58-427: Ultraviolet refers to electromagnetic radiation with a wavelength shorter than that of visible light, but longer than soft X-rays. Ultraviolet , UltraViolet , or Ultra Violet may also refer to: Ultraviolet Ultraviolet radiation , also known as simply UV , is electromagnetic radiation of wavelengths of 10–400 nanometers , shorter than that of visible light , but longer than X-rays . UV radiation
116-486: A boundary of 190 nm between hard and soft UV regions. Very hot objects emit UV radiation (see black-body radiation ). The Sun emits ultraviolet radiation at all wavelengths, including the extreme ultraviolet where it crosses into X-rays at 10 nm. Extremely hot stars (such as O- and B-type) emit proportionally more UV radiation than the Sun. Sunlight in space at the top of Earth's atmosphere (see solar constant )
174-433: A deep-bluish-purple Wood's glass optical filter that blocks almost all visible light with wavelengths longer than 400 nanometers. The purple glow given off by these tubes is not the ultraviolet itself, but visible purple light from mercury's 404 nm spectral line which escapes being filtered out by the coating. Other black lights use plain glass instead of the more expensive Wood's glass, so they appear light-blue to
232-671: A filter coating which absorbs most visible light. Halogen lamps with fused quartz envelopes are used as inexpensive UV light sources in the near UV range, from 400 to 300 nm, in some scientific instruments. Due to its black-body spectrum a filament light bulb is a very inefficient ultraviolet source, emitting only a fraction of a percent of its energy as UV. Specialized UV gas-discharge lamps containing different gases produce UV radiation at particular spectral lines for scientific purposes. Argon and deuterium arc lamps are often used as stable sources, either windowless or with various windows such as magnesium fluoride . These are often
290-582: A given time and location. This standard shows that most sunburn happens due to UV at wavelengths near the boundary of the UVA and UVB bands. Overexposure to UVB radiation not only can cause sunburn but also some forms of skin cancer . However, the degree of redness and eye irritation (which are largely not caused by UVA) do not predict the long-term effects of UV, although they do mirror the direct damage of DNA by ultraviolet. Johann Wilhelm Ritter Johann Wilhelm Ritter (16 December 1776 – 23 January 1810)
348-551: A number of ranges recommended by the ISO standard ISO 21348: Several solid-state and vacuum devices have been explored for use in different parts of the UV spectrum. Many approaches seek to adapt visible light-sensing devices, but these can suffer from unwanted response to visible light and various instabilities. Ultraviolet can be detected by suitable photodiodes and photocathodes , which can be tailored to be sensitive to different parts of
406-520: A typical efficiency of approximately 30–40%, meaning that for every 100 watts of electricity consumed by the lamp, they will produce approximately 30–40 watts of total UV output. They also emit bluish-white visible light, due to mercury's other spectral lines. These "germicidal" lamps are used extensively for disinfection of surfaces in laboratories and food-processing industries, and for disinfecting water supplies. 'Black light' incandescent lamps are also made from an incandescent light bulb with
464-449: A variety of wavelength bands into the vacuum ultraviolet. Light-emitting diodes (LEDs) can be manufactured to emit radiation in the ultraviolet range. In 2019, following significant advances over the preceding five years, UVA LEDs of 365 nm and longer wavelength were available, with efficiencies of 50% at 1.0 W output. Currently, the most common types of UV LEDs are in 395 nm and 365 nm wavelengths, both of which are in
522-473: Is ionizing radiation . Consequently, short-wave UV damages DNA and sterilizes surfaces with which it comes into contact. For humans, suntan and sunburn are familiar effects of exposure of the skin to UV, along with an increased risk of skin cancer . The amount of UV radiation produced by the Sun means that the Earth would not be able to sustain life on dry land if most of that light were not filtered out by
580-1051: Is about 126 nm, characteristic of the Ar 2 * excimer laser. Direct UV-emitting laser diodes are available at 375 nm. UV diode-pumped solid state lasers have been demonstrated using cerium - doped lithium strontium aluminum fluoride crystals (Ce:LiSAF), a process developed in the 1990s at Lawrence Livermore National Laboratory . Wavelengths shorter than 325 nm are commercially generated in diode-pumped solid-state lasers . Ultraviolet lasers can also be made by applying frequency conversion to lower-frequency lasers. Ultraviolet lasers have applications in industry ( laser engraving ), medicine ( dermatology , and keratectomy ), chemistry ( MALDI ), free-air secure communications , computing ( optical storage ), and manufacture of integrated circuits. The vacuum ultraviolet (V‑UV) band (100–200 nm) can be generated by non-linear 4 wave mixing in gases by sum or difference frequency mixing of 2 or more longer wavelength lasers. The generation
638-412: Is composed of about 50% infrared light, 40% visible light, and 10% ultraviolet light, for a total intensity of about 1400 W/m in vacuum. The atmosphere blocks about 77% of the Sun's UV, when the Sun is highest in the sky (at zenith), with absorption increasing at shorter UV wavelengths. At ground level with the sun at zenith, sunlight is 44% visible light, 3% ultraviolet, and the remainder infrared. Of
SECTION 10
#1732783015709696-448: Is generally done in gasses (e.g. krypton, hydrogen which are two-photon resonant near 193 nm) or metal vapors (e.g. magnesium). By making one of the lasers tunable, the V‑UV can be tuned. If one of the lasers is resonant with a transition in the gas or vapor then the V‑UV production is intensified. However, resonances also generate wavelength dispersion, and thus the phase matching can limit
754-497: Is in direct proportion to the degree of bright sunlight the body receives. Serotonin is thought to provide sensations of happiness, well-being and serenity to human beings. UV rays also treat certain skin conditions. Modern phototherapy has been used to successfully treat psoriasis , eczema , jaundice , vitiligo , atopic dermatitis , and localized scleroderma . In addition, UV radiation, in particular UVB radiation, has been shown to induce cell cycle arrest in keratinocytes ,
812-419: Is no doubt that a little sunlight is good for you! But 5–15 minutes of casual sun exposure of hands, face and arms two to three times a week during the summer months is sufficient to keep your vitamin D levels high. Vitamin D can also be obtained from food and supplementation. Excess sun exposure produces harmful effects, however. Vitamin D promotes the creation of serotonin . The production of serotonin
870-513: Is not emitted by the laser, but rather by electron transitions in an extremely hot tin or xenon plasma, which is excited by an excimer laser. This technique does not require a synchrotron, yet can produce UV at the edge of the X‑ray spectrum. Synchrotron light sources can also produce all wavelengths of UV, including those at the boundary of the UV and X‑ray spectra at 10 nm. The impact of ultraviolet radiation on human health has implications for
928-498: Is planned to be used to calibrate the color cameras for the 2019 ESA Mars rover mission, since they will remain unfaded by the high level of UV present at the surface of Mars. Common soda–lime glass , such as window glass, is partially transparent to UVA, but is opaque to shorter wavelengths, passing about 90% of the light above 350 nm, but blocking over 90% of the light below 300 nm. A study found that car windows allow 3–4% of ambient UV to pass through, especially if
986-409: Is present in sunlight , and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs , Cherenkov radiation , and specialized lights, such as mercury-vapor lamps , tanning lamps , and black lights . The photons of ultraviolet have greater energy than those of visible light, from about 3.1 to 12 electron volts , around
1044-446: Is visible to insects, some mammals, and some birds . Birds have a fourth color receptor for ultraviolet rays; this, coupled with eye structures that transmit more UV gives smaller birds "true" UV vision. "Ultraviolet" means "beyond violet" (from Latin ultra , "beyond"), violet being the color of the highest frequencies of visible light . Ultraviolet has a higher frequency (thus a shorter wavelength) than violet light. UV radiation
1102-540: The UV degradation (photo-oxidation) of a material. The absorbers can themselves degrade over time, so monitoring of absorber levels in weathered materials is necessary. In sunscreen , ingredients that absorb UVA/UVB rays, such as avobenzone , oxybenzone and octyl methoxycinnamate , are organic chemical absorbers or "blockers". They are contrasted with inorganic absorbers/"blockers" of UV radiation such as carbon black , titanium dioxide , and zinc oxide . For clothing,
1160-528: The University of Jena in 1796. A self-taught scientist, he made many experimental researches on chemistry, electricity and other fields. Ritter belonged to the German Romantic movement. He was personally acquainted with Johann Wolfgang von Goethe , Alexander von Humboldt , Johann Gottfried Herder and Clemens Brentano . He was strongly influenced by Friedrich Wilhelm Joseph Schelling , who
1218-399: The atmosphere . More energetic, shorter-wavelength "extreme" UV below 121 nm ionizes air so strongly that it is absorbed before it reaches the ground. However, UV (specifically, UVB) is also responsible for the formation of vitamin D in most land vertebrates , including humans. The UV spectrum, thus, has effects both beneficial and detrimental to life. The lower wavelength limit of
SECTION 20
#17327830157091276-462: The ultraviolet protection factor (UPF) represents the ratio of sunburn -causing UV without and with the protection of the fabric, similar to sun protection factor (SPF) ratings for sunscreen . Standard summer fabrics have UPFs around 6, which means that about 20% of UV will pass through. Suspended nanoparticles in stained-glass prevent UV rays from causing chemical reactions that change image colors. A set of stained-glass color-reference chips
1334-419: The visible spectrum is conventionally taken as 400 nm, so ultraviolet rays are not visible to humans , although people can sometimes perceive light at shorter wavelengths than this. Insects, birds, and some mammals can see near-UV (NUV), i.e., slightly shorter wavelengths than what humans can see. Ultraviolet rays are usually invisible to most humans. The lens of the human eye blocks most radiation in
1392-646: The EUV spectrum is set by a prominent He spectral line at 30.4 nm. EUV is strongly absorbed by most known materials, but synthesizing multilayer optics that reflect up to about 50% of EUV radiation at normal incidence is possible. This technology was pioneered by the NIXT and MSSTA sounding rockets in the 1990s, and it has been used to make telescopes for solar imaging. See also the Extreme Ultraviolet Explorer satellite . Some sources use
1450-431: The Sun, are absorbed by oxygen and generate the ozone in the ozone layer when single oxygen atoms produced by UV photolysis of dioxygen react with more dioxygen. The ozone layer is especially important in blocking most UVB and the remaining part of UVC not already blocked by ordinary oxygen in air. Ultraviolet absorbers are molecules used in organic materials ( polymers , paints , etc.) to absorb UV radiation to reduce
1508-557: The UV spectrum. Sensitive UV photomultipliers are available. Spectrometers and radiometers are made for measurement of UV radiation. Silicon detectors are used across the spectrum. Vacuum UV, or VUV, wavelengths (shorter than 200 nm) are strongly absorbed by molecular oxygen in the air, though the longer wavelengths around 150–200 nm can propagate through nitrogen . Scientific instruments can, therefore, use this spectral range by operating in an oxygen-free atmosphere (pure nitrogen, or argon for shorter wavelengths), without
1566-674: The UV was greater than 380 nm. Other types of car windows can reduce transmission of UV that is greater than 335 nm. Fused quartz , depending on quality, can be transparent even to vacuum UV wavelengths. Crystalline quartz and some crystals such as CaF 2 and MgF 2 transmit well down to 150 nm or 160 nm wavelengths. Wood's glass is a deep violet-blue barium-sodium silicate glass with about 9% nickel(II) oxide developed during World War I to block visible light for covert communications. It allows both infrared daylight and ultraviolet night-time communications by being transparent between 320 nm and 400 nm and also
1624-831: The UVA spectrum. The rated wavelength is the peak wavelength that the LEDs put out, but light at both higher and lower wavelengths are present. The cheaper and more common 395 nm UV LEDs are much closer to the visible spectrum, and give off a purple color. Other UV LEDs deeper into the spectrum do not emit as much visible light. LEDs are used for applications such as UV curing applications, charging glow-in-the-dark objects such as paintings or toys, and lights for detecting counterfeit money and bodily fluids. UV LEDs are also used in digital print applications and inert UV curing environments. Power densities approaching 3 W/cm (30 kW/m ) are now possible, and this, coupled with recent developments by photo-initiator and resin formulators, makes
1682-484: The UVC band at 253.7 nm and 185 nm due to the mercury within the lamp, as well as some visible light. From 85% to 90% of the UV produced by these lamps is at 253.7 nm, whereas only 5–10% is at 185 nm. The fused quartz tube passes the 253.7 nm radiation but blocks the 185 nm wavelength. Such tubes have two or three times the UVC power of a regular fluorescent lamp tube. These low-pressure lamps have
1740-584: The beginning of the UVB band at 315 nm, and rapidly increasing to 300 nm. The skin and eyes are most sensitive to damage by UV at 265–275 nm, which is in the lower UVC band. At still shorter wavelengths of UV, damage continues to happen, but the overt effects are not as great with so little penetrating the atmosphere. The WHO -standard ultraviolet index is a widely publicized measurement of total strength of UV wavelengths that cause sunburn on human skin, by weighting UV exposure for action spectrum effects at
1798-403: The colored glow that many substances give off when exposed to UV light. UVA / UVB emitting bulbs are also sold for other special purposes, such as tanning lamps and reptile-husbandry. Shortwave UV lamps are made using a fluorescent lamp tube with no phosphor coating, composed of fused quartz or vycor , since ordinary glass absorbs UVC. These lamps emit ultraviolet light with two peaks in
Ultraviolet (disambiguation) - Misplaced Pages Continue
1856-526: The development of solar-blind devices has been an important area of research. Wide-gap solid-state devices or vacuum devices with high-cutoff photocathodes can be attractive compared to silicon diodes. Extreme UV (EUV or sometimes XUV) is characterized by a transition in the physics of interaction with matter. Wavelengths longer than about 30 nm interact mainly with the outer valence electrons of atoms, while wavelengths shorter than that interact mainly with inner-shell electrons and nuclei. The long end of
1914-513: The difference between the physiological effects of the two poles of the pile, although some of the effects he reported were not confirmed afterwards. Many of Ritter's researches were guided by a search for polarities in the several "forces" of nature, and for the relation between those "forces" – two of the assumptions of Naturphilosophie . In 1801, after hearing about the discovery of "heat rays" ( infrared radiation ) by William Herschel (in 1800), Ritter looked for an opposite (cooling) radiation at
1972-407: The discovery of many phenomena that were not confirmed by other researchers. For instance: he reported that the Earth had electric poles that could be detected by the motion of a bimetallic needle; and he claimed that he could produce the electrolysis of water using a series of magnets, instead of Volta's piles. Ritter had no regular income and never became a university professor, although in 1804 he
2030-581: The distinction of "hard UV" and "soft UV". For instance, in the case of astrophysics , the boundary may be at the Lyman limit (wavelength 91.2 nm, the energy needed to ionise a hydrogen atom from its ground state), with "hard UV" being more energetic; the same terms may also be used in other fields, such as cosmetology , optoelectronic , etc. The numerical values of the boundary between hard/soft, even within similar scientific fields, do not necessarily coincide; for example, one applied-physics publication used
2088-471: The electricity generated by chemical reactions. His interpretation is closer to the one accepted nowadays than those proposed by Galvani (“animal electricity”) and Alessandro Volta (electricity generated by metallic contact), but it was not accepted at the time. In 1800, shortly after the invention of the voltaic pile , William Nicholson and Anthony Carlisle discovered that water could be decomposed by electricity. Shortly afterward, Ritter also discovered
2146-463: The emitting sources in UV spectroscopy equipment for chemical analysis. Other UV sources with more continuous emission spectra include xenon arc lamps (commonly used as sunlight simulators), deuterium arc lamps , mercury-xenon arc lamps , and metal-halide arc lamps . The excimer lamp , a UV source developed in the early 2000s, is seeing increasing use in scientific fields. It has the advantages of high-intensity, high efficiency, and operation at
2204-575: The entire UV range. The nitrogen gas laser uses electronic excitation of nitrogen molecules to emit a beam that is mostly UV. The strongest ultraviolet lines are at 337.1 nm and 357.6 nm in wavelength. Another type of high-power gas lasers are excimer lasers . They are widely used lasers emitting in ultraviolet and vacuum ultraviolet wavelength ranges. Presently, UV argon-fluoride excimer lasers operating at 193 nm are routinely used in integrated circuit production by photolithography . The current wavelength limit of production of coherent UV
2262-482: The expansion of LED cured UV materials likely. UVC LEDs are developing rapidly, but may require testing to verify effective disinfection. Citations for large-area disinfection are for non-LED UV sources known as germicidal lamps . Also, they are used as line sources to replace deuterium lamps in liquid chromatography instruments. Gas lasers , laser diodes , and solid-state lasers can be manufactured to emit ultraviolet rays, and lasers are available that cover
2320-582: The eye when operating. Incandescent black lights are also produced, using a filter coating on the envelope of an incandescent bulb that absorbs visible light ( see section below ). These are cheaper but very inefficient, emitting only a small fraction of a percent of their power as UV. Mercury-vapor black lights in ratings up to 1 kW with UV-emitting phosphor and an envelope of Wood's glass are used for theatrical and concert displays. Black lights are used in applications in which extraneous visible light must be minimized; mainly to observe fluorescence ,
2378-544: The ground right into early summer and sun positions even at zenith are low, are particularly at risk. Skin, the circadian system, and the immune system can also be affected. The differential effects of various wavelengths of light on the human cornea and skin are sometimes called the "erythemal action spectrum". The action spectrum shows that UVA does not cause immediate reaction, but rather UV begins to cause photokeratitis and skin redness (with lighter skinned individuals being more sensitive) at wavelengths starting near
Ultraviolet (disambiguation) - Misplaced Pages Continue
2436-408: The lack of suitable gas / vapor cell window materials above the lithium fluoride cut-off wavelength limit the tuning range to longer than about 110 nm. Tunable V‑UV wavelengths down to 75 nm was achieved using window-free configurations. Lasers have been used to indirectly generate non-coherent extreme UV (E‑UV) radiation at 13.5 nm for extreme ultraviolet lithography . The E‑UV
2494-419: The longer infrared and just-barely-visible red wavelengths. Its maximum UV transmission is at 365 nm, one of the wavelengths of mercury lamps . A black light lamp emits long-wave UVA radiation and little visible light. Fluorescent black light lamps work similarly to other fluorescent lamps , but use a phosphor on the inner tube surface which emits UVA radiation instead of visible light. Some lamps use
2552-568: The minimum energy required to ionize atoms . Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack sufficient energy, it can induce chemical reactions and cause many substances to glow or fluoresce . Many practical applications, including chemical and biological effects, are derived from the way that UV radiation can interact with organic molecules. These interactions can involve absorption or adjusting energy states in molecules, but do not necessarily involve heating. Short-wave ultraviolet light
2610-473: The most common type of skin cell. As such, sunlight therapy can be a candidate for treatment of conditions such as psoriasis and exfoliative cheilitis , conditions in which skin cells divide more rapidly than usual or necessary. In humans, excessive exposure to UV radiation can result in acute and chronic harmful effects on the eye's dioptric system and retina . The risk is elevated at high altitudes and people living in high latitude areas where snow covers
2668-486: The need for costly vacuum chambers. Significant examples include 193-nm photolithography equipment (for semiconductor manufacturing ) and circular dichroism spectrometers. Technology for VUV instrumentation was largely driven by solar astronomy for many decades. While optics can be used to remove unwanted visible light that contaminates the VUV, in general, detectors can be limited by their response to non-VUV radiation, and
2726-473: The other end of the visible spectrum. He did not find exactly what he expected to find, but after a series of attempts he noticed that silver chloride was transformed faster from white to black when it was placed at the dark region of the Sun's spectrum, close to its violet end. The "chemical rays" found by him were afterwards called ultraviolet radiation. Some of Ritter's researches were acknowledged as important scientific contributions, but he also claimed
2784-454: The previous year at the other end of the visible spectrum. The simpler term "chemical rays" was adopted soon afterwards, and remained popular throughout the 19th century, although some said that this radiation was entirely different from light (notably John William Draper , who named them "tithonic rays" ). The terms "chemical rays" and "heat rays" were eventually dropped in favor of ultraviolet and infrared radiation , respectively. In 1878,
2842-515: The risks and benefits of sun exposure and is also implicated in issues such as fluorescent lamps and health . Getting too much sun exposure can be harmful, but in moderation, sun exposure is beneficial. UV (specifically, UVB) causes the body to produce vitamin D , which is essential for life. Humans need some UV radiation to maintain adequate vitamin D levels. According to the World Health Organization: There
2900-459: The same effect, independently. Besides that, he collected and measured the amounts of hydrogen and oxygen produced in the reaction. He also discovered the process of electroplating . In 1802 he built his first electrochemical cell , with 50 copper discs separated by cardboard disks moistened by a salt solution. Ritter made several self-experiments applying the poles of a voltaic pile to his own hands, eyes, ears, nose and tongue. He also described
2958-462: The same way as the visible blue light from those parts of the sky. UVB also plays a major role in plant development, as it affects most of the plant hormones. During total overcast, the amount of absorption due to clouds is heavily dependent on the thickness of the clouds and latitude, with no clear measurements correlating specific thickness and absorption of UVA and UVB. The shorter bands of UVC, as well as even more-energetic UV radiation produced by
SECTION 50
#17327830157093016-586: The sterilizing effect of short-wavelength light by killing bacteria was discovered. By 1903, the most effective wavelengths were known to be around 250 nm. In 1960, the effect of ultraviolet radiation on DNA was established. The discovery of the ultraviolet radiation with wavelengths below 200 nm, named "vacuum ultraviolet" because it is strongly absorbed by the oxygen in air, was made in 1893 by German physicist Victor Schumann . The electromagnetic spectrum of ultraviolet radiation (UVR), defined most broadly as 10–400 nanometers, can be subdivided into
3074-478: The tunable range of the 4 wave mixing. Difference frequency mixing (i.e., f 1 + f 2 − f 3 ) has an advantage over sum frequency mixing because the phase matching can provide greater tuning. In particular, difference frequency mixing two photons of an Ar F (193 nm) excimer laser with a tunable visible or near IR laser in hydrogen or krypton provides resonantly enhanced tunable V‑UV covering from 100 nm to 200 nm. Practically,
3132-500: The ultraviolet radiation that reaches the Earth's surface, more than 95% is the longer wavelengths of UVA, with the small remainder UVB. Almost no UVC reaches the Earth's surface. The fraction of UVA and UVB which remains in UV radiation after passing through the atmosphere is heavily dependent on cloud cover and atmospheric conditions. On "partly cloudy" days, patches of blue sky showing between clouds are also sources of (scattered) UVA and UVB, which are produced by Rayleigh scattering in
3190-476: The wavelength range of 300–400 nm; shorter wavelengths are blocked by the cornea . Humans also lack color receptor adaptations for ultraviolet rays. Nevertheless, the photoreceptors of the retina are sensitive to near-UV, and people lacking a lens (a condition known as aphakia ) perceive near-UV as whitish-blue or whitish-violet. Under some conditions, children and young adults can see ultraviolet down to wavelengths around 310 nm. Near-UV radiation
3248-693: Was a German chemist , physicist and philosopher . He was born in Samitz (Zamienice) near Haynau (Chojnów) in Silesia (then part of Prussia , since 1945 in Poland ), and died in Munich . Johann Wilhelm Ritter's first involvement with science began when he was 14 years old. He became an apprentice to an apothecary in Liegnitz (Legnica), and acquired a deep interest in chemistry. He began medicine studies at
3306-657: Was discovered in February 1801 when the German physicist Johann Wilhelm Ritter observed that invisible rays just beyond the violet end of the visible spectrum darkened silver chloride -soaked paper more quickly than violet light itself. He announced the discovery in a very brief letter to the Annalen der Physik and later called them "(de-)oxidizing rays" ( German : de-oxidierende Strahlen ) to emphasize chemical reactivity and to distinguish them from " heat rays ", discovered
3364-519: Was the main philosopher of the Naturphilosophie movement. In 1801, Hans Christian Ørsted visited Jena and became his friend. Several of Ritter's researches were later reported by Ørsted, who was also strongly influenced by the philosophical outlook of Naturphilosophie . Ritter's first scientific researches concerned some galvanic phenomena. He interpreted the physiological effects observed by Luigi Galvani and other researchers as due to
#708291