Misplaced Pages

VB 10

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

VB 10 or Van Biesbroeck's star / v æ n ˈ b iː z b r ʊ k / is a small and dim red dwarf located in the constellation Aquila . It is part of a binary star system. VB 10 is historically notable as it was the least luminous and least massive known star from its discovery in 1944, until 1982 when LHS 2924 was shown to be less luminous. Although it is relatively close to Earth, at about 19 light years, VB 10 is a dim magnitude 17, making it difficult to image with amateur telescopes as it can get lost in the glare of the primary star. VB 10 is also the primary standard for the M8V spectral class.

#554445

86-511: VB 10 was discovered in 1944 by the astronomer George van Biesbroeck using the 82 in (2.1 m) Otto Struve reflector telescope at the McDonald Observatory . He found it while surveying the telescopic field of view of the high- proper-motion red dwarf Gliese 752 (Wolf 1055), for companions. Wolf 1055 had been catalogued 25 years earlier by German astronomer Max Wolf using similar astrophotographic techniques. It

172-635: A 20' telescope to confirm Einstein's Theory of Relativity by noting the change in positions of the stars around the Sun during a total eclipse that year. His measurements were in agreement with Einstein's predictions. His travels to Sudan were the subject of a Time magazine article. He discovered the periodic comet 53P/Van Biesbroeck , as well as two non-periodic comets: C/1925 W1 (Van Biesbroeck 1) and C/1935 Q1 (Van Biesbroeck 2). He also discovered sixteen asteroids between 1922 and 1939 (see adjunct table) , and 43 double stars . In 1961 he published

258-497: A baseline absolute magnitude of nearly 19 and an apparent magnitude of 17.3 (somewhat variable), making it very difficult to see. Mathematical formulae for calculating apparent magnitude show that, if VB 10 occupied the place of the Sun, it would shine on Earth's sky at a magnitude of −12.87—approximately the same magnitude of that of the full moon . Later researchers also noted that its mass, at 0.08 solar mass ( M ☉ ),

344-472: A combined mass 7–25 times the Earth. This mixing process could have arisen during formation, while the planet accreted solids and gases from the surrounding nebula. Alternatively, it could have been caused by an impact from a planet of about ten Earth masses a few million years after Jupiter's formation, which would have disrupted an originally compact Jovian core. Outside the layer of metallic hydrogen lies

430-540: A higher orbit, disrupting the orbits of Uranus and Neptune, depleting the Kuiper belt, and triggering the Late Heavy Bombardment . Based on Jupiter's composition, researchers have made the case for an initial formation outside the molecular nitrogen (N 2 ) snow line, which is estimated at 20–30 AU (3.0–4.5 billion km; 1.9–2.8 billion mi) from the Sun, and possibly even outside

516-478: A large one in the centre and eight others around it, while its southern counterpart also consists of a centre vortex but is surrounded by five large storms and a single smaller one for a total of 7 storms. In 2000, an atmospheric feature formed in the southern hemisphere that is similar in appearance to the Great Red Spot, but smaller. This was created when smaller, white oval-shaped storms merged to form

602-533: A mass of 60.4   M J . Theoretical models indicate that if Jupiter had over 40% more mass, the interior would be so compressed that its volume would decrease despite the increasing amount of matter. For smaller changes in its mass, the radius would not change appreciably. As a result, Jupiter is thought to have about as large a diameter as a planet of its composition and evolutionary history can achieve. The process of further shrinkage with increasing mass would continue until appreciable stellar ignition

688-408: A period of about 121 days, moving backward through an angle of 9.9° before returning to prograde movement. Because the orbit of Jupiter is outside that of Earth, the phase angle of Jupiter as viewed from Earth is always less than 11.5°; thus, Jupiter always appears nearly fully illuminated when viewed through Earth-based telescopes. It was during spacecraft missions to Jupiter that crescent views of

774-514: A planet orbiting VB 10, which they designated VB 10b. The 200 in (5.1 m) Hale Telescope at the Palomar Observatory was used to detect evidence of this planet using the astrometry method . The new planet was claimed to have a mass 6 times that of Jupiter and an orbital period of 270 days. However, subsequent studies using Doppler spectroscopy failed to detect the radial velocity variations that would be expected if such

860-417: A planet was orbiting this small star. The claimants of VB 10b note that these Doppler measurements only rule out planets more massive than 3 times the mass of Jupiter, but this limit is only half the reported best-fit mass of the planet as originally claimed. The claims for this planet thus fall into a long history of claimed astrometric extrasolar planet detections that were subsequently refuted. By 2016, it

946-460: A radius of 60,000 km (37,000 mi) (11,000 km (6,800 mi) below the cloud tops) and merge again at 50,000 km (31,000 mi) (22,000 km (14,000 mi) beneath the clouds). Rainfalls of diamonds have been suggested to occur, as well as on Saturn and the ice giants Uranus and Neptune. The temperature and pressure inside Jupiter increase steadily inward as the heat of planetary formation can only escape by convection. At

SECTION 10

#1732779646555

1032-585: A single feature—these three smaller white ovals were formed in 1939–1940. The merged feature was named Oval BA . It has since increased in intensity and changed from white to red, earning it the nickname "Little Red Spot". In April 2017, a "Great Cold Spot" was discovered in Jupiter's thermosphere at its north pole . This feature is 24,000 km (15,000 mi) across, 12,000 km (7,500 mi) wide, and 200 °C (360 °F) cooler than surrounding material. While this spot changes form and intensity over

1118-553: A slight but noticeable bulge around the equator. The outer atmosphere is divided into a series of latitudinal bands, with turbulence and storms along their interacting boundaries; the most obvious result of this is the Great Red Spot , a giant storm that has been recorded since 1831. Jupiter's magnetic field is the strongest and second-largest contiguous structure in the Solar System, generated by eddy currents within

1204-437: A surface depth where the atmospheric pressure level is 1  bar (0.10  MPa ), the temperature is around 165 K (−108 °C; −163 °F). The region where supercritical hydrogen changes gradually from a molecular fluid to a metallic fluid spans pressure ranges of 50–400 GPa with temperatures of 5,000–8,400 K (4,730–8,130 °C; 8,540–14,660 °F), respectively. The temperature of Jupiter's diluted core

1290-415: A surprise to astronomers. It had previously been assumed that low mass red dwarfs would have insignificant or nonexistent magnetic fields, which are necessary for the production of solar flares. The dwarfs were believed to lack the radiative zone just outside the star's core that powers the dynamo of stars like our Sun . Nevertheless, the detection of solar flares indicates some as yet unknown process allows

1376-403: A transparent interior atmosphere of hydrogen. At this depth, the pressure and temperature are above molecular hydrogen's critical pressure of 1.3 MPa and critical temperature of 33  K (−240.2  °C ; −400.3  °F ). In this state, there are no distinct liquid and gas phases—hydrogen is said to be in a supercritical fluid state. The hydrogen and helium gas extending downward from

1462-599: A year through the sky as seen from Earth. VB 10 is a variable star and is identified in the General Catalogue of Variable Stars as V1298 Aquilae. It is a UV Ceti -type variable star and is known to be subject to frequent flare events . Its dynamics were studied from the Hubble Space Telescope in the mid-1990s. Although VB 10 has a normal low surface temperature of 2600 K it was found to produce violent flares of up to 100,000 K. This came as

1548-401: Is 80% of the Sun's, similar to Saturn 's composition. The ongoing contraction of Jupiter's interior generates more heat than the planet receives from the Sun. Its internal structure is believed to consist of an outer mantle of fluid metallic hydrogen and a diffuse inner core of denser material. Because of its rapid rate of rotation, one turn in ten hours, Jupiter is an oblate spheroid ; it has

1634-405: Is a gas giant , meaning its chemical composition is primarily hydrogen and helium. These materials are classified as gasses in planetary geology, a term that does not denote the state of matter. It is the largest planet in the Solar System, with a diameter of 142,984 km (88,846 mi) at its equator , giving it a volume 1,321 times that of the Earth. Its average density, 1.326 g/cm ,

1720-454: Is about 50 km (31 mi) deep and consists of at least two decks of ammonia clouds: a thin, clearer region on top and a thicker, lower deck. There may be a thin layer of water clouds underlying the ammonia clouds, as suggested by flashes of lightning detected in the atmosphere of Jupiter. These electrical discharges can be up to a thousand times as powerful as lightning on Earth. The water clouds are assumed to generate thunderstorms in

1806-414: Is about ten times larger than Earth ( 11.209  R 🜨 ) and smaller than the Sun ( 0.102 76   R ☉ ). Jupiter's mass is 318 times that of Earth; 2.5 times that of all the other planets in the Solar System combined. It is so massive that its barycentre with the Sun lies above the Sun's surface at 1.068  solar radii from the Sun's centre. Jupiter's radius is about one tenth

SECTION 20

#1732779646555

1892-444: Is an oblate spheroid, meaning that the diameter across its equator is longer than the diameter measured between its poles . On Jupiter, the equatorial diameter is 9,276 km (5,764 mi) longer than the polar diameter. Three systems are used as frames of reference for tracking planetary rotation, particularly when graphing the motion of atmospheric features. System I applies to latitudes from 7° N to 7° S; its period

1978-413: Is denser, with a composition of roughly 71% hydrogen, 24% helium, and 5% other elements by mass. The atmospheric proportions of hydrogen and helium are close to the theoretical composition of the primordial solar nebula . Neon in the upper atmosphere consists of 20 parts per million by mass, which is about a tenth as abundant as in the Sun. Jupiter's helium abundance is about 80% that of the Sun due to

2064-478: Is designated VB 10 in the 1961 publication of Van Biesbroeck's star catalog . Later, other astronomers began referring to it as Van Biesbroeck's star in honor of its discoverer. Because it is so dim and so close to its much brighter primary star , earlier astronomical surveys missed it even though its large parallax and large proper motion should have made it stand out on photographic plates taken at different times. VB 10 has an extremely low luminosity with

2150-411: Is estimated to be 20,000 K (19,700 °C; 35,500 °F) with a pressure of around 4,000 GPa. The atmosphere of Jupiter is primarily composed of molecular hydrogen and helium, with a smaller amount of other compounds such as water, methane, hydrogen sulfide, and ammonia. Jupiter's atmosphere extends to a depth of approximately 3,000 km (2,000 mi) below the cloud layers. Jupiter

2236-670: Is lower than those of the four terrestrial planets . The atmosphere of Jupiter is approximately 76% hydrogen and 24% helium by mass. By volume, the upper atmosphere is about 90% hydrogen and 10% helium, with the lower proportion owing to the individual helium atoms being more massive than the molecules of hydrogen formed in this part of the atmosphere. The atmosphere contains trace amounts of elemental carbon , oxygen , sulfur , and neon , as well as ammonia , water vapour , phosphine , hydrogen sulfide , and hydrocarbons like methane , ethane and benzene . Its outermost layer contains crystals of frozen ammonia. The planet's interior

2322-489: Is nearly circular. This low eccentricity is at odds with exoplanet discoveries, which have revealed Jupiter-sized planets with very high eccentricities. Models suggest this may be due to there being two giant planets in our Solar System, as the presence of a third or more giant planets tends to induce larger eccentricities. The axial tilt of Jupiter is 3.13°, which is relatively small, so its seasons are insignificant compared to those of Earth and Mars. Jupiter's rotation

2408-703: Is not there, it was astronomy, and while performing his official duties as a civil engineer he joined volunteers at the Uccle Observatory. In 1904 he left civil engineering behind and joined the staff at the Royal Observatory of Belgium at Uccle . He then enrolled at Ghent University and obtained a degree in theoretical astronomy. He worked at the Heidelberg Observatory , then at the Potsdam Observatory under

2494-675: Is perpetually covered with clouds of ammonia crystals, which may contain ammonium hydrosulfide as well. The clouds are located in the tropopause layer of the atmosphere, forming bands at different latitudes, known as tropical regions. These are subdivided into lighter-hued zones and darker belts . The interactions of these conflicting circulation patterns cause storms and turbulence . Wind speeds of 100 metres per second (360 km/h; 220 mph) are common in zonal jet streams . The zones have been observed to vary in width, colour and intensity from year to year, but they have remained stable enough for scientists to name them. The cloud layer

2580-425: Is right at the lower limit needed to create internal pressures and temperatures high enough to initiate nuclear fusion and actually be a star rather than a brown dwarf . At the time of its discovery it was the lowest-mass star known. The previous record holder for the lowest mass was Wolf 359 at 0.09  M ☉ . VB 10 is also notable by its very large proper motion , moving more than one arc second

2666-414: Is the fastest of all the Solar System's planets, completing a rotation on its axis in slightly less than ten hours; this creates an equatorial bulge easily seen through an amateur telescope. Because Jupiter is not a solid body, its upper atmosphere undergoes differential rotation . The rotation of Jupiter's polar atmosphere is about 5 minutes longer than that of the equatorial atmosphere. The planet

VB 10 - Misplaced Pages Continue

2752-580: Is the planet's shortest, at 9h 50 m 30.0s. System II applies at latitudes north and south of these; its period is 9h 55 m 40.6s. System III was defined by radio astronomers and corresponds to the rotation of the planet's magnetosphere; its period is Jupiter's official rotation. Jupiter is usually the fourth brightest object in the sky (after the Sun, the Moon , and Venus ), although at opposition Mars can appear brighter than Jupiter. Depending on Jupiter's position with respect to

2838-448: Is the strongest of any planet in the Solar System, with a dipole moment of 4.170 gauss (0.4170  mT ) that is tilted at an angle of 10.31° to the pole of rotation. The surface magnetic field strength varies from 2 gauss (0.20 mT) up to 20 gauss (2.0 mT). This field is thought to be generated by eddy currents —swirling movements of conducting materials—within the fluid, metallic hydrogen core. At about 75 Jupiter radii from

2924-606: The American Astronomical Society , is named in his honor. The prize is a lifetime achievement award given to astronomers who have contributed long-term extraordinary or unselfish service to astronomy. Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System . It is a gas giant with a mass more than 2.5 times that of all the other planets in the Solar System combined and slightly less than one-thousandth

3010-560: The Van Biesbroeck's star catalog . In this he cataloged a number of very faint stars, known by the VB numbers he assigned to them upon discovery. One notable star he discovered was the very small red dwarf secondary star, VB 10 , also known as Gliese (GJ) 752B , of the primary star, Wolf 1055 ( Gliese (GJ) 752A ). This star was unique in that its absolute magnitude of 19 was the lowest of any star then known and still thought to be

3096-605: The precipitation of these elements as helium-rich droplets, a process that happens deep in the planet's interior. Based on spectroscopy , Saturn is thought to be similar in composition to Jupiter, but the other giant planets Uranus and Neptune have relatively less hydrogen and helium and relatively more of the next most common elements , including oxygen, carbon, nitrogen, and sulfur. These planets are known as ice giants because during their formation, these elements are thought to have been incorporated into them as ice; however, they probably contain very little ice. Jupiter

3182-490: The " Suì Star" ( Suìxīng 歲星 ) and established their cycle of 12 earthly branches based on the approximate number of years it takes Jupiter to rotate around the Sun; the Chinese language still uses its name ( simplified as 歲 ) when referring to years of age. By the 4th century BC, these observations had developed into the Chinese zodiac , and each year became associated with a Tai Sui star and god controlling

3268-423: The 1660s, Giovanni Cassini used a new telescope to discover spots in Jupiter's atmosphere, observe that the planet appeared oblate, and estimate its rotation period. In 1692, Cassini noticed that the atmosphere undergoes a differential rotation. The Great Red Spot may have been observed as early as 1664 by Robert Hooke and in 1665 by Cassini, although this is disputed. The pharmacist Heinrich Schwabe produced

3354-485: The Earth, it can vary in visual magnitude from as bright as −2.94 at opposition down to −1.66 during conjunction with the Sun. The mean apparent magnitude is −2.20 with a standard deviation of 0.33. The angular diameter of Jupiter likewise varies from 50.1 to 30.5 arc seconds . Favourable oppositions occur when Jupiter is passing through the perihelion of its orbit, bringing it closer to Earth. Near opposition, Jupiter will appear to go into retrograde motion for

3440-448: The Sun is 778 million km ( 5.2  AU ) and it completes an orbit every 11.86 years. This is approximately two-fifths the orbital period of Saturn, forming a near orbital resonance . The orbital plane of Jupiter is inclined 1.30° compared to Earth. Because the eccentricity of its orbit is 0.049, Jupiter is slightly over 75 million km nearer the Sun at perihelion than aphelion , which means that its orbit

3526-412: The Sun. This changed the direction of migration, causing them to migrate away from the Sun and out of the inner system to their current locations. All of this happened over a period of 3–6   million years, with the final migration of Jupiter occurring over several hundred thousand years. Jupiter's migration from the inner solar system eventually allowed the inner planets—including Earth—to form from

VB 10 - Misplaced Pages Continue

3612-497: The argon snow line, which may be as far as 40 AU (6.0 billion km; 3.7 billion mi). Having formed at one of these extreme distances, Jupiter would then have, over a roughly 700,000-year period, migrated inwards to its current location, during an epoch approximately 2–3 million years after the planet began to form. In this model, Saturn, Uranus, and Neptune would have formed even further out than Jupiter, and Saturn would also have migrated inwards. Jupiter

3698-509: The chief deity of ancient Roman religion . Jupiter was the first of the Sun's planets to form, and its inward migration during the primordial phase of the Solar System affected much of the formation history of the other planets. Jupiter's atmosphere consists of 76% hydrogen and 24% helium by mass, with a denser interior. It contains trace elements like carbon , oxygen , sulfur , neon , ammonia , water vapour , phosphine , hydrogen sulfide , and hydrocarbons . Jupiter's helium abundance

3784-409: The chromophores from view. Jupiter has a low axial tilt , thus ensuring that the poles always receive less solar radiation than the planet's equatorial region. Convection within the interior of the planet transports energy to the poles, balancing out temperatures at the cloud layer. A well-known feature of Jupiter is the Great Red Spot , a persistent anticyclonic storm located 22° south of

3870-481: The cloud layer gradually transitions to a liquid in deeper layers, possibly resembling something akin to an ocean of liquid hydrogen and other supercritical fluids. Physically, the gas gradually becomes hotter and denser as depth increases. Rain-like droplets of helium and neon precipitate downward through the lower atmosphere, depleting the abundance of these elements in the upper atmosphere. Calculations suggest that helium drops separate from metallic hydrogen at

3956-462: The direction of Max Wolf , Karl Schwarzschild and others. In 1915, as World War I was raging, he was invited to come to work at Yerkes Observatory . He and his family made the dangerous trip across wartime Europe and settled permanently in the United States. He became a U.S citizen in 1922. He then began his work on double stars , comets , asteroids , and variable stars . In 1945 he

4042-462: The direction of Steward Observatory and that now houses the 1.6m Kuiper Telescope. He continued to observe and make contributions to astronomy up to a few months before his death. New scientific papers continued to be published under his name for several years afterward. He died on February 23, 1974, at the age of 94. Throughout his long and productive life he received many honors. This is a partial list. The George Van Biesbroeck Prize , awarded by

4128-425: The equator. It was first observed in 1831, and possibly as early as 1665. Images by the Hubble Space Telescope have shown two more "red spots" adjacent to the Great Red Spot. The storm is visible through Earth-based telescopes with an aperture of 12 cm or larger. The storm rotates counterclockwise, with a period of about six days. The maximum altitude of this storm is about 8 km (5 mi) above

4214-484: The etymology of Zeus ('sky father'). The English equivalent, Jove , is known to have come into use as a poetic name for the planet around the 14th century. Jovian is the adjectival form of Jupiter. The older adjectival form jovial , employed by astrologers in the Middle Ages , has come to mean 'happy' or 'merry', moods ascribed to Jupiter's influence in astrology . The original Greek deity Zeus supplies

4300-479: The fluid, metallic hydrogen core. The solar wind interacts with the magnetosphere , extending it outward and affecting Jupiter's orbit. Jupiter is surrounded by a faint system of planetary rings that were discovered in 1979 by Voyager 1 and further investigated by the Galileo orbiter in the 1990s. The Jovian ring system consists mainly of dust and has three main segments: an inner torus of particles known as

4386-494: The four largest moons of Jupiter (now known as the Galilean moons ) using a telescope. This is thought to be the first telescopic observation of moons other than Earth's. Just one day after Galileo, Simon Marius independently discovered moons around Jupiter, though he did not publish his discovery in a book until 1614. It was Marius's names for the major moons, however, that stuck: Io, Europa, Ganymede, and Callisto. The discovery

SECTION 50

#1732779646555

4472-400: The halo, a relatively bright main ring, and an outer gossamer ring. These rings appear to be made of dust, whereas Saturn's rings are made of ice. The main ring is most likely made out of material ejected from the satellites Adrastea and Metis , which is drawn into Jupiter because of the planet's strong gravitational influence. New material is added by additional impacts. In a similar way,

4558-420: The halo, a relatively bright main ring, and an outer gossamer ring. The rings have a reddish colour in visible and near-infrared light. The age of the ring system is unknown, possibly dating back to Jupiter's formation. At least 95 moons orbit the planet; the four largest moons — Io , Europa , Ganymede , and Callisto —orbit within the magnetosphere, and were discovered by Galileo Galilei in 1610. Ganymede,

4644-516: The hydrogen. The orange and brown colours in the clouds of Jupiter are caused by upwelling compounds that change colour when they are exposed to ultraviolet light from the Sun. The exact makeup remains uncertain, but the substances are thought to be made up of phosphorus, sulfur or possibly hydrocarbons. These colourful compounds, known as chromophores , mix with the warmer clouds of the lower deck. The light-coloured zones are formed when rising convection cells form crystallising ammonia that hides

4730-523: The largest of the four, is larger than the planet Mercury . Since 1973, Jupiter has been visited by nine robotic probes : seven flybys and two dedicated orbiters, with two more en route. In both the ancient Greek and Roman civilizations, Jupiter was named after the chief god of the divine pantheon : Zeus to the Greeks and Jupiter to the Romans. The International Astronomical Union formally adopted

4816-520: The late 1800s showed it to be approximately 41,000 km (25,500 mi) across. As of 2015 , the storm was measured at approximately 16,500 by 10,940 km (10,250 by 6,800 mi), and was decreasing in length by about 930 km (580 mi) per year. In October 2021, a Juno flyby mission measured the depth of the Great Red Spot, putting it at around 300–500 kilometres (190–310 miles). Juno missions found several cyclone groups at Jupiter's poles. The northern group contains nine cyclones, with

4902-572: The lowest possible for any star. VB 10 was given the designation of Van Biesbroeck's Star to honor him for this work and his work with double stars . In 1963 he came to the Lunar and Planetary Laboratory of the University of Arizona in Tucson Arizona to work under Gerard Kuiper . There he used his practical skills as a land surveyor to site the new Catalina Station now under

4988-401: The magnetosphere, which protects them from solar wind. The volcanoes on the moon Io emit large amounts of sulfur dioxide , forming a gas torus along its orbit. The gas is ionized in Jupiter's magnetosphere , producing sulfur and oxygen ions . They, together with hydrogen ions originating from the atmosphere of Jupiter, form a plasma sheet in Jupiter's equatorial plane. The plasma in

5074-410: The mass of the Sun. Its diameter is eleven times that of Earth , and a tenth that of the Sun. Jupiter orbits the Sun at a distance of 5.20  AU (778.5  Gm ), with an orbital period of 11.86  years . It is the third brightest natural object in the Earth's night sky , after the Moon and Venus , and has been observed since prehistoric times . Its name derives from that of Jupiter ,

5160-420: The moons Thebe and Amalthea are believed to produce the two distinct components of the dusty gossamer ring. There is evidence of a fourth ring that may consist of collisional debris from Amalthea that is strung along the same moon's orbit. Jupiter is the only planet whose barycentre with the Sun lies outside the volume of the Sun, though by 7% of the Sun's radius. The average distance between Jupiter and

5246-404: The name Jupiter for the planet in 1976 and has since named its newly discovered satellites for the god's lovers, favourites, and descendants. The planetary symbol for Jupiter, [REDACTED] , descends from a Greek zeta with a horizontal stroke , ⟨Ƶ⟩ , as an abbreviation for Zeus . In Latin, Iovis is the genitive case of Iuppiter , i.e. Jupiter. It is associated with

SECTION 60

#1732779646555

5332-551: The observation of double stars , asteroids and comets . He is notable for his long career as an observational astronomer. He was born in Ghent , Belgium on January 21, 1880, to a family of artists. At his father's request he pursued, and in 1902, he received, the 1st degree of Civil Engineering Construction and began work as a civil engineer for the Brussels Department of Roads and Bridges. But his true vocation

5418-462: The planet collapsed directly from the gaseous protoplanetary disk , it was expected to completely lack a core, consisting instead of a denser and denser fluid (predominantly molecular and metallic hydrogen) all the way to the centre. Data from the Juno mission showed that Jupiter has a diffuse core that mixes into its mantle, extending for 30–50% of the planet's radius, and comprising heavy elements with

5504-471: The planet were obtained. A small telescope will usually show Jupiter's four Galilean moons and the cloud belts across Jupiter's atmosphere . A larger telescope with an aperture of 4–6 inches (10–15 cm) will show Jupiter's Great Red Spot when it faces Earth. Observation of Jupiter dates back to at least the Babylonian astronomers of the 7th or 8th century BC. The ancient Chinese knew Jupiter as

5590-457: The planet, the interaction of the magnetosphere with the solar wind generates a bow shock . Surrounding Jupiter's magnetosphere is a magnetopause , located at the inner edge of a magnetosheath —a region between it and the bow shock. The solar wind interacts with these regions, elongating the magnetosphere on Jupiter's lee side and extending it outward until it nearly reaches the orbit of Saturn. The four largest moons of Jupiter all orbit within

5676-399: The polar regions of Jupiter. As a result, radio waves are generated through a cyclotron maser mechanism , and the energy is transmitted out along a cone-shaped surface. When Earth intersects this cone, the radio emissions from Jupiter can exceed the radio output of the Sun. Jupiter has a faint planetary ring system composed of three main segments: an inner torus of particles known as

5762-471: The present-day planet. Other models predict Jupiter forming at distances much farther out, such as 18 AU (2.7 billion km; 1.7 billion mi). According to the Nice model , the infall of proto- Kuiper belt objects over the first 600 million years of Solar System history caused Jupiter and Saturn to migrate from their initial positions into a 1:2 resonance, which caused Saturn to shift into

5848-415: The proto-Jupiter grew larger than 50 Earth masses it created a gap in the solar nebula. Thereafter, the growing planet reached its final mass in 3–4   million years. Since Jupiter is made of the same elements as the Sun (hydrogen and helium) it has been suggested that the Solar System might have been early in its formation a system of multiple protostars , which are quite common, with Jupiter being

5934-411: The radius of the Sun, and its mass is one thousandth the mass of the Sun , as the densities of the two bodies are similar. A " Jupiter mass " ( M J or M Jup ) is used as a unit to describe masses of other objects, particularly extrasolar planets and brown dwarfs . For example, the extrasolar planet HD 209458 b has a mass of 0.69   M J , while the brown dwarf Gliese 229 b has

6020-588: The region of the heavens opposite Jupiter's position in the night sky. These beliefs survive in some Taoist religious practices and in the East Asian zodiac's twelve animals. The Chinese historian Xi Zezong has claimed that Gan De , an ancient Chinese astronomer , reported a small star "in alliance" with the planet, which may indicate a sighting of one of Jupiter's moons with the unaided eye. If true, this would predate Galileo's discovery by nearly two millennia. A 2016 paper reports that trapezoidal rule

6106-405: The root zeno- , which is used to form some Jupiter-related words, such as zenography . Jupiter is believed to be the oldest planet in the Solar System, having formed just one million years after the Sun and roughly 50 million years before Earth. Current models of Solar System formation suggest that Jupiter formed at or beyond the snow line : a distance from the early Sun where the temperature

6192-459: The rubble. There are several unresolved issues with the grand tack hypothesis. The resulting formation timescales of terrestrial planets appear to be inconsistent with the measured elemental composition. Jupiter would likely have settled into an orbit much closer to the Sun if it had migrated through the solar nebula . Some competing models of Solar System formation predict the formation of Jupiter with orbital properties that are close to those of

6278-559: The same way as terrestrial thunderstorms, driven by the heat rising from the interior. The Juno mission revealed the presence of "shallow lightning" which originates from ammonia-water clouds relatively high in the atmosphere. These discharges carry "mushballs" of water-ammonia slushes covered in ice, which fall deep into the atmosphere. Upper-atmospheric lightning has been observed in Jupiter's upper atmosphere, bright flashes of light that last around 1.4   milliseconds. These are known as "elves" or "sprites" and appear blue or pink due to

6364-400: The second but failed protostar. But the Solar System never developed into a system of multiple stars and Jupiter does not qualify as a protostar or brown dwarf since it does not have enough mass to fuse hydrogen. According to the " grand tack hypothesis ", Jupiter began to form at a distance of roughly 3.5  AU (520 million  km ; 330 million  mi ) from the Sun. As

6450-435: The sheet co-rotates with the planet, causing deformation of the dipole magnetic field into that of a magnetodisk. Electrons within the plasma sheet generate a strong radio signature, with short, superimposed bursts in the range of 0.6–30  MHz that are detectable from Earth with consumer-grade shortwave radio receivers . As Io moves through this torus, the interaction generates Alfvén waves that carry ionized matter into

6536-434: The short term, it has maintained its general position in the atmosphere for more than 15 years. It may be a giant vortex similar to the Great Red Spot, and appears to be quasi-stable like the vortices in Earth's thermosphere. This feature may be formed by interactions between charged particles generated from Io and the strong magnetic field of Jupiter, resulting in a redistribution of heat flow. Jupiter's magnetic field

6622-505: The solely convective cores of low mass stars to produce sufficient magnetic fields to power such outbursts. VB 10 is the secondary star of a bound binary star system. The primary is called Gliese 752, and hence VB 10 is also referred to as Gliese 752 B. The primary star is much larger and brighter. The two stars are separated by about 74 arc seconds (~434 AU). In May 2009, astronomers from NASA 's Jet Propulsion Laboratory , Pasadena, California , announced that they had found evidence of

6708-434: The surrounding cloud tops. The Spot's composition and the source of its red colour remain uncertain, although photodissociated ammonia reacting with acetylene is a likely explanation. The Great Red Spot is larger than the Earth. Mathematical models suggest that the storm is stable and will be a permanent feature of the planet. However, it has significantly decreased in size since its discovery. Initial observations in

6794-497: The time of its formation, Jupiter was hotter and was about twice its current diameter. Before the early 21st century, most scientists proposed one of two scenarios for the formation of Jupiter. If the planet accreted first as a solid body, it would consist of a dense core , a surrounding layer of fluid metallic hydrogen (with some helium) extending outward to about 80% of the radius of the planet, and an outer atmosphere consisting primarily of molecular hydrogen . Alternatively, if

6880-511: The young planet accreted mass, its interaction with the gas disk orbiting the Sun and the orbital resonances from Saturn caused it to migrate inward. This upset the orbits of several super-Earths orbiting closer to the Sun, causing them to collide destructively. Saturn would later have begun to migrate inwards at a faster rate than Jupiter until the two planets became captured in a 3:2 mean motion resonance at approximately 1.5 AU (220 million km; 140 million mi) from

6966-592: Was a major point in favour of the heliocentric theory of the motions of the planets by Nicolaus Copernicus ; Galileo's outspoken support of the Copernican theory led to him being tried and condemned by the Inquisition . In the autumn of 1639, the Neapolitan optician Francesco Fontana tested a 22-palm telescope of his own making and discovered the characteristic bands of the planet's atmosphere. During

7052-512: Was achieved. Although Jupiter would need to be about 75 times more massive to fuse hydrogen and become a star , its diameter is sufficient as the smallest red dwarf may be slightly larger in radius than Saturn. Jupiter radiates more heat than it receives through solar radiation, due to the Kelvin–Helmholtz mechanism within its contracting interior. This process causes Jupiter to shrink by about 1 mm (0.039 in) per year. At

7138-597: Was forced into retirement at Yerkes at the age of 65. Relieved of administrative duties, he became an even more active observer at Yerkes and at the McDonald Observatory . He made the frequent automobile trips between the observatories in Wisconsin and Texas without complaint. He participated in numerous physically grueling astronomical expeditions to remote parts of the world throughout the late 1940s and 1950s. In 1952, at age 72, he traveled to Khartoum in Sudan and set up

7224-447: Was sufficiently cold for volatiles such as water to condense into solids. First forming a solid core, the planet then accumulated its gaseous atmosphere. Therefore, the planet must have formed before the solar nebula was fully dispersed. During its formation, Jupiter's mass gradually increased until it had 20 times the mass of the Earth, approximately half of which was made up of silicates, ices and other heavy-element constituents. When

7310-463: Was suspected that the asymmetric debris disk signal was mistaken for the long-period planet. George van Biesbroeck George A. Van Biesbroeck (or Georges-Achille Van Biesbroeck , / v æ n ˈ b iː z b r ʊ k / , January 21, 1880 – February 23, 1974) was a Belgian–American astronomer . He worked at observatories in Belgium, Germany and the United States. He specialized in

7396-573: Was used by Babylonians before 50 BC for integrating the velocity of Jupiter along the ecliptic . In his 2nd century work the Almagest , the Hellenistic astronomer Claudius Ptolemaeus constructed a geocentric planetary model based on deferents and epicycles to explain Jupiter's motion relative to Earth, giving its orbital period around Earth as 4332.38 days, or 11.86 years. In 1610, Italian polymath Galileo Galilei discovered

#554445