the gas from the atmosphere by conversion to a different chemical compound or absorption by bodies of water). The proportion of an emission remaining in the atmosphere after a specified time is the " airborne fraction " (AF). The annual airborne fraction is the ratio of the atmospheric increase in

2960-411: The base of the exosphere at 690 km and contains the ionosphere , where solar radiation ionizes the atmosphere. The density of the ionosphere is greater at short distances from the planetary surface in the daytime and decreases as the ionosphere rises at night-time, thereby allowing a greater range of radio frequencies to travel greater distances. The exosphere begins at 690 to 1,000 km from

3034-428: The bottom of the mesosphere , and contains the ozone layer , at an altitude between 15 km and 35 km. It is the atmospheric layer that absorbs most of the ultraviolet radiation that Earth receives from the Sun. The mesosphere ranges from 50 km to 85 km and is the layer wherein most meteors are incinerated before reaching the surface. The thermosphere extends from an altitude of 85 km to

Under2 Coalition - Misplaced Pages Continue

3108-502: The box ceased, then after time τ {\displaystyle \tau } , its concentration would decrease by about 63%. Changes to any of these variables can alter the atmospheric lifetime of a greenhouse gas. For instance, methane's atmospheric lifetime is estimated to have been lower in the 19th century than now, but to have been higher in the second half of the 20th century than after 2000. Carbon dioxide has an even more variable lifetime, which cannot be specified down to

3182-401: The burning of fossil fuels , with remaining contributions from agriculture and industry . Methane emissions originate from agriculture, fossil fuel production, waste, and other sources. The carbon cycle takes thousands of years to fully absorb CO 2 from the atmosphere, while methane lasts in the atmosphere for an average of only 12 years. Natural flows of carbon happen between

3256-405: The burning of fossil fuels . Additional contributions come from cement manufacturing, fertilizer production, and changes in land use like deforestation . Methane emissions originate from agriculture , fossil fuel production, waste, and other sources. If current emission rates continue then temperature rises will surpass 2.0 °C (3.6 °F) sometime between 2040 and 2070, which

3330-426: The diminishing mass of the gas above the point of barometric measurement. The units of air pressure are based upon the standard atmosphere (atm), which is 101,325  Pa (equivalent to 760  Torr or 14.696  psi ). The height at which the atmospheric pressure declines by a factor of e (an irrational number equal to 2.71828) is called the scale height ( H ). For an atmosphere of uniform temperature,

3404-454: The direct measurement of atmospheric concentrations and direct and indirect measurement of greenhouse gas emissions . Indirect methods calculate emissions of greenhouse gases based on related metrics such as fossil fuel extraction. There are several different methods of measuring carbon dioxide concentrations in the atmosphere, including infrared analyzing and manometry . Methane and nitrous oxide are measured by other instruments, such as

3478-431: The distance from the Sun determines the energy available to heat atmospheric gas to the point where some fraction of its molecules' thermal motion exceed the planet's escape velocity , allowing those to escape a planet's gravitational grasp. Thus, distant and cold Titan , Triton , and Pluto are able to retain their atmospheres despite their relatively low gravities. Since a collection of gas molecules may be moving at

3552-446: The greenhouse effect, acting in response to other gases as a climate change feedback . Human activities since the beginning of the Industrial Revolution (around 1750) have increased carbon dioxide by over 50% , and methane levels by 150%. Carbon dioxide emissions are causing about three-quarters of global warming , while methane emissions cause most of the rest. The vast majority of carbon dioxide emissions by humans come from

3626-508: The harmful effects of sunlight , ultraviolet radiation, solar wind , and cosmic rays and thus protects the organisms from genetic damage. The current composition of the atmosphere of the Earth is the product of billions of years of biochemical modification of the paleoatmosphere by living organisms. Atmospheres are clouds of gas bound to and engulfing an astronomical focal point of sufficiently dominating mass , adding to its mass, possibly escaping from it or collapsing into it. Because of

3700-442: The hydrogen escaped. Earth's magnetic field helps to prevent this, as, normally, the solar wind would greatly enhance the escape of hydrogen. However, over the past 3 billion years Earth may have lost gases through the magnetic polar regions due to auroral activity, including a net 2% of its atmospheric oxygen. The net effect, taking the most important escape processes into account, is that an intrinsic magnetic field does not protect

3774-506: The industrial era, human activities have added greenhouse gases to the atmosphere, mainly through the burning of fossil fuels and clearing of forests. The major anthropogenic (human origin) sources of greenhouse gases are carbon dioxide (CO 2 ), nitrous oxide ( N 2 O ), methane and three groups of fluorinated gases ( sulfur hexafluoride ( SF 6 ), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs, sulphur hexafluoride (SF 6 ), and nitrogen trifluoride (NF 3 )). Though

SECTION 50

#1732791404420

3848-455: The initiative to create a climate action plan . The purpose of a climate action plan is to identify the amount of greenhouse gas emissions produced by the jurisdiction and, in many cases, provide strategies to lower or stop greenhouse gas emissions altogether. Some governments have found that the data produced by the climate action plan increases transparency and helps with longterm planning to reduce greenhouse gas emissions. Since signatories to

3922-431: The latter, such planetary nucleus can develop from interstellar molecular clouds or protoplanetary disks into rocky astronomical objects with varyingly thick atmospheres, gas giants or fusors . Composition and thickness is originally determined by the stellar nebula's chemistry and temperature, but can also by a product processes within the astronomical body outgasing a different atmosphere. The atmospheres of

3996-411: The lead on transnational climate governance aimed at addressing climate change mitigation through inter-governmental agreements. Some subnational governments have expressed frustration at the inaction of national leaders and took it upon themselves to create the subnational Under2 MOU agreement. The major difference between an international treaty and the Under2 MOU agreement between subnational governments

4070-455: The limited remaining atmospheric carbon budget ." The report commented that the world should focus on broad-based economy-wide transformations and not incremental change. Several technologies remove greenhouse gas emissions from the atmosphere. Most widely analyzed are those that remove carbon dioxide from the atmosphere, either to geologic formations such as bio-energy with carbon capture and storage and carbon dioxide air capture , or to

4144-828: The most important contributions to the overall greenhouse effect, without which the average temperature of Earth's surface would be about −18 °C (0 °F), instead of around 15 °C (59 °F). This table also specifies tropospheric ozone , because this gas has a cooling effect in the stratosphere , but a warming influence comparable to nitrous oxide and CFCs in the troposphere . K&T (1997) used 353 ppm CO 2 and calculated 125 W/m total clear-sky greenhouse effect; relied on single atmospheric profile and cloud model. "With Clouds" percentages are from Schmidt (2010) interpretation of K&T (1997). Schmidt (2010) used 1980 climatology with 339 ppm CO 2 and 155 W/m total greenhouse effect; accounted for temporal and 3-D spatial distribution of absorbers. Water vapor

4218-406: The past. The circulation of the atmosphere occurs due to thermal differences when convection becomes a more efficient transporter of heat than thermal radiation . On planets where the primary heat source is solar radiation, excess heat in the tropics is transported to higher latitudes. When a planet generates a significant amount of heat internally, such as is the case for Jupiter , convection in

4292-429: The planets Venus and Mars are principally composed of carbon dioxide and nitrogen , argon and oxygen . The composition of Earth's atmosphere is determined by the by-products of the life that it sustains. Dry air (mixture of gases) from Earth's atmosphere contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and traces of hydrogen, helium, and other "noble" gases (by volume), but generally

4366-508: The projections of coupled models referenced in the AR5 assessment. A substantial fraction (20–35%) was also projected to remain in the atmosphere for centuries to millennia, where fractional persistence increases with pulse size. Values are relative to year 1750. AR6 reports the effective radiative forcing which includes effects of rapid adjustments in the atmosphere and at the surface. Atmospheric concentrations are determined by

4440-788: The range-resolved infrared differential absorption lidar (DIAL). Greenhouse gases are measured from space such as by the Orbiting Carbon Observatory and through networks of ground stations such as the Integrated Carbon Observation System . The Annual Greenhouse Gas Index (AGGI) is defined by atmospheric scientists at NOAA as the ratio of total direct radiative forcing due to long-lived and well-mixed greenhouse gases for any year for which adequate global measurements exist, to that present in year 1990. These radiative forcing levels are relative to those present in year 1750 (i.e. prior to

4514-416: The relief. Climate changes can influence a planet's geological history. Conversely, studying the surface of the Earth leads to an understanding of the atmosphere and climate of other planets. For a meteorologist , the composition of the Earth's atmosphere is a factor affecting the climate and its variations. For a biologist or paleontologist , the Earth's atmospheric composition is closely dependent on

SECTION 60

#1732791404420

4588-605: The same element , they have no asymmetry in the distribution of their electrical charges , and so are almost totally unaffected by infrared thermal radiation, with only an extremely minor effect from collision-induced absorption . A further 0.9% of the atmosphere is made up by argon (Ar), which is monatomic , and so completely transparent to thermal radiation. On the other hand, carbon dioxide (0.04%), methane , nitrous oxide and even less abundant trace gases account for less than 0.1% of Earth's atmosphere, but because their molecules contain atoms of different elements, there

4662-470: The same mass of carbon dioxide over a 20-year time frame. Since the 1980s, greenhouse gas forcing contributions (relative to year 1750) are also estimated with high accuracy using IPCC-recommended expressions derived from radiative transfer models . The concentration of a greenhouse gas is typically measured in parts per million (ppm) or parts per billion (ppb) by volume. A CO 2 concentration of 420 ppm means that 420 out of every million air molecules

4736-468: The scale height is proportional to the atmospheric temperature and is inversely proportional to the product of the mean molecular mass of dry air, and the local acceleration of gravity at the point of barometric measurement. Surface gravity differs significantly among the planets. For example, the large gravitational force of the giant planet Jupiter retains light gases such as hydrogen and helium that escape from objects with lower gravity. Secondly,

4810-456: The soil as in the case with biochar . Many long-term climate scenario models require large-scale human-made negative emissions to avoid serious climate change. Negative emissions approaches are also being studied for atmospheric methane, called atmospheric methane removal . Atmosphere An atmosphere (from Ancient Greek ἀτμός ( atmós )  'vapour, steam' and σφαῖρα ( sphaîra )  'sphere')

4884-404: The soil, the oceans and other waters, or vegetation and other biological systems, reducing the excess to background concentrations. The average time taken to achieve this is the mean lifetime . This can be represented through the following formula, where the lifetime τ {\displaystyle \tau } of an atmospheric species X in a one- box model is the average time that

4958-521: The start of the industrial era ). 1990 is chosen because it is the baseline year for the Kyoto Protocol , and is the publication year of the first IPCC Scientific Assessment of Climate Change . As such, NOAA states that the AGGI "measures the commitment that (global) society has already made to living in a changing climate. It is based on the highest quality atmospheric observations from sites around

5032-413: The surface, and extends to roughly 10,000 km, where it interacts with the magnetosphere of Earth. Atmospheric pressure is the force (per unit-area) perpendicular to a unit-area of planetary surface, as determined by the weight of the vertical column of atmospheric gases. In said atmospheric model, the atmospheric pressure , the weight of the mass of the gas, decreases at high altitude because of

5106-418: The table. and Annex III of the 2021 IPCC WG1 Report (years) GWP over time up to year 2022 Year 1750 Year 1998 Year 2005 Year 2011 Year 2019 Mole fractions : μmol/mol = ppm = parts per million (10 ); nmol/mol = ppb = parts per billion (10 ); pmol/mol = ppt = parts per trillion (10 ). The IPCC states that "no single atmospheric lifetime can be given" for CO 2 . This

5180-417: The terrain of rocky planets with atmospheres, and over time can erase the effects of both craters and volcanoes . In addition, since liquids cannot exist without pressure, an atmosphere allows liquid to be present at the surface, resulting in lakes , rivers and oceans . Earth and Titan are known to have liquids at their surface and terrain on the planet suggests that Mars had liquid on its surface in

5254-424: The top-of-atmosphere, which causes additional warming, while negative forcing, like from sulfates forming in the atmosphere from sulfur dioxide , leads to cooling. Within the lower atmosphere, greenhouse gases exchange thermal radiation with the surface and limit radiative heat flow away from it, which reduces the overall rate of upward radiative heat transfer. The increased concentration of greenhouse gases

5328-602: The world. It excludes water vapor because changes in its concentrations are calculated as a climate change feedback indirectly caused by changes in other greenhouse gases, as well as ozone, whose concentrations are only modified indirectly by various refrigerants that cause ozone depletion . Some short-lived gases (e.g. carbon monoxide , NOx ) and aerosols (e.g. mineral dust or black carbon ) are also excluded because of limited role and strong variation, along with minor refrigerants and other halogenated gases, which have been mass-produced in smaller quantities than those in

5402-408: The world. Its uncertainty is very low." The natural flows of carbon between the atmosphere, ocean, terrestrial ecosystems , and sediments are fairly balanced; so carbon levels would be roughly stable without human influence. Carbon dioxide is removed from the atmosphere primarily through photosynthesis and enters the terrestrial and oceanic biospheres. Carbon dioxide also dissolves directly from

5476-461: Was determined is HD 209458b , a gas giant with a close orbit around a star in the constellation Pegasus . Its atmosphere is heated to temperatures over 1,000 K, and is steadily escaping into space. Hydrogen, oxygen, carbon and sulfur have been detected in the planet's inflated atmosphere. The atmosphere of Earth is composed of layers with different properties, such as specific gaseous composition, temperature, and pressure. The troposphere

#419580